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Abstract. In the theory of internal waves in
the coastal ocean, linear stratification plays an
exceptional role. This is because the
nonlinearity coefficient in KdV theory vanishes,
and in the case of large amplitude waves, the
DJL theory linearizes and fails to give solitary
wave solutions. We consider small, physically
consistent perturbations of a linearly stratified
fluid that would result from a localized mixing
near a particular depth. We demonstrate that
the DJL equation does yield exact internal
solitary waves in this case. These waves are long
due to the weak nonlinearity, and we explore
how this weak nonlinearity manifests during
shoaling.
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1. Introduction

Internal waves are an important physical phenomenon
in the world’s oceans primarily because of their role in
cascading energy from large to small scales where they
break, dissipate and mix. The two primary generation
mechanisms for internal waves are tide-topography in-
teractions and wind stress at the ocean surface, each
contributing approximately half of the energy in the
oceanic internal wave field [Waterhouse et al., 2014].
Internal waves have several interesting properties. The
frequency of a linear internal plane waves is a function
of the direction of its wave vector in the vertical plane
which has several far reaching consequences. For ex-
ample wave energy propagates along wave crests rather
than in the direction of phase propagation and waves
reflect off a bottom slope with their angle to the ver-
tical preserved rather than their angle to the boundary
(i.e. Snell’s law). One consequence of the latter is wave
focusing after upslope reflection which increases wave
energy density and transfers energy to shorter wave-
lengths.

Another interesting internal wave phenomenon are
internal solitary-like waves (ISWs) which are ubiqui-
tous in coastal regions of the world’s oceans where they



predominantly form via the nonlinear-dispersive evolu-
tion of internal tides (internal waves of tidal frequency
generated by tide-topography interaction) [Jackson et
al., 2012]. These waves propagate horizontally in the
wave guide bounded by the surface and bottom. For
a continuously stratified fluid there are a discrete set
of modes which have different vertical structures. By
far the most commonly observed and most energetic
ISWs are mode-one waves. Mode-one waves are char-
acterized by having isopycnals which are all vertically
displaced in the same direction: downward for waves of
depression and upward for waves of elevation. Mode-
two waves are observed less frequently [Shroyer et al.,
2010a; Liang, 2019]. They have ispopycnal displace-
ments in one direction in the upper part of the water
column and in the opposite direction in the lower part
and propagate much more slowly. In general the di-
rection of isopycnal displacements changes sign n − 1
times in a mode-n wave.

Fully nonlinear internal solitary waves can be mod-
eled with the Dubreil-Jacotin-Long (DJL) equation [Turk-
ington et al., 1991; Lamb and Wan, 1998; Stastna and
Lamb, 2002]. This equation has the appealing fea-
ture that it can model fully nonlinear-dispersive waves
however as it can only model mode-one waves of per-



manent form it can not be used to investigate the inter-
action of nonlinear internal waves or their evolution as
they propagate through a changing environment, e.g. a
region with variable water depth or currents. Long
weakly-nonlinear ISWs and other long weakly-nonlinear
horizontally propagating waves such as internal bores
can be modeled with the well-known Korteweg-de Vries
(KdV) equation

Bt + c0Bx + αBBx + βBxxx = 0 (1)

which does enable investigations of an evolving wave
field including shoaling waves after the addition of a
shoaling term [Grimshaw et al. 2004; Lamb and Xiao,
2014]. This equation has solitary wave solutions which
have an number of fascinating properties. They are
waves of permanent form with a very particular shape
that arises through a balance of nonlinear and dispersive
effects. As their amplitude increases they get narrower
and their propagation speed increases. Two solitary
waves of different amplitude can therefor interact when
a large wave catches up to a smaller wave and after a
complicated nonlinear interact the two waves re-emerge
with exactly the same amplitudes and shape that they
started with, leading to the name ‘soliton’ for waves
with this special property. Solitary waves solutions of



the KdV equation are waves of depression if α < 0 and
waves of elevation if α > 0.

