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The paper presents the structure of a new original FDPS (Functional Discrete Perfect Sets)
algorithm used to filter and arrange the layers of the geospatial data into the homogenous
groups and identify dense homogenous condensations. The latter may be related to the deep
zones of dynamic instability in the upper part of the Earth’s crust. Synthetic and real examples
of this algorithm’s usage are presented, demonstrating its capabilities as part of the system
analysis of the geological environment stability in the area of construction of a deep disposal
site for high-level radioactive waste. Testing the algorithm allowed us to identify the most
stable blocks, thereby demonstrating its usage value. This shows the necessity of further
development and use of the FDPS algorithm. KEYWORDS: Functional Discrete Perfect Sets
algorithm; geological environment; cluster analysis; high-level radioactive waste; geological stability.
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Introduction

At present, an underground research laboratory
(URL) is being created in the granite-gneiss rocks
of the Nizne-Kansk Massif (Krasnoyarsk Territory)
to assess and substantiate the geoecological safety
of disposal of high-level radioactive waste (HLRW).
In international and Russian documents regulating
safety of HLRW management, the main message is
the idea that the main barrier in the way of spread-
ing of radionuclides is the geological environment.
The engineering barriers for HLRW with the half-
life of more than 10 thousand years are secondary.

The selection of the part of the Earth’s crust
suitable for HLRW disposal is based on the analy-
sis of properties, phenomena and processes affect-
ing preservation of the insulating properties of the
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rocks of the structural tectonic block (STB) con-
taining HLRW. The complexity of solving this mul-
tidisciplinary problem is related to the extreme het-
erogeneity of the upper part of the Earth’s crust
caused by a structural-tectonic disturbance (linea-
ments, fractures, large cracks, etc.) and tectonic
movements of various hierarchical levels (differenti-
ated movements along the fracture, tectonic creep,
seismicity, etc.).

The Nizne-Kansk Massif is located in the au-
reole of the largest regional tectonic structures –
the folded structure of the Yenisei Ridge, the
epi-Hercynian West Siberian platform, the an-
cient Siberian platform and the young Altay-Sayan
earthquake-prone region. The force interaction of
these structures specifies the current stress-strain
state of the region.

The southern part of the Yenisei Ridge (Fig-
ure 1) since the end of the Pleiocene (1.5± 0.5 mln
years) has been experiencing a slow uplift, the to-
tal amplitude of which is estimated at 400-500 m,
and the average velocity according to the geologi-
cal data makes 0.2-0.3 mm/year [Anderson et al.,
2011; Belov et al., 2007; Lobatskaya, 2005].
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Figure 1. Geological map of the Nizne-Kansk massif. 1 - boundaries: established (a),
assumed (b), unconformity (c), dropping (d); 2 - reverse faults: major (a), minor (b),
faults (c); 3 - breaking faults: unidentified (a), alleged (b), activated (c); 4 - mylonites
(a), blastomylonites (c); 5 - tectonic terrain ledges; 6 - amphibolites (a), shales (b); 7 -
migmatites (a), granitoids (b); 8 - diaftorites; 9 - outcrops; 10 - places of permafrost; 11
- holes; 12 - wells in area HLRW; 13 - thickness of the Quaternary layer; 14 - the rela-
tionship of layers: consonant (a), unconformable (b), angular unconformity (c), tectonic
(d), intrusive (e); 15 - boundaries of areas for HLRW.
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As applied to the problem of the HLRW dis-
posal in geological formations, an important term
was introduced – “stability of the structural-tectonic
block ” [Tatarinov et al., 2014a; Gvishiani et al.,
2019a]. It is understood as the capacity of the block
to maintain or change its properties and state un-
der the natural and anthropogenic influences within
the range that will not lead to the loss of insulating
properties of the rock mass and release of radionu-
clides outside the sanitary zone. This is defined by
the time interval equal to the period of the HLRW
radiobiological hazard.

The structural tectonic block is the system with
distributed parameters depending on the time and
coordinates of observation points. Their anomalous
values (potentially dangerous for preservation of in-
sulating properties of the rocks) are represented in
the features (morphology) of distribution of the ge-
ological, geophysical, geochemical and other char-
acteristics and the Earth’s surface relief, most often
in the form of linearly elongated areas, the so-called
geodynamic zones. It is believed that geodynamic
zones are responsible for:

∙ formation of local zones of concentration of
stress fields, initiating the process of rock de-
struction in the form of fast seismic processes
or tectonic creep;

∙ modern vertical and horizontal movements of
the Earth’s crust;

∙ destruction of the rock mass and an increase in
its permeability and porosity for the ground-
waters.

Their identification is the most significant task of
geodynamic zoning [Morozov et al., 2008; Petukhov
et al., 1999; Tatarinov et al., 2014b].

