[1] Kagan, Y. Y. & Knopoff, L. Stochastic synthesis of earthquake catalogs. J. Geophys. Res.: Solid Earth 86, 2853{2862 (1981). https://doi.org/10.1029/JB086iB04p02853 [2] Ogata, Y. Statistical model for standard seismicity and detection of anomalies by residual analysis. Tectonophysics 169, 159{174} (1989). https://doi.org/10.1016/0040-1951(89)90191-1 [3] Helmstetter, A. & Sornette, D. Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res.: Solid Earth 107, 2237 (2002). https://doi.org/10.1029/2001JB001580 [4] Console, R., Murru, M. & Lombardi, A. M. Refining earthquake clustering models. J. Geophys. Res.: Solid Earth 108 (2003). https://doi.org/10.1029/2002JB002130 [5] Zhuang, J., Ogata, Y. & Vere-Jones, D. Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res.: Solid Earth 109 (2004). https://doi.org/10.1029/2003JB002879 [6] Zhuang, J., Chang, C.-P., Ogata, Y. & Chen, Y.-I. A study on the background and clustering seismicity in the taiwan region by using point process models. J. Geophys. Res.: Solid Earth 110 (2005). https://doi.org/10.1029/2004JB003157 [7] Hainzl, S. & Marsan, D. Dependence of the omori-utsu law parameters on main shock magnitude: Observations and modeling. J. Geophys. Res.: Solid Earth 113 (2008). https://doi.org/10.1029/2007JB005492 [8] Werner, M. J. & Sornette, D. Magnitude uncertainties impact seismic rate estimates, forecasts, and predictability experiments. J. Geophys. Res.: Solid Earth 113 (2008). https://doi.org/10.1029/2007JB005427 [9] Wang, Q., Schoenberg, F. P. & Jackson, D. D. Standard errors of parameter estimates in the etas model. Bull. Seismol. Soc. Am. 100, 1989{2001 (2010). https://doi.org/10.1785/0120100001 [10] Hainzl, S., Zakharova, O. & Marsan, D. Impact of aseismic transients on the estimation of aftershock productivity parameters. Bull. Seismol. Soc. Am. 103, 1723{1732 (2013). https://doi.org/10.1785/0120120247 [11] Helmstetter, A. Is earthquake triggering driven by small earthquakes? Phys. Rev. Lett. 91, 058501 (2003). https://doi.org/10.1103/PhysRevLett.91.058501 [12] Zhuang, J., Ogata, Y. & Vere-Jones, D. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Ass. 97, 369{380} (2002). https://doi.org/10.1198/016214502760046925 [13] Marsan, D. & Lengline, O. Extending earthquakes' reach through cascading. Science 319, 1076{1079 (2008). https://doi.org/10.1126/science.1148783 [14] Zaliapin, I., Gabrielov, A., Keilis-Borok, V. & Wong, H. Clustering analysis of seismicity and aftershock identification. Phys. Rev. Lett. 101, 018501 (2008). https://doi.org/10.1103/PhysRevLett.101.018501 [15] Zaliapin, I. & Ben-Zion, Y. Earthquake clusters in southern california i: Identification and stability. J. Geophys. Res.: Solid Earth 118, 2847{2864 (2013). https://doi.org/10.1002/jgrb.50179 [16] Baiesi, M. & Paczuski, M. Scale-free networks of earthquakes and aftershocks. Phys. Rev. E 69, 066106 (2004). https://doi.org/10.1103/PhysRevE.69.066106 [17] Marsan, D. & Helmstetter, A. Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues. J. Geophys. Res.: Solid Earth 122, 5544{5560 (2017). https://doi.org/10.1002/2016JB013807 [18] Shebalin, P. N., Baranov, S. V. & Dzeboev, B. A. The Law of the Repeatability of the Number of Aftershocks. Dokl. Earth Sc. 481, 963{966 (2018). https://doi.org/10.1134/S1028334X18070280 [19] Baranov, S. V. & Shebalin, P. N. Forecasting aftershock activity: 2. Estimating the area prone to strong aftershocks. Izv., Phys. Solid Earth 53, 366{384 (2017). https://doi.org/10.1134/S1069351317020021 [20] Utsu, T. A method for determining the value of b in a formula logn = a bM showing the magnitude-frequency relation for earthquakes (with English summary). Geophys Bull. Hokkaido Univ. 13, 99{103 (1965). [21] Utsu, T. Aftershocks and earthquake statistics (ii): Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J. Faculty Sci., Hokkaido University, Ser. VII (Geophys.) 3, 197{266 (1970). [22] Holschneider, M., Zoller, G. & Hainzl, S. Estimation of the maximum possible magnitude in the framework of the doubly truncated gutenberg-richter model. Bull. Seimol. Soc. Am. 112, 1649{1659 (2011). Doi: 10.1785/0120100289. https://doi.org/10.1785/0120100289 [23] Baranov, S. V., Pavlenko, V. A. & Shebalin, P. N. Forecasting Aftershock Activity: 4. Estimating the Maximum Magnitude of Future Aftershocks. Izv., Phys. Solid Earth 55, 548{562 (2019). https://doi.org/10.1134/S1069351319040013 [24] Shebalin, P. N. & Baranov, S. V. Forecasting Aftershock Activity: 5. Estimating the Duration of a Hazardous Period. Izv., Phys. Solid Earth 55, 719{732 (2019). https://doi.org/10.1134/S1069351319050112