In the ocean internal waves are often large enough
to necessitate the inclusion of higher-order nonlinearity
in weakly-nonlinear models which leads to the Gardner
equation

Bt + c0Bx + αBBx + α1B
2Bx + βBxxx = 0. (2)

Further extensions are possible [Pelinovskii et al., 2000].
While extending the range of validity of the KdV equa-
tion the Gardner equation also has some new features.
Of some significance is that the cubic coefficient α1

can have either sign in the ocean [Grimshaw et al.,
1997; Grimshaw et al., 2007]. If α1 < 0 solitary
waves now have a maximum amplitude and become
broad and flat-crested as this limiting amplitude is ap-
proached, a feature of fully nonlinear internal solitary
waves. Such waves have occasionally been observed in
the field [Shroyer et al., 2010b]. The case when α1 > 0
is particularly interesting: solitary waves of either po-
larity (i.e. waves of depression and waves of elevation)
can now exist and a new type of nonlinear wave, a pul-
sating packet called a breather, exists [Grimshaw et al.,
2007].



Because of the rich nonlinear-dispersive behavior of
internal waves they have been a topic of research for
decades. For a linear stratification under the Boussi-
nesq approximation both nonlinear coefficients of the
Gardner equation are zero and the DJL equation, used
to model fully nonlinear ISWs, linearizes and has no
solitary wave solutions. Small perturbations to a lin-
ear stratification reintroduce nonlinearity albeit very
weakly. In this manuscript we explore a few curious
features of these waves which, while perhaps not phys-
ically relevant to the ocean, never-the-less enrich our
understanding of these fascinating waves.

2. Methods

Useful theoretical and computational tools for study-
ing ISWs in the ocean include weakly-nonlinear theo-
ries, the DJL equation and fully nonlinear numerical
models. The latter can be computationally expensive
because of the necessity of including non-hydrostatic
effects and the high resolution required to resolve the
waves coupled with often large domains when studying
their shoaling behaviour [Lamb et al., 2015]. Weakly-
nonlinear models have the advantage of being quick
making it easier to more fully explore parameter space



and to focus on some key processes [Holloway et al.,
1999; Grimshaw et al., 2007; Grimshaw et al., 2010;
Lamb and Xiao, 2014].

2.1. Fully Nonlinear Numerical Model

The second order finite volume code, IGW solves the
2D, nonlinear, non-hydrostatic, Boussinesq equations
[Lamb, 2007]. The version of the model equations
solved here ignore rotational and viscous effects and
are (

~ut + ~u · ~∇~u
)

= −~∇p − ρgk̂

ρt + ~u · ~∇ρ = 0

~∇ · ~u = 0,

where the 2D velocity in the xz-plane is ~u = (u,w),

represented by the î and k̂ unit vectors respectively.
The dimensionless density ρ represents the variations
in the density about the reference density ρ0, so the
physical density is ρ∗ = ρ0(1 + ρ). The pressure p
is the difference between the physical density p∗ and
the pressure in hydrostatic balance with the reference
density and has also been scaled by ρ0. No variation
occurs in the y direction (i.e. ∂/∂y = 0) maintaining
the 2D approach. The model uses a second-order, finite



volume projection method [Bell et al., 1989; Bell and
Marcus, 1992].

The model has a rigid lid and uses terrain follow-
ing coordinates thus increasing the resolution over the
shelf. We used 200 grid points in the vertical (i.e. a
resolution of 0.75 m) with a horizontal resolution of 12
m.

2.2. KdV Theory

Weakly nonlinear theories (WNL) of internal wave mo-
tion start with the stratified incompressible Euler Equa-
tions, shown above under the Boussinesq approxima-
tion and in the absence of rotation. We assume a flat
ocean bottom located at z = −H . WNL performs an
expansion of these equations in two parameters, one
that specifies a small but finite amplitude, and the
other that specifies a small aspect ratio, or ratio of
typical vertical to typical horizontal length scales. For
example, in the xz-plane, when written in terms of the
isopycnal displacement η(x , z , t) WNL assumes

η(x , z , t) = B(x , t)Z (z)



at leading order. A systematic perturbation expansion
then derives an eigenvalue problem for Z (z),

Z ′′ +
N2

c2
Z = 0,

Z (−H) = Z (0) = 0.

Here
N2(z) = −g ρ̄′(z)

where ρ̄(z) is the background density profile. Continu-
ing to the next order in amplitude and aspect ration, the
perturbation expansion also yields an evolution equa-
tion for the wave form B(x , t), e.g. the KdV equation
(1). The nonlinear and dispersive coefficients of the
KdV equation are given by

α =
3c

2

∫ 0
−H Z ′3 dz∫ 0
−H Z ′2 dz

β =
c

2

∫ 0
−H Z 2 dz∫ 0
−H Z ′2 dz

.

