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Abstract. On the basis of numerical
modeling, an analysis of the average multiyear
pattern of the spring circulation of surface
waters in the Kamchatka Strait is performed. It
was revealed that in the spring period the winter
regime of water circulation continues here,
however, the transition to the summer
circulation mode begins and the influx of warm
Pacific water masses to the Bering Sea is
intensifying. The results obtained are somewhat
different from the generally accepted ones.
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Introduction

The straits of the Aleutian island arc are important for
the formation of many natural processes in the Bering
Sea and the North-Western Pacific, providing water ex-
change between them.

The Aleutian Islands are located in the zone of tem-
perate latitudes, which creates the basic features of its
climate ([Figure 1).

This region is under the constant influence of the
Polar and Hawaiian atmospheric maxima and seasonal
large-scale baric formations (Aleutian Low, Siberian High,
and Asian Depression). The winds of the north, north-
west and north-east directions prevail in winter, and
the winds of the south, south-west and south-east di-
rections dominate in summer. Cyclonic eddies forming
between the Polar and Hawaiian atmospheric maxima
largely create the climate and weather of the Aleutian
Islands. 50-60 cyclones reach the Barents Sea during
the year, a significant number of which passes over the
western islands of the Aleutian Arc ([Figure 2)).

The Aleutian Island arc is separated from the Kam-
chatka Peninsula by the Kamchatka Strait. It is the

deepest strait of this region (see [Figure 1). The Kam-

chatka Current carries cold, slightly saline waters of the



Bering Sea through this strait into the Pacific Ocean.

It is known that the general circulation of the Bering
Sea is formed by the cyclonic gyre, which is a continu-
ation of the large-scale stationary subarctic gyre in the
Pacific between 40°—60°N. [Arsenyev, [1967} Cokelet et
al., 1996} Khen, [1989, Khen and Basyuk, 2005} Khen
et al., 2013} Reed, [1995] Solomon and Ahlnas, [1978];
Stabeno and Reed, [1994} Stabeno et al., [1999] Take-
nouti and Ohtani, [1974]. The Kamchatka current is
the western link of the indicated cyclonic circulation.
This current is characterized by active spatial-temporal
variability, in connection with which large-scale vari-
ability of water exchange with the Pacific Ocean also
occurs. The results of the analysis of these processes

are described in [Khen and Zaochniy, [2009].

The harsh climate, large-scale baric formations, un-
stable hydrodynamics, a large number of cyclones, and
rugged bottom relief complicate the study of water cir-
culation in the Kamchatka Strait. In this connection,
only some aspects of the summer spatial-temporal hy-
drological characteristics and water exchange in the
Kamchatka Strait have been studied at present [Khen
and Zavolokin, 2015} Khen and Zaochniy,[2009} Luchin,
2008} Overland et al., 1994 Prants et al., [2014} Ro-
gachev and Shlyk, 2008 010} Solomon and Ahlinas,
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http://pacificinfo.ru/en/climate/calendar/

1978 Zhabin et al., 2010]. Spring transitional period
(April-July) is practically not been studied. This de-
termined the purpose and objectives of our research.

The purpose of our research is to study the average
multiyear pattern of the spatial and temporal variability
of surface water circulation in the Kamchatka Strait
in the spring season using hydrodynamic model and
software “Ocean Data View”" (ODV).

The cell size of the grid was chosen taking into ac-
count the bottom relief of the study area, which in-
cludes not only the shelf, where the Rossby baroclinic
radius is 2 km, but also depths over 4000 m.

The study area is limited to coordinates 54°-57°N

and 162°30" — —166°30" E (see [Figure 1).

Data and Methods

To solve these problems, a known quasigeostrophic
model of water circulation was used [Felsenbaum, {1956),

1970} Shapiro, [1965} Vasiliev,[2001} et al.]. This model

has been repeatedly described in monographs and ar-

ticles [Polyakova et al., 2002} Vlasova et al., 2008

[2016a], [2016b], et al.], so here we are limited to its
main characteristics.




This model allows to calculate the integral circu-
lation of water in the form of a field of total flows
(Sx = —0Y/0x, S, = —0v/Jy) by the tangential
wind stress ( T) and the density of water (p°) on the sea
surface. The calculation of the currents structure and
the density of water masses for given parameters T and
p° leads to the solution of the equation for the integral
current function ¥(x, y) using the minimal discrepancy
method. The function ¢ applied on solid boundaries
of the water area (coastline), and its normal derivative
applied on the liquid boundary.

The model takes into account the vertical distribu-
tion of water density, bottom relief, coast orography
and the state of the atmosphere over the studied area.
Water consumption was determined on the basis of
the calculation of the total flows normal to the liquid
boundaries of the studied area.

For processing and graphical display of used oceano-
graphic data [Schlitzer,[2002] Schlitzer R., Ocean Data
View, 2016, https://odv.awi.de], this model has been
adapted to the software “Ocean Data View".

Within the framework of this model, the integral
functions of the current in the surface layer were calcu-
lated. As a result of calculations, the values of surface
temperature, salinity, vertical component of current ve-


https://odv.awi.de

locity, as well as tangential stress and wind speed, drift
and gradient components of current velocity, depth of
the homogeneous layer, and other oceanographic and
meteorological values in a given period of time were
obtained.

The following information was used as the initial in-
formation:

e monthly mean values of atmospheric pressure
at sea level for May and June from the
data set NCEP Reanalysis (http://www.esrl.noaa.
gov/psd/data/gridded /data.ncep.reanalysis.  de-
rived.html);

e depth values from the GEBCO30 dataset;

e calculated monthly mean values of surface tem-
perature and salinity based on ODV algorithms
(DIVA-gridding) at 5-minute grid nodes according
to WOD2013 data for the period 1950-2017.

