RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 19, ES6003, doi:10.2205/2019ES000695, 2019


Table 1. ETAS and EP models parameters estimated using data for 2 days after mainshock
Mainshock $b$-value Model parameters
Chili, 2010, M8.8 $b=1.36$ ETAS: $\mu=0.65$, $c=0.08$, $p=1.26$, $K_0=0.028$, $\alpha=1.82$
EP: $\Delta M=1.5$, $\mu_{EP}=0.1$, $\Lambda=0.2$, $c=0.034$, $p=1.01$
Tohoku, 2011, M9.1 $b=1.06$ ETAS: $\mu=0.81$, $c=0.17$, $p=1.56$, $K_0=0.04$, $\alpha=1.74$
EP: $\Delta M=1.5$, $\mu_{EP}=0.2$, $\Lambda=1$, $c=0.04$, $p=1.02$
Sumatra, 2012, M8.6 $b=1.26$ ETAS: $\mu=0.43$, $c=0.1$, $p=1.52$, $K_0=0.01$, $\alpha=1.846$
EP: $\Delta M=1.5$, $\mu_{EP}=0.1$, $\Lambda=0.7$, $c=0.05$, $p=1.36$

      Powered by MathJax


Citation: Baranov S. V., A. D. Gvishiani, C. Narteau, P. N. Shebalin (2019), Epidemic type aftershock sequence exponential productivity, Russ. J. Earth Sci., 19, ES6003, doi:10.2205/2019ES000695.


Generated from LaTeX source by ELXfinal, v.2.0 software package.