2.3. DJL Theory

The Dubreil-Jacotin Long (DJL) equation is formally
equivalent to the full set of stratified Euler equations



[Turkington et al., 1991; Lamb and Wan, 1998; Stastna
and Lamb, 2002]. Its solutions thus describe exact
internal solitary waves. In a frame moving with the
solitary wave, the DJL equation under the Boussinesq
approximation reads

∇2η +
N2(z − η)

c2
η = 0

with homogeneous (i.e. η = 0) boundary conditions
at z = −H , 0 and as |x | → ∞. When N2 = N2

0 is
constant, or in other words when the density profile is
linear, the DJL equation linearizes. In this case stan-
dard theory of linear elliptic equations shows that the
maximum of η must occur on the boundary and solitary
waves are thus impossible.

We consider density profiles of the form

ρ̄(z) = −∆ρ
z

H
+ ap tanh

(z − z0

d

)
sech

(z − z0

d

)
(see Figure 1). Here ∆ρ specifies the top to bottom
density change for the linear stratification, while the
second term models a mixed layer centered at z0 with
a thickness characterized by d . We choose ∆ρ = 0.01,
or a 1% density change from domain top to bottom.
ap sets the amplitude of the perturbation, which has a
functional form chosen so that integral of the pertur-



Figure 1. Schematic of the basic density con-
figuration. (a) density difference from the reference
value, profile versus z/H , (b) details of density pro-
file, (c) details of N2 profile, scaled by value of N2

away from the perturbation.



bation is zero. The centre of the perturbation consists
of less stratified (i.e. partially mixed) fluid, while the
flanks of the perturbation are more strongly stratified.
In practice ap must be quite small, in order to preclude
local density overturns. While we varied ap, results re-
ported below fix ap = 0.0002. We will vary z0, but fix
d = 0.025H .

3. Results

3.1. Linear Theory Results

We considered the effect of the density perturbation
on the first 10 modes of linear theory as a function of
depth. We define cbase as the solution for the linear
stratification, and compute the relative error. For ver-
tical structure functions we compute the L2 difference
between the mode in the perturbed case and the mode
in the linear stratification case. The results are sum-
marized in Figure 2. The top row shows the results
for all 10 modes. It is readily apparent that higher
modes are more strongly affected by the perturbation.
The perturbation form is schematized in the lower left
panel, where N2 is shown. Since the effects on the
lower modes were difficult to see when all modes were



Figure 2. The effects of the density perturba-
tion on linear theory. The top left panel shows the
relative error in linear longwave speed for the first
10 modes as the perturbation height changes, The
top right panel shows the L2 difference of the modal
structure for the first 10 modes as the perturbation
height changes. The bottom left panel shows the
form of the perturbation in the N2 profile. The bot-
tom right panel shows the L2 difference of the modal
structure for the first 3 modes as the perturbation
height changes.



shown, the lower right panel shows the L2 difference
for the first three modes. It is apparent again, that the
effect on the lowest mode is very small compared to
that on the higher modes. This is what motivated us
to look at the DJL equation next, to see if a qualitative
difference for mode-1 could be observed.

3.2. DJL Theory Results

Solutions of the DJL equation were computed by the
variational method due to Turkington and co-workers
[Turkington et al., 1991] as implemented in [Lamb and
Wan, 1998; Stastna and Lamb, 2002]. Due to the
weak nonlinearity the convergence of the iteration pro-
cedure was considerably slower than in stratifications
with much larger variations in the buoyancy frequency
that are more typical for the ocean.

Figure 3 shows the density field for four sample in-
ternal solitary waves, two (panels a and b) for a mixed
layer centered at z0 = −25 m and two (panels c and
d) for a mixed layer centered at z0 = −15 m. The lo-
cation of the center of the mixed layer is indicated by a
dashed black line. It is immediately clear that changing
the mixed layer location can lead to a change in soli-
tary wave polarity. The waves of elevation have a fairly



Figure 3. Shaded density field for sample DJL
waves (a) the mixed layer is centered at z = −25
m and ap = 0.0002 APE = 6 MJ/m, (b) as (a)
but with APE = 34 MJ/m, (c) the mixed layer is
centered at z = −15 m and ap = 0.0002 APE = 6
MJ/m, (d) as (c) but with APE = 34 MJ/m.



generic, bell-like shape, while the waves of depression
are quite a bit broader.