In most cases, it is almost impossible to visu-
ally identify unstable zones in the maps, especially
based on the set of features. It is characteristic
for low-level platform areas (in fact, to which the
Nizne-Kansk Massif belongs) or regions with a thick
sedimentary cover. For such cases, based on the
methods and algorithms of discrete mathematical
analysis (DMA) [Agayan et al., 2018; Gvishiani
et al., 2019b] within the framework of the Rus-
sian Science Foundation project no. 18-17-00241, a
measure of geodynamic safety was constructed con-
sidering interaction of the geodynamics and mor-
phological features of distribution of geological and

geophysical parameters (including a digital terrain
model, results of GNSS-observations, geophysical
fields, etc.) [Gvishiani et al., 2019a; Gvishiani et
al., 2020]. In accordance with the values of this
measure, the studied area is ranked into relatively
unstable (conditionally dangerous) and stable (con-
ditionally safe) structural blocks. It is required to
create an algorithm of adequate system analysis to
identify them. An original algorithm FDPS (Func-
tional Discrete Perfect Sets) is developed and ap-
plied in the paper for this purpose. The first results
of its use in the considered region are stated in this
paper.

1 Construction FDPS Algorithm

The search for anomalies in the fields of geophys-
ical data [Mikhailov et al., 2003; Zlotnicki et al.,
2005; Soloviev et al., 2012], identification of the
places of possible occurrence of significant earth-
quakes [Gvishiani et al., 2016; Gvishiani et al.,
2017] and other tasks related to the problems of
natural risk bring a researcher (an expert) to the
need to assess 𝜈(𝑥) ∈ [0, 1] the nodes 𝑥 of the fi-
nite grid 𝑋 based on the measurements carried out
in them. The assessment 𝜈 is required to rank the
nodes in 𝑋 and select the subsets 𝐵(𝑋, 𝜈) of the
best nodes among them.

In general, the assessment 𝜈 inherits stochasticity
of the measurements underlying it. That’s why, the
selection according to the level 𝛼 as to 𝜈

𝐵(𝑋, 𝜈) = {𝑥 ∈ 𝑋 : 𝜈(𝑥) ≥ 𝛼}

is unstable: a “good node” 𝑥 (𝜈(𝑥) ≥ 𝛼) may be
surrounded with “bad nodes” 𝑥 (𝜈(𝑥) < 𝛼), and
that’s why it is not considered further. And vice
versa, a “bad node” may be surrounded with “good
nodes” and will be used in further work.

The aim of this work is to form a selection 𝐵(𝑋, 𝜈)
in presence of the metric structure on 𝑋 using the
Discrete Perfect Sets topological filtering algorithm
developed in the frames of discrete mathematical
analysis (DMA) and its application to the HLRW
disposal problem.

This selection will represent a set of regions con-
nected in 𝑋, in which the majority of nodes are
“good”.
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1.1 Discrete Perfect Sets

Let 𝑋 be the finite set, and 𝐴, 𝐵, . . . and
𝑥, 𝑦, . . . – its subsets and points, respectively.

Definition 1 Let’s call a mapping of 2𝑋×𝑋 to the
fragment [0, 1], increasing by the first argument, the
density 𝑃 on the set 𝑋:

𝑃 (𝐴, 𝑥) = 𝑃𝐴(𝑥)
∀𝑥 ∈ 𝑋 : 𝐴 ⊆ 𝐵 ⇒ 𝑃𝐴(𝑥) ≤ 𝑃𝐵(𝑥).

𝑃𝐴(𝑥) is the density of the subset 𝐴 in the point 𝑥.

For the density 𝑃 given on 𝑋, the subset 𝐴 and
the level 𝛼 ∈ [0, 1], let’s construct a sequence of 𝛼-
𝑛-hulls of the subset 𝐴 in the set 𝑋 according to
the density 𝑃 :

𝐴1 = {𝑥 ∈ 𝑋 : 𝑃𝐴(𝑥) ≥ 𝛼},
. . .

𝐴𝑛 = {𝑥 ∈ 𝑋 : 𝑃𝐴∪𝐴𝑛−1(𝑥) ≥ 𝛼},
. . .

Induction by 𝑛 using the increasing monotonicity
𝑃 specifies

Statement 1 𝐴1 ⊆ · · · ⊆ 𝐴𝑛 ⊆ . . . .

Because of finiteness of the set 𝑋, in the non-
decreasing and bounded sequence of 𝛼-𝑛-hulls, start-
ing from some number 𝑛*, stabilization occurs:

Definition 2 Let’s call the set 𝐴𝑛*
𝛼-∞-hull of

the subset 𝐴 and designate through 𝐴∞.

The set 𝐴∞ is semi-variant: its first density hull
(𝐴∞)1 does not fall beyond the set 𝐴∞.

Statement 2 𝐴∞ contains its 𝛼-hull by the den-
sity:

(𝐴∞)1 ⊆ 𝐴∞.

Proof by contradiction. Let us use the finite repre-
sentation 𝐴∞: 𝐴∞ = 𝐴𝑛* . If 𝑃𝐴𝑛* (𝑥) ≥ 𝛼 and
𝑥 /∈ 𝐴𝑛* , then 𝑃𝐴∪𝐴𝑛* (𝑥) ≥ 𝑃𝐴𝑛* (𝑥) ≥ 𝛼 ⇒
𝑥 ∈ 𝐴(𝑛*+1) and therefore 𝐴𝑛* ⊂ 𝐴(𝑛*+1). How-
ever, based on the condition 𝐴𝑛*

= 𝐴(𝑛*+1). The
obtained contradiction proves the statement.

Form this it immediately follows that for a set
the series of its 𝛼-𝑛-hulls is constant.

Consequence

(𝐴∞)𝑛 = (𝐴∞)1 ∀ 𝑛 ≥ 2.

