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Abstract. The generation of internal gravity
waves in the ocean with an arbitrary distribution
of the buoyancy frequency generated by a
moving source of perturbations is considered.
The basic dispersion characteristics determining
the properties of the generated far wave fields
are studied analytically and numerically. The
results of numerical computations of internal
wave fields for different generation modes are
presented. It is shown that the far wave fields of
a separate mode can be presented as a sum of
wave trains. The article investigates the specific
characteristics of how these wave trains are
generated. The proposed approach can be used
to model internal wave wakes from a moving
typhoon.
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1. Introduction

The moving atmospheric cyclones have a significant im-
pact on the ocean circulation, the local sea surface tem-
perature, and the generation of internal gravity waves.
It is expected that the wave fields generated by this
generation can play a significant role in various mech-
anisms of energy transfer in the ocean interior. The
tangential wind stress induced by a moving hurricane
forms a structure in the ocean in the form of a wave
train or trace. The experimental detection of these
wave structures was one of the impressive achievements
of modern oceanology [Bulatov and Vladimirov, 2012,
2015; Gill, 1984; Massel, 2015; Mei et al., 2017; Moro-
zov, 2018; Pedlosky, 2010; Sutherland, 2010; Velarde
et al., 2018].

The propagation of internal dispersion waves in strat-
ified ocean media has specific features related to the
dependence of the propagation velocity on the wave-
length. If a perturbation source moves in such a medium,
then it creates a wave pattern around itself, the main
features of which are the lines of the constant phase.
The structure of wave patterns at large distances from
the moving source (much greater than its dimensions)
is practically independent of its shape and is mainly de-



termined by the dispersion law and the source velocity
[Bulatov and Vladimirov, 2012, 2015; Svirkunov and
Kalashnik, 2014].

The system of hydrodynamic equations describing
the wave perturbations is a complex mathematical prob-
lem, and the main results of solving the problems on
the internal wave generation can be obtained only in
the most general integral form or numerically. In nu-
merical calculations, the ocean is usually represented
by a simplified hydrodynamic system with a model den-
sity distribution. The integral representations of solu-
tions require the development of asymptotic methods
for their research. These methods allow us to conduct
high-quality analysis and estimation of the solutions ob-
tained in the field measurements of internal waves in
the ocean [Frey et al., 2017; Furuichi et al., 2008; Gill,
1984; Kang and Fringer, 2010; Lecoanet et al., 2015;
Morozov et al., 2003, 2008; Tiugin et al., 2012].

The modern approaches to the description of linear
internal waves are based on the representation of wave
fields by Fourier integrals, an analysis of their asymp-
totics, and the geometric construction of enveloping
wave fronts in the framework of the kinematic theory
of dispersion waves. Based on the kinematic theory, it
is possible to formulate analytical representations only



for the phase surfaces of wave fields of internal gravity
waves from a moving typhoon [Svirkunov and Kalash-
nik, 2014].

The goal of this work is to solve a more complex
problem of constructing asymptotics. We also describe
special features of the phase and amplitude structures
of the far fields of internal gravity waves generated by a
localized perturbation source. The source is moving in
the ocean of a finite depth with an arbitrary stratifica-
tion. Indeed, at large distances, the real sources of per-
turbations (moving typhoon) allow a physically justified
approximation by a system of localized point sources
taken with certain weights [Bulatov and Vladimirov,
2018; Furuichi et al., 2008; Gill, 1984; Kang and Fringer,
2010; Lecoanet et al., 2015]. The use of real hydrology
allows us to take into account the specific character-
istics of wave dynamics with regard to the variability
of the marine environment density observed in the field
measurements of internal waves in the ocean.

2. The Problem Formulation and Ana-

lytic Representations of the Solutions
The elevation η of the field of internal gravity waves
generated by a source that begins to move at a velocity
V at a depth z0 at a time t = 0 in a stratified ocean of



finite depth −H < z < 0 can be determined from the
problem [Bulatov and Vladimirov, 2012, 2015, 2018]

Lη = Θ(t)Q(t, x , y , z , z0) (1)
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where Θ(t) = 0, t < 0, Θ(t) = 1, t ≥ 0, N2(z) is
the Brunt-Vaisala frequency and Q(t, x , y , z , z0) is the
source density distribution. The form of the function
Q(t, x , y , z , z0) depends on the source character. If we
consider the force directed upwards along the vertical
as a moving source, then we have

Q(t, x , y , z , z0) = δ(z − z0)(
∂2δ(x − Vt)

∂x2
δ(y)+
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Further, we consider the case of a moving point source
of a mass:

Q(t, x , y , z) =

∂2

∂t∂z0
(δ(x − Vt)δ(t)δ(y)δ(z − z0))



Since the problem under study is linear, the obtained
solutions can further be used to obtain representations
for the fields of internal waves generated by nonlocal
sources of a different nature [Bulatov and Vladimirov,
2012, 2015; Svirkunov and Kalashnik, 2014].

The boundary conditions are taken in the following
form (the vertical axis z is directed upwards)

η = 0, z = 0, −H (2)

Then the solution of problem (1)–(2) that describes
the steady-state wave mode of far wave fields in the
coordinate system moving together with the source has
the form of a sum of wave modes:

η(ξ, y , z) =
∑
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ηn(ξ, y , z)

where
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The eigenfunctions fn(z , ν) and the eigenvalues µ2
n(ν)

are determined from the problem [Bulatov and Vladimirov,
2012, 2015, 2018]

∂2fn(z , ν)
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+ (µ2
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(
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)
fn(z , ν) = 0

fn(0, ν) = fn(−H , ν) = 0

For an arbitrary distribution of the buoyancy fre-
quency, this spectral problem is solved numerically. The
dispersion dependence µn(ν) is a solution of the equa-
tion

ω2
n(k) = V 2µ2

n(ν), k2 = µ2
n(ν) + ν2



where ωn(k) is an eigenvalue of the basic vertical spec-
tral problem of internal gravity waves [Pedlosky, 2010;
Sutherland, 2010; Velarde et al., 2018]. In what fol-
lows, we consider a separate wave mode, and the sub-
script n is omitted.

The integrals (3) describe the field of a separate
mode of internal gravity waves far from the trajectory
of motion of a local perturbation source for large ξ and
y . The asymptotics of these integrals can be calculated
by the stationary phase method under the assumption
that, for example, ξ is a large parameter and the ratio
y/ξ is fixed. The function η(ξ, y , z) is an even function
of y , and therefore, for definiteness, we can assume that
y > 0. The stationary points of the phase function of
integral (3) are determined by solving the equation

µ′(ν) = y/ξ (4)

We denote q = maxµ′(ν). Then for ξ < y/q, the
phase function of integral (3) has no stationary points,
and the field η(ξ, y , z) is exponentially small. For ξ >
y/q, the phase function has several stationary points
(at least two, ν1,2 = ±ν∗) which appear in pairs ν1,2k

=
±ν∗k , