RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 20, ES2002, doi:10.2205/2020ES000694, 2020

Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database

Aleksandr M. Fedorov, Tatyana V. Belonenko


We explore the interaction of mesoscale eddies in the Lofoten Basin of the Norwegian Sea using the GLORYS 12v1 eddy-resolving reanalysis. The Lofoten Basin is the area of the intensive ocean-atmosphere interactions and many mesoscale eddies are formed due to instabilities of the branches of the Norwegian Current. We describe the spatial distribution of kinetic energy, relative vorticity, and Okubo-Weiss parameter during the eddy interaction. Using the approach of turbulent theory, we study the exchange of related eddy kinetic energy ($KmKe$) and show a strong dependence from a width of window averaging. The $KmKe$ fluxes describe features of interactions between parts of eddies and indicate a difference in the stability of the parts. The most stable parts have positive values of $KmKe$. They can transfer energy to the less stable parts. In other words, the positive values of $KmKe$ mean transport of kinetic energy from the main fluxes to turbulent pulsations. We demonstrate that the field of relative vorticity of one anticyclonic eddy merging with another one consists of three parts with alternating signs of $KmKe$. The parts look like two concentric rings surrounding the central part of the eddy. The sign of each part corresponds to gain or loss of kinetic energy. We detect the positive values of $KmKe$ for both the external ring and the central part of the eddy. For the middle ring of the eddy, $KmKe$ is negative. This demonstrates the tendency to the stability of the structure as the result of the merging. And vice versa, positive values of $KmKe$ break the eddy into two parts when splitting.

Received 24 May 2019; accepted 18 November 2019; published 16 March 2020.

      Powered by MathJax

Citation: Fedorov Aleksandr M., Tatyana V. Belonenko (2020), Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database, Russ. J. Earth Sci., 20, ES2002, doi:10.2205/2020ES000694.

Generated from LaTeX source by ELXfinal, v.2.0 software package.