Proof. It is stated above that (𝐴∞)1 ⊆ 𝐴∞ there-
fore,

(𝐴∞)2 =
{︀
𝑥 ∈ 𝑋 : 𝑃𝐴∞∪(𝐴∞)1(𝑥) =

= 𝑃𝐴∞(𝑥) ≥ 𝛼} = (𝐴∞)1

and so on.
Let’s designate 𝛼-∞-hull for 𝐴∞ through 𝐴2∞.

We have:

𝐴2∞ = (𝐴∞)∞ = (𝐴∞)1 ⊆ 𝐴∞.

Sequentially constructing the 𝛼-∞-hulls based on
the density 𝑃 , we obtain the following scheme:

𝐴 → 𝐴1 ⊆ · · · ⊆ 𝐴∞

𝐴∞ ⊇ (𝐴∞)1 = 𝐴2∞

. . .

𝐴𝑚∞ ⊇ (𝐴𝑚∞)1 = 𝐴(𝑚+1)∞

. . .

Because of 𝑋 finiteness in a non-increasing se-
quence

𝐴∞ ⊇ · · · ⊇ 𝐴𝑚∞ ⊇ . . . ,

starting with some number 𝑚*, stabilization oc-
curs:

𝐴∞ ⊃ · · · ⊃ 𝐴𝑚*∞ = 𝐴(𝑚*+1)∞ = . . . .

Definition 3 Let’s designate the set 𝐴𝑚*∞ through
𝐴(𝛼).

The process of constructing 𝐴(𝛼) has a stage of
increasing from 𝐴1 to 𝐴∞ and a stage of decreasing
from 𝐴∞ to 𝐴(𝛼):

𝐴 → 𝐴1 ⊂ · · · ⊂ 𝐴𝑛*
=

= 𝐴∞ ⊇ · · · ⊇ 𝐴𝑚*∞ = 𝐴(𝛼).
(1)

Statement 3 𝐴(𝛼) coincides with its 𝛼-hull.

Proof. It follows from the following results:

𝐴(𝛼) = 𝐴𝑛*∞ = 𝐴(𝑛*+1)∞ =

= (𝐴𝑛*∞)1 = (𝐴(𝛼))1.

Informally, this statement means that the set
𝐴(𝛼) consists exactly of those points where its den-
sity is more than 𝛼 or equal to it:

𝐴(𝛼) =
{︀
𝑥 ∈ 𝑋 : 𝑃𝐴(𝛼)(𝑥) ≥ 𝛼

}︀
.
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In all complement points, the density 𝑃𝐴(𝛼) is
less than 𝛼:

𝐴(𝛼) =
{︀
𝑥 ∈ 𝑋 : 𝑃𝐴(𝛼)(𝑥) < 𝛼

}︀
.

It follows particularly from here that the process
of transition from 𝐴(𝛼) to 𝐴(𝛼)(𝛼) is constant and
therefore 𝐴(𝛼) = 𝐴(𝛼)(𝛼).

Informal interpretation of 𝐴(𝛼). Let’s in-
terpret the density 𝑃𝐴(𝑥) as a measure of limit of
the point 𝑥 for the set 𝐴. The point 𝑥 with a suffi-
ciently high density

𝑃𝐴(𝑥) ≥ 𝛼

are considered to be limit for 𝐴. The set 𝐴∞ in-
cludes all its 𝛼-limit points from 𝑋 is closed in this
respect. The set 𝐴(𝛼), included into 𝐴∞, coincides
with the set of its 𝛼-limit points from 𝑋 and is
perfect in this respect.

1.2 Complete Discrete Perfect Sets
Algorithm

Definition 4 The construction process for the set 𝐴
in the universe 𝑋 based on the density 𝑃 is called,
complete Discrete Perfect Sets algorithm and is des-
ignated through DPS:

DPS(·) = DPS(·|𝑋,𝑃, 𝛼) : 2𝑋 → 2𝑋 .

It is specified above that the algorithm DPS is
idempotent (DPS2 = DPS). The subsets which are
fixed in respect to it are called 𝛼-perfect sets of
(𝛼-DPS-sets) in 𝑋:

𝐴 = 𝛼-DPS-sets in 𝑋
⇔ DPS(·|𝑋,𝑃, 𝛼) = 𝐴
⇔ 𝐴 =

{︀
𝑥 ∈ 𝑋 : 𝑃𝐴(𝛼)(𝑥) ≥ 𝛼

}︀ (2)

In general, as it is stated above (1), the DPS
algorithm has two stages: increasing

𝐴𝑛 ↑ 𝐴∞ ⇔ 𝐴 → 𝐴1 ⊆ · · · = 𝐴∞

and decreasing

𝐴𝑚∞ ↓ 𝐴∞ ⇔ 𝐴∞ ⊇ 𝐴2∞ ⊇ . . . 𝐴(𝛼).

There are situations when the algorithm DPS
“works faster” and has no more than one stage.
A trivial case is examined in (2): DPS is fixed at
𝐴 ≡ zero algorithm stages DPS at 𝐴 – 𝛼-perfect.
Let’s study DPS with one stage.

Increasing DPS. There is only an increasing
stage 𝐴𝑛 ↑ 𝐴∞ available, therefore, the set 𝐴 is
𝛼-perfect.