Figure 4 shows bulk wave properties as functions of
the available potential energy, APE , for the waves of
elevation (the mixed layer centered at z0 = −25 m).
Panel (a) shows the maximum isopycnal displacement,
panel (b) shows the propagation speed, panel (c) the
wave half-width, and panel (d) shows some sample
surface currents for a range of wave amplitudes It is
clear that as the APE increases the wave amplitude
and propagation speed gradually increase, approaching
the conjugate flow values [Lamb and Wan, 1998], while
the half-width initially decreases as predicted by KdV
theory before increasing as the waves broaden. The
broadening of the waves is evident in the surface cur-
rent plot. The extremely weak nonlinearity leads to only
very small changes in propagation speed as the wave
amplitude increases. It is also responsible for the very
long lengths of the waves: the wave nonlinearity is bal-
anced by dispersion which is very weak for long waves.
This will be seen to have implications for wave behavior
when shoaling. The gradient Richardson number (not
shown) remains large in all cases, implying that shear
instability will not play a role in the evolution of these
waves.



Figure 4. Bulk properties as a function of APE of
DJL waves with the mixed layer at z = −25 m and
ap = 0.0002. (a) Maximum isopycnal displacement,
(b) propagation speed, (c) wave half-width, (d) sur-
face currents for waves with APE = 1, 10, 20, 40,
60, 80, 100 and 117 MJ/m. Horizontal grey lines in
panels (a,b) are the conjugate flow values.



Figure 5 shows the corresponding information for the
waves of depression when the mixed layer is centered
at z0 = −10 m.

It is evident from Figure 3 that a small change in the
height of the perturbation has led to a change in wave
polarity. Indeed the waves with the smaller z0 are even
broader than those in the base case as is predicted by
the much smaller magnitude of α for this stratification.
The questions is, thus, in an ocean setting where a wave
of depression shoals onto a shelf, is the nonlinearity
strong enough for a reversal of polarity to be observed?
And if the answer to this question is ‘No’, then how is
nonlinearity manifested?

3.3. Shoaling Results

Given the weak nonlinearity of the perturbed linear
stratification and the observation that perturbations at
different heights yield different polarities of internal soli-
tary waves, we wanted to assess how large amplitude
internal waves evolve during shoaling. The stratifica-
tion used is the stratification used for the ISWs shown in
Figure 6. Figure 6a shows the shape of the bathymetry
which was chosen so that the mixed layer is at depths
of 15% and 25% of the water depth in the deep and



Figure 5. Bulk properties as a function of APE of
DJL waves with the mixed layer at z = −10 m and
ap = 0.0002. (a) Maximum isopycnal displacement,
(b) propagation speed, (c) wave half-width, (d) sur-
face currents for waves with APE = 1, 10, 20, 40
MJ/m. Horizontal grey lines in panels (a,b) are the
conjugate flow values.



Figure 6. Schematic and basic results of the shoal-
ing simulation (a) the bathymetry, (b) wave–induced
surface (red) and bottom (black) velocities (m s−1)
at the initial time, (c) wave–induced surface (solid)
and bottom (dashed) velocities (m s−1) after shoal-
ing.



shallow water corresponding to the depths of the mixed
layer in the example waves in Figure 3. The remain-
ing panels show the initial wave–induced surface (solid
line) and bottom (dashed line) horizontal velocity pro-
files (panel (a)); and the wave–induced surface (solid
line) and bottom (dashed line) horizontal velocity pro-
files after shoaling (panel (b)). The reader should note
the extremely long length scale of the initial wave which
is based on KdV theory, i.e. it is not a DJL solution. In
spite of this is propagates without noticeably changing
shape until it shoals onto the shelf.

It is immediately evident that the shoaling process
leads to both an asymmetry in the horizontal structure
and significant shedding of waves behind the leading
wave. The back of the wave is quite steep (though
recall that this wave is very long and hence the wave is
not close to breaking). On the scale of the figure only
a mode-1 tail is evident. Higher mode waves are found
further behind the leading wave, and will be discussed
below. It is interesting that the long tail is accompa-
nied by a train of short length scale waves. On the
scale of the figure these are difficult to see as anything
more than ‘squiggles’, but they are well-resolved by the
numerical model with at least twenty grid points per
wavelength.