For the calculations, the spring hydrological period
(May, June) was used as an example of the transition
from the winter subarctic regime of waters to moderate
summer.


http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html

Results and Discussion

As noted above, works devoted to oceanographic re-
search directly to the Kamchatka Strait is very few.
Nevertheless, the results of these works show that in
the Kamchatka Strait there is not only one-sided move-
ment of the Bering Sea waters into the Pacific Ocean,
but in different years and seasons there is also two-way
water exchange between these basins [Dobrovolsky and
Arsenyev, [1961} Wang et al., 2009].

In our case, the spring period (May, June) is con-
sidered as a transition from winter to summer, when
the process of breaking ice begins. Off the southern
coast of the Kamchatka Peninsula, the destruction of
ice begins in the second decade of May [Polyakova et
al., 2002). In the winter season, the flow of freshened
waters is considerably weakened. In May, the ice edge
slowly recedes to the north, starting from the eastern
coast of the Kamchatka Peninsula. In June, the process
of ice destruction accelerates ([Figure 3)).

Our calculations have shown that in the period un-
der consideration (May—June) a complex hydrodynamic
situation is simulated in the studied area. Against the
background of a general cyclonic motion, the Kam-
chatka current does not constitute a single unbroken
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flow of water masses in the model area. Instead, sev-
eral hydrodynamic gyres of a different sign are formed
here ([igure 4).

Consider this in more detail. First of all, mixed struc-
tures form here in surface waters in May and in June.
However, the picture of their location and configuration
during this period changes.

For example, in May (see [Figure 4p) a powerful and
extensive anticyclonic gyre forms in the western part of
the strait and extends along the coast of Kamchatka
between ~ 55° — 57° N. Accordingly, the warm wa-
ters of the Pacific Ocean move into the Bering Sea
along the shores of Kamchatka; on the contrary, in the
eastern part of the strait, the waters of the Bering Sea
move into the Pacific Ocean. The formation of this an-
ticyclonic gyre, as well as the pattern of movement of
the water masses within it, can be explained by the be-
ginning of the reorganization of the synoptic processes,
passing into the regime close to the summer one.

In the eastern part of the strait, near Bering Island,
small anticyclonic eddies are modeled with a predomi-
nant moving of cold Bering Sea waters into the Pacific
Ocean. Thus, in the eastern part of the strait, the
winter mode of waters should prevail.

In the center of the strait there are two small whirl-
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winds of different signs. This provides both a weak
runoff of the Bering Sea waters and a weak inflow from
the Pacific Ocean.

In June (see [Figure 4b)), the hydrodynamic pattern
changes somewhat, which can be attributed to increased
solar activity, accelerated ice destruction and the con-
tinuation of surface layer formation processes [Khen
and Zaochniy, 2009

In the western part of the strait, the presence of
the May anticyclonic gyre remains, however this struc-
ture is significantly deformed: it is divided into sepa-
rate, equally powerful submesoscale gyres. At the same
time, the current pattern remains the same; near the
Kamchatka Peninsula, it corresponds to the summer
mode of waters, and within the eastern branch of the
anticyclone — to the winter mode.

In the eastern part of the strait, near Bering Island,
the May anticyclonic vortex is preserved and, conse-
quently, the winter mode is preserved.

In the central part, the May anticyclonic eddy is de-
stroyed, which should initiate the preferential runoff
of Bering Sea waters into the Pacific Ocean (winter
mode).

Despite the diversity of hydrodynamic structures, in
the Kamchatka Strait are prevailing anticyclonic activ-



Ity.

Similar anticyclonic circulation around all the Com-
mander Islands, which includes Bering Island, was noted
earlier in the works [Dobrovolsky and Arsenyev, ;
Zhabin et al., ; Prants et al., . In the middle
of the last century, an explanation of this phenomenon
was given: it is associated with the existence and con-
vergence of the Alaskan and Aleutian currents, the wa-
ters of which flow in opposite directions. Transverse
irregularity (vorticity) of the wind also affects this phe-
nomenon [Shtokman, [1954]. According to other stud-
ies [ Timonov, [1960], this circulation is also supported
by tidal phenomena due to the uneven spatial distri-
bution of tidal flow velocities since the study area is
located in the zone of active tidal processes [Zhabin et
al., .

During the indicated spring period, the atmospheric
situation is extremely unstable; therefore, the runoff of
desalinated Bering Sea waters does not appear clearly
on the circulation maps of surface waters. This can be
explained by drift buoys at a depth of 200 m. Thus,
shows that buoys practically do not cross the
strait (one section in June), but rotate near it or move
across.
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Conclusion

The results of numerical modeling of spring water cir-
culation in the Kamchatka Strait led us to the following
conclusions:

e The modeled structure and dynamics of water cir-
culation in the Kamchatka Strait is somewhat dif-
ferent from the generally accepted one. So, for
example, the Kamchatka Current, at least during
this season, does not constitute a uniform, unbro-
ken flow of water masses, but is an active vortex
zone;

e In the study period, the current system is trans-
formed towards the summer mode. In this regard,
the influence of warm Pacific waters is increasing.
This is explained by increased solar radiation, the
start of ice destruction and the continuation of the
formation of the surface layer;

e Despite the diversity of hydrodynamic structures,
in the Kamchatka Strait are prevailing anticyclonic
activity;

e The differences in the May and June flow patterns
are shown.
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