Statement 4 Sufficient condition of increasing
DPS: 𝐴 ⊆ 𝐴1 ≡ any point in 𝐴 is 𝛼-limit for it.

Proof. In this case 𝐴 ⊆ 𝐴𝑛 ∀ 𝑛 ≥ 1 and therefore

𝐴𝑛+1 = {𝑥 ∈ 𝑋 : 𝑃𝐴∪𝐴𝑛(𝑥) ≥ 𝛼} =

= {𝑥 ∈ 𝑋 : 𝑃𝐴𝑛(𝑥) ≥ 𝛼} = (𝐴𝑛)1.

If 𝐴∞ = 𝐴𝑛* , then𝐴∞ = 𝐴𝑛*+1 = (𝐴𝑛*
)1 =

(𝐴∞)1 which means 𝛼-perfection of 𝐴∞ (2).

Decreasing DPS. There is only a decreasing
stage 𝐴𝑚∞ ↓ 𝐴(𝛼) available. There is no increasing
stage, therefore, 𝐴1 = 𝐴∞. Let’s give a simple and
effective criterion of this situation:

Statement 5 𝐴1 = 𝐴∞ ⇔ 𝐴1 = 𝐴2.

Proof. The necessity 𝐴1 = 𝐴∞ ⇒ 𝐴1 = 𝐴2 follows
from inclusions 𝐴1 ⊆ 𝐴2 ⊆ 𝐴∞.
Sufficiency 𝐴1 = 𝐴2 ⇒ 𝐴1 = 𝐴∞. In this case,

𝐴3 = {𝑥 ∈ 𝑋 : 𝑃𝐴∪𝐴2(𝑥) ≥ 𝛼} =

= {𝑥 ∈ 𝑋 : 𝑃𝐴∪𝐴1(𝑥) ≥ 𝛼} = 𝐴2.

Similarly, 𝐴4 = 𝐴3, . . . , 𝐴𝑛+1 = 𝐴𝑛 and so on,
that’s why, 𝐴1 = 𝐴∞.

Example Assume that 𝐴1 ⊆ 𝐴, then

𝐴2 = {𝑥 ∈ 𝑋 : 𝑃𝐴∪𝐴1(𝑥) ≥ 𝛼} =

= {𝑥 ∈ 𝑋 : 𝑃𝐴(𝑥) ≥ 𝛼} = 𝐴1

The condition 𝑋1 ⊆ 𝑋 is evidently fulfilled,
that’s why throughout the total space 𝑋 the al-
gorithm DPS is always decreasing. Let’s present it
in full because of its great practical importance:

𝑋(𝛼) = ∩𝑋𝑛(𝛼), 𝑋𝑛(𝛼) =

=
{︁
𝑥 ∈ 𝑋 : 𝑃𝑋𝑛−1

(𝛼)
(𝑥) ≥ 𝛼

}︁
,

𝑛 ≥ 1, 𝑋0(𝛼) = 𝑋.

The DPS algorithm constructs for each subset of
the original space its “perfect shell”, which we con-
sider to be a cluster. Thus, DPS answers for each
subset the question about the closest and naturally
related cluster. The complete DPS is needed to ac-
curately scrutinize the effect of an original subset
on its surrounding complement.
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In a sense, a simple 𝐷𝑃𝑆 is the opposite of a
complete one, building a perfect envelope for all
space. This is the largest perfect set. If there is
a metric in the original space, 𝐷𝑃𝑆 splits it into
connected pieces that are of interest to us and which
we consider to be clusters.

1.3 Simple Discrete Perfect Sets Algorithm

The first part of the simple Discrete Perfect Sets
algorithm (𝐷𝑃𝑆) consists in the transition 𝑋 →
𝑋(𝛼), i.e., in cutting out from the whole set 𝑋 of
its 𝛼-perfect part 𝑋(𝛼) with respect to the densi-
ties requiring the presence of the metric 𝑑 on 𝑋.
Let’s describe two structures of such density. The
first of them is called “Number of points” and the
set-theoretic algorithm SDPS is related to it. The
second is called “Average weight” and the functional
algorithm FDPS is related to it.

Number of points. The density depends on
the proximity radius 𝑟 and the parameter 𝑞 ≥ 0. A
ball with the center at 𝑥 of radius 𝑟 is considered
for each point 𝑥 from the set 𝑋:

𝐷(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝑟} .

The sum of points of the set 𝑋 in it is calculated
for each ball taking into account the distance from
the point to the ball center:

𝑁𝑋(𝑥, 𝑟) =
∑︁

𝑦∈𝐷(𝑥,𝑟)

(︂
1− 𝑑(𝑥, 𝑦)

𝑟

)︂𝑞

.

Let’s designate the maximum of such sums by all
point 𝑥 ∈ 𝑋 through 𝑁(𝑋, 𝑟):

𝑁(𝑥, 𝑟) = max
𝑥∈𝑋

𝑁𝑋(𝑥, 𝑟).

Also, the sum of points is calculated for each ball
considering their distance from the ball points only
based on the points of the subset 𝐴 ⊆ 𝑋:

𝑁𝑋(𝑋, 𝑟) =
∑︁

𝑦∈𝐷𝐴(𝑥,𝑟)

(︂
1− 𝑑(𝑥, 𝑦)

𝑟

)︂𝑞

.