In Figure 7 we show the horizontal velocity field
(shaded) and density field (black) associated with the
mode-1 wave after it has moved onto the shelf. The
horizontal asymmetry of the wave is evident in both the
horizontal velocity and density fields, while evidence of
short wave generation is found not only at the back
of the wave, but in weaker form near the front of the
wave. The fact that short wave activity is possible near
the front is due to the extremely weak nonlinearity of
the system. In other words the mode-1 wave cannot
outrun the shorter waves on the timescales shown.

In Figure 8 we show the horizontal velocity field
(shaded) and density field (black) associated with the
trailing, higher mode waves after the main wave has
moved onto the shelf. In panel (a) the trailing face of
the leading wave is visible near the right of the figure.
The evolution is clearly dominated by a long mode-
2 wave which maintains its form for all times shown.
This wave is not exactly horizontally symmetric across
its crest, but its asymmetry is far less prominent than
that of the leading mode-1 wave. At the back of the
mode-2 wave several rapid horizontal transitions are ob-
served. The authors are not aware of any article that
reports such sharp transitions and they appear to be
a novel manifestation of nonlinear behavior in this pa-



Figure 7. Evolution of the horizontal velocity field
(shaded and saturated at 0.675 m s−1) and density
field (black) at various points after the main wave
has shoaled onto the shelf with a focus on the mode-
1 wave (a) t = 45 hours, (b) t = 55 hours, (c)
t = 65 hours, (d) t = 75 hours.



Figure 8. Evolution of the horizontal velocity field
(shaded and saturated at 0.45 m s−1) and density
field (black) at various points after the main wave
has shoaled onto the shelf with a focus on the trailing
higher mode waves (a) t = 45 hours, (b) t = 55
hours, (c) t = 65 hours, (d) t = 75 hours.



rameter regime.
The details of the shoaling process are shown in Fig-

ure 9. The leading wave steepens at the back and
a mode-2 wave can be seen to be generated behind
the leading wave as the leading wave reaches the on-
shelf portion of the domain. Had we not identified the
stratification as exceptional for the reader, it would be
difficult to identify how this portion of the evolution
differs from that in a linearly stratified fluid.

4. Conclusions

We have presented results on internal waves for strati-
fications that are ‘close to’ a linearly stratified fluid; a
case that is known to be exceptionally weak in terms
of nonlinearity. The perturbations were representations
of a local mixing event, in that the mean perturbation
was zero with some regions with a reduced buoyancy
frequency and some with an increased buoyancy fre-
quency.

Linear theory suggested that higher mode waves are
more strongly affected than lower mode waves, but that
even mode-1 waves had some changes in the vertical
structure. For exact solitary waves, the DJL equation
has no solutions in the linearly stratified case, and the



Figure 9. Evolution of the horizontal velocity field
(shaded and saturated at 0.675 m s−1) and density
field (black) at various points after the main wave
has shoaled onto the shelf with a focus on the trailing
higher mode waves (a) t = 20 h, (b) t = 22.5 h, (c)
t = 25 , (d) t = 27.5 h.



perturbations did allow for solutions to be found. How-
ever, the weak nonlinearity meant that convergence
of the iterative algorithm was slow, and the resulting
waves were very long. Somewhat surprisingly, small
changes in the perturbation location led to a change of
solitary wave polarity and this motivated us to consider
shoaling of such waves.

Numerical experiments suggest that the shoaling waves
do not have time to form a clear undular bore, or wave
train of solitary waves of the opposite polarity. Instead,
the leading mode-1 wave develops short length scales
on its trailing slope. Small perturbations are also ob-
served on the leading slope. These are possible due to
the extremely small range of variations in propagation
speeds in the solutions of the DJL equations. Much
stronger nonlinear effects are observed in the higher
mode waves that trail the leading mode-1 wave. Here
a prominent, long mode-2 wave is trailed by sharp tran-
sitions in the density field.

Future work could consider the weakly nonlinear de-
scription of the shoaling process to answer the theo-
retical question of whether a true reversal of polarity
and the formation of a well defined wave train takes
place. An obvious avenue for numerical simulations
would involve consideration of higher modes and the



sharp fronts they exhibit on the shelf.
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