Here, 𝐷𝐴(𝑥, 𝑟) is the intersection of the ball
𝐷(𝑥, 𝑟) and the subset 𝐴:

𝐷𝐴(𝑥, 𝑟) = 𝐷(𝑥, 𝑟) ∩𝐴.

The density of the subset 𝐴 ⊆ 𝑋 in the point
𝑥 ∈ 𝑋 is determined as the ratio of the sum of

points of the ball in 𝐴 considering their distance
from the center 𝑥 to the maximum sum of the balls
in 𝑋:

𝑃𝐴(𝑥) =
𝑁𝐴(𝑥, 𝑟)

𝑁(𝑋, 𝑟)
(3)

Average Weight. The functional variant of
the simple algorithm 𝐷𝑃𝑆 is related to a special
density 𝑃 (𝜈, 𝑟) based on the weight function 𝜈 :
𝑋 → [0, 1] and localization of the radius 𝑟:

𝑃𝐴(𝑥) =

∑︀
𝜈(𝑥̄) : 𝑥̄ ∈ 𝐷𝐴(𝑥, 𝑟)

|𝐷(𝑥, 𝑟)|
. (4)

The value 𝜈(𝑥) may be assumed as the weight of
the element 𝑥.

Topological Deviation. It will be recalled
that two points 𝑥 and 𝑦 in 𝐴 ⊆ 𝑋 are called
𝑟-connected, if there is a chain of 𝑟-close points
𝑥0, . . . , 𝑥𝑛 in 𝐴 with the beginning 𝑥0 = 𝑥 and the
end 𝑥𝑛 = 𝑦. The 𝑟-connectivity ratio is an equiva-
lence and breaks 𝐴 into 𝑟-connectivity components
𝐶𝐴(1), . . . , 𝐶𝐴(𝑘*), 𝑘* = 𝑘*(𝐴):

𝐴 = 𝐶𝐴(1) ∨ · · · ∨ 𝐶𝐴(𝑘*).

Statement 6 If 𝑃𝐴(𝑥) of densities is (3) or (4),
the components of 𝑟-connectivity 𝐶𝑋(𝛼)(1), . . . ,
𝐶𝑋(𝛼)(𝑘*) are 𝛼-perfect.

Proof. Such densities have an 𝑟-local action: if
𝑑(𝑥,𝐴) > 𝑟, then 𝑃𝐴(𝑥) = 0. Therefore, for any
component of the 𝑟-connectivity 𝐶𝑋(𝛼)(𝑘), the fol-
lowing equality is valid

𝑃𝐶𝑋(𝛼)(𝑘)(𝑥) = 𝑃𝑋(𝛼)(𝑥) ∀𝑥 ∈ 𝐶𝑋(𝛼)(𝑘).

The 𝛼-perfection 𝐶𝑋(𝛼)(𝑘) follows from here
and the 𝛼-perfection of 𝑋(𝛼).

Informally, this statement means consistency of
𝛼-perfection and connectivity, which is the theo-
retical justification for the second clustering part
of the 𝐷𝑃𝑆. The algorithm flow diagram is given
in Figure 2

Let’s summarize the above said giving the follow-
ing.

Definition 5

1. The process of construction for the finite met-
ric space (𝑋, 𝑑) based on the 𝑟-local density 𝑃
of the 𝛼-hull 𝑋(𝛼) with its subsequent parti-
tion into 𝑟-connected components is called a
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Figure 2. Flow diagram of the simple Discrete Perfect Sets algorithm.

simple 𝐷𝑃𝑆 algorithm:

𝐷𝑃𝑆 = 𝐷𝑃𝑆(𝑃, 𝛼, 𝑟) : 𝑋 → 22
𝑋

𝐷𝑃𝑆(𝑋) = 𝐶𝑋(𝛼)(1), . . . , 𝐶𝑋(𝛼)(𝑘*);

2. If the density 𝑃 has the form (3), the 𝐷𝑃𝑆 is
called set-theoretic (SDPS);

3. If the density 𝑃 has the form (4), the DPS is
called functional (FDPS).

In conclusion, let’s turn out attention to the re-
lations of the SDPS algorithm and cluster analysis.
For this purpose, let’s present a heuristic definition
of clusters given by Everitt: “Clusters are ‘continu-
ous’ areas of a (certain) space in related to a higher
density of points, separated from other similar ar-
eas by the areas with a relatively low density of
points” [Everitt, 1980].

Implementation of this definition is more than
a traditional cluster analysis [Tou and Gonzalez,

Figure 3. The result of SDPS work on a synthetic example with different parameters.
a) 𝑟 = 28.92, 𝛼 = 0.2; b) 𝑟 = 28.92, 𝛼 = 0.3. Blue points are the original data, red are
concentrations identified by the SDPS algorithm.

1974], because it involves not only partition of the
initial space into clusters, but also its preliminary
reduction (filtering) prior to their union.

The SDPS algorithm makes it and, that’s why,
it represents an algorithm of a new post-clustering
stage in the cluster analysis.

1.4 Synthetic examples of use of the SDPS
and FDPS algorithms

The “Number of points” density (3) shows the
degree of concentration of the space 𝑋 around each
of its nodes 𝑥. Therefore, the set-theoretic SDPS is
focused on the search for condensations and works
well in non-homogeneous spaces (irregular grids) 𝑋.

Figure 3 shows the work of the SDPS algorithm
on an irregular grid with different parameters (𝑟,
𝛼). By varying them, one can get a fairly complete
idea of the concentrations in the original space.
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Figure 4. a) anomalies identified by the FDPS algorithm with 𝑟 = 23.26 (4); b) anoma-
lies identified by level. Dotted line is set level 𝛼 = 0.3.

The given examples illustrate the general property
of the dependence of the 𝐷𝑃𝑆 algorithm on pa-
rameters: the smaller the proximity radius and the
higher the density level, the stricter the 𝐷𝑃𝑆 algo-
rithm, and the denser and finer its results.

FDPS algorithm (4) it is focused on the search for
the subsets in 𝑋 with the 𝑟-locally high exponent of
weights 𝜈. It is also capable of working on regular
grids, and therefore it successfully complements the
SDPS algorithm.

Figure 4a shows the work of the FDPS algorithm:
the space 𝑋 in this case is a regular grid on the
horizontal axis, the weight 𝜈 of each point 𝑥 ∈ 𝑋
is plotted vertically. The results of the FDPS algo-
rithm are two red segments on the horizontal axis,
which serve as the bases of the two most significant
stochastic heights on 𝑋. As you can see from the
figure, the FDPS algorithm is stable and does not
pay attention to insignificant drops below a given
level. This property explains the massiveness of
the heights allocated to him. For comparison, Fig-
ure 4b shows a classic selection on a grid relative to
a given level. This approach, in our opinion, gives
numerous weak results located outside the limits
of the massive segments distinguished by the algo-
rithms FDPS (Figure 4a).

2 Results of Application of the FDPS
Algorithm to the Fata of the
Nizne-Kansk Massif

The work of the SDPS algorithm for recognizing
places of possible occurrence of strong earthquakes
has shown its stability. Epicenters of strong earth-
quakes stably fall into clusters obtained by SDPS
in the set of epicenters of all earthquakes. These
clusters are in good agreement with the zones allo-
cated by the well-known EPA algorithm [Gvishiani
et al., 2016; Gvishiani et al., 2017].

It will be shown below that the FDPS algorithm
has the same property in the problem of assess-
ment the stability of structural tectonic blocks of
the earth’s crust.

In this case, the weight function 𝜈 for it was an
integral measure of stability, calculated in the area
of the Nizne-Kansk Massif (Krasnoyarsk Territory)
and ranking for the safety of nuclear waste disposal:
the more the measure is, the safer the object under
study is.

Construction of 𝜈 requires combining heteroge-
neous information from the geological and geophys-
ical parameters and therefore represents a prob-
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Figure 5. Diagram of calculation of the integral safety measure for the Nizne-Kansk Massif.

lem of the system analysis. It is solved within the
frames of the program for studying the systems of
real-valued functions on two-dimensional grids us-
ing the fuzzy sets [Gvishiani et al., 2019b] created
by the authors.

Its final stage – selection of the connected mas-
sif areas that are relatively stably-high – is solved
by the FDPS algorithm and in our case represents
zones suitable for safe disposal in the Nizne-Kansk
Massif.

2.1 Integral Stability Measure

The integral measure of stability 𝜈 is calculated
based on the complex of the geological-geophysical
parameters. Some of them have a natural charac-
ter and are related to the relief of the Nizne-Kansk
Massif and its system of fractures. The other part
represents modeling of the stress-strain state of the
Nizne-Kansk massif based on its GNSS observa-
tions.

As noted above, the theoretical foundations of
the approach are represented in the paper [Gvishi-
ani et al., 2019b]. The calculation diagram includes
the following stages (Figure 5):

1. “Dynamic indicator” – a primary analysis of
the initial geological, geophysical and geomor-
phological data. Each dynamic indicator is in-
terpreted as a quantitative assessment of one
or another property of the initial data.

2. “The measure of activity of the dynamic in-
dicator” – this measure shows the degree of

activity of the studied property of the geolog-
ical environment in the scale [0, 1].

3. “The measure of safety of the dynamic in-
dex” is an fuzzy negation [Zadeh, 1996] of its
measure of activity and characterizes weak-
ness of appearance of the property of this dy-
namic indicator. Transition to the safety mea-
sure means translation of the initial data into
the language of fuzzy logic. The safety mea-
sures of dynamic indicators are fuzzy struc-
tures and, therefore, they can be united in any
compositions and quantities using fuzzy logic
operations.

4. “Integral safety measure” is an integral combi-
nation of safety measures of the dynamic in-
dicators and represents the measure of geody-
namic safety of the studied area.

The 𝑊 node grid with dimensions (250×150) was
chosen to implement the methodology in the area
of the Nizne-Kansk Massif. Let’s call the node 𝑤 ∈
𝑊 internal, if it is surrounded with eight adjacent
nodes of the grid (Figure 6).

Four indicators were calculated in each internal
node of the grid characterizing the features of the
relief 𝐿1

𝑅𝑒, 𝐿2
𝑅𝑒, ∇𝑅𝑒 and the proximity to active

fractures – 𝜌(𝜋, 𝑃𝑘). The first two indicators (𝐿1
𝑅𝑒,

𝐿2
𝑅𝑒) characterize the geomorphological variability,

and the third one (|∇𝑅𝑒|) – the relief gradient.
The first two indicators characterize the perfor-

mance of the relief 𝑅𝑒 in the node 𝑤 (Figure 6, re-
spectively, along the length centered in 𝑤 and along
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Figure 6. Layout of the nodes.

the angles centered in 𝑤:

𝐿1
𝑅𝑒(𝑤) =

∑︀
𝑗=2,4,6,8 |𝑅𝑒(𝑤)𝑛𝑗 −𝑅𝑒(𝑤)|

4
(5)

𝐿2
𝑅𝑒(𝑤) =

2 + cos 𝜃ℎ(𝑤) + cos 𝜃𝑣(𝑤)

2
(6)

where

cos 𝜃ℎ(𝑤) =
−1 + (𝑅𝑒(𝑤4)−𝑅𝑒(𝑤))(𝑅𝑒(𝑤6)−𝑅𝑒(𝑤))√︀
1+(𝑅𝑒(𝑤4)−𝑅𝑒(𝑤))2

√︀
1+(𝑅𝑒(𝑤6)−𝑅𝑒(𝑤))2

cos 𝜃𝑣(𝑤) =
−1 + (𝑅𝑒(𝑤8)−𝑅𝑒(𝑤))(𝑅𝑒(𝑤2)−𝑅𝑒(𝑤))√︀
1+(𝑅𝑒(𝑤8)−𝑅𝑒(𝑤))2

√︀
1+(𝑅𝑒(𝑤2)−𝑅𝑒(𝑤))2

The third indicator of the relief drop is the gra-
dient module ∇𝑅𝑒, which is calculated using the
Sobel operator [Trofimov et al., 1994]:

∇𝑅𝑒(𝑤) = |∇ℎ
𝑅𝑒(𝑤)|+ |∇𝑣

𝑅𝑒(𝑤)|
∇ℎ

𝑅𝑒(𝑤) = (𝑅𝑒(𝑤7) + 2𝑅𝑒(𝑤8) +𝑅𝑒(𝑤9))

− (𝑅𝑒(𝑤1) + 2𝑅𝑒(𝑤2) +𝑅𝑒(𝑤3))

∇𝑣
𝑅𝑒(𝑤) = (𝑅𝑒(𝑤3) + 2𝑅𝑒(𝑤6) +𝑅𝑒(𝑤9))

− (𝑅𝑒(𝑤1) + 2𝑅𝑒(𝑤4) +𝑅𝑒(𝑤7))

(7)

The measure of activity of the dynamic indicators

for 𝐿1
𝑅𝑒 (5), 𝐿2

𝑅𝑒 (6), ∇𝑅𝑒 (7) are calculated as:

𝜇𝐿1
𝑅𝑒(𝑤) =

𝐿1
𝑅𝑒(𝑤)

𝐿1
𝑅𝑒(𝑤) + 𝐿1

𝑅𝑒

𝜇𝐿2
𝑅𝑒(𝑤) =

𝐿2
𝑅𝑒(𝑤)

𝐿2
𝑅𝑒(𝑤) + 𝐿2

𝑅𝑒

𝜇∇𝑅𝑒(𝑤) =
∇𝑅𝑒(𝑤)

∇𝑅𝑒(𝑤) +∇𝑅𝑒

,

where 𝐿1
𝑅𝑒, 𝐿

2
𝑅𝑒, ∇𝑅𝑒 – average values of the indi-

cators 𝐿1
𝑅𝑒(𝑤), 𝐿

2
𝑅𝑒(𝑤), ∇𝑅𝑒(𝑤).

The integral measure of activity 𝜇𝑅𝑒 of the relief
according to the system of indicators 𝐿1

𝑅𝑒, 𝐿
2
𝑅𝑒, ∇𝑅𝑒

is given by:

𝜇𝑅𝑒(𝑤) =
𝜇𝐿1

𝑅𝑒(𝑤) + 𝜇𝐿2
𝑅𝑒(𝑤) + 𝜇∇𝑅𝑒(𝑤)

3
.

And the measure of geodynamic safety corre-
sponding to the relief:

𝜈𝑅𝑒(𝑤) = 1− 𝜇𝑅𝑒(𝑤). (8)

The fourth indicator 𝑑𝒫(𝑤) characterizes the prox-
imity of the point 𝑤 to the system of tectonic frac-
tures 𝒫 = {𝑃𝑘} (22 fractures in the region of the
Nizne-Kansk Massif). The values 𝑑𝒫(𝑤) are calcu-
lated using the Kolmogorov mean with the negative
exponent:

𝑑𝒫(𝑤) =

{︂
0, if 𝑤 ∈ 𝒫

𝑀𝑞(𝑑(𝑤,𝑃𝑘)|𝑁1 ), if 𝑤 /∈ 𝒫 ,

where 𝑞 < 0 and

𝑀𝑞(𝑑(𝑤,𝑃𝑘)|𝑁1 ) =

(︂∑︀𝑛
𝑘=1 𝑑(𝑤,𝑃𝑘)

𝑞

𝑁

)︂1/𝑞

.

The measure 𝜇𝑑𝒫(𝑤) corresponding to the indi-
cator 𝑑𝒫(𝑤) is specified using the formula:

𝜇𝑑𝒫(𝑤) =
𝑑𝒫

𝑑𝒫(𝑤) + 𝑑𝒫
,

𝑑𝒫 – the average value of the indicator 𝑑𝒫(𝑤).
Final safety measure related to fractures

𝜈𝒫(𝑤) = 1− 𝜇𝒫(𝑤). (9)

The final safety measure related to relief and frac-
tures is averaging of the measures (8) and (9):

𝜈(𝑤) =
𝜈𝑅𝑒(𝑤) + 𝜈𝒫(𝑤)

2
. (10)

The integral measure of geodynamic safety 𝜈(𝑤)
(10) according to four specified features is shown in
Figure 7a.
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Figure 7. Results of identifying safety zones by different algorithms. a) an integral mea-
sure of geodynamic safety 𝜈; b) selection by level 𝛼; c) ordinary averaging; d) convolution
with the Gauss core; e) pyramidal smoothing; f) FDPS algorithm. The dotted line shows
the boundaries of the construction site of the HLRW disposal facility.
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2.2 Functional Clustering of the Integral
Measure of Geodynamic Safety

The final measure of geodynamic safety 𝜈 (10)
inherits to a certain extent stochasticity of the re-
lief and fractures underlying it (Figure 7a). That’s
why, choosing a certain level 𝛼, for example, 𝛼 =
0.45, we see (Figure 7b) that the set of 𝛼-stable
nodes has a complex topology. This is related with
the extreme heterogeneity of the geological environ-
ment. It is known that the most dangerous from
the tectonic point of view are related areas often
with a linearly elongated shape. Therefore, simpli-
fication is required, i.e. recognition of only massive
areas with possible corrections of insignificant inter-
nal losses of 𝛼-stability for final assessment of geo-
dynamic safety. Simplification of the integral mea-
sure of geodynamic safety allows an expert to see
visually and evaluate the main patterns in its dis-
tribution through the area, omitting insignificant
details serving as background noises.

Use of traditional methods (ordinary averaging
(Figure 7c), convolution with the Gauss core (Fig-
ure 7d) [Shapiro et al., 2001; Nixon et al., 2019],
pyramidal smoothing (Figure 7e) [Smith, 1999]) for
this purpose does not solve the problem. The re-
quired simplification is achieved using the FDPS
algorithm. Figure 7f shows the result of using the
FDPS algorithm with the selected density level for
the measure given in Figure 7a. Figure 7f clearly
demonstrates that the zone with a higher value
𝜈 intersects the underground research laboratory
mine take in the direction from the southeast to
the northwest.

Conclusion

As a result of construction of the integral mea-
sure of geodynamic safety, it became possible to use
the system analysis methods when assessing stabil-
ity of structural and tectonic blocks of the Earth’s
crust for the urgent geoecological problem - ensur-
ing safety of disposal of the high-level radioactive
waste in geological formations. It should be noted
that the results of using the algorithm as applied
to the real-valued data of the Nizne-Kansk Mas-
sif are preliminary. The method requires to use a
wider set of layers of analyzed data and needs to be
improved.

In theoretical terms, continuation of researches
related to the FDPS algorithm is seen by the au-
thors:

∙ in automating selection of its parameters thro-
ugh optimization of the external quality func-
tional simultaneously monitoring the massive-
ness of the obtained clusters and the “good”
nodes of the required 𝜈-quality contained in
them;

∙ in possible further clustering (uniting) of the
𝑟-connected components of its result, which
will make it possible to distinguish more qual-
itatively the bases of the elevation on 𝑋 for
the weight function 𝜈 and form the selection
𝐵(𝑋, 𝜈).

As to our problem, this will allow to identify the
most stable structural blocks according to the val-
ues of the measure 𝜈.

Testing of the developed method and DMA algo-
rithms based on several data layers for the northern
part of the Nizne-Kansk Massif, where construction
of the underground research laboratory is started
at present to substantiate safety of deep HLRW
disposal, and calculation of the geodynamic safety
measure for the Yenisei area has shown their prac-
tical value and necessity of their further develop-
ment, including for solving the geodynamic zoning
problems [Gvishiani et al., 2019a].

An evident practical value of the method con-
sists in the system step-by-step holistic analysis of
diverse, multi-scale and multi-format layers of geo-
logical and geophysical information about the state
of the structural-tectonic block, and, first of all,
geomorphological, kinematic (determined based on
the geodetic observations) and geophysical charac-
teristics. A concept - a measure of activity of the
dynamic indicator based on expert assessments of
the behavior of geological and geophysical param-
eters in the vicinity of the grid nodes dividing the
area into clusters is introduced for a formalized as-
sessment of stability using the DMA methods. The
cluster component of the DMA, based on the con-
cept of density, allows to define strictly the con-
cepts of condensation (dense subset), cluster (iso-
lated condensations), and traces (linear condensa-
tions) for the multidimensional array. The FDPS
algorithm was used to filter and arrange layers of
geospatial data into homogeneous groups and sep-
arate dense homogeneous clusters that may be re-
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lated to the deep zones of dynamic instability in
the Earth’s upper crust.

The preliminary data of the algorithm testing
showed that the structural tectonic block, in which
construction of a deep HLRW disposal site is planned,
is located in a relatively stable zone. The FDPS al-
gorithm can also be useful in planning comprehen-
sive geophysical studies in the area of the under-
ground research laboratory within the Nizne-Kansk
Massif, as well as in solving other related problems
in the sphere of geodynamics, geoecology and min-
ing [Gvishiani et al., 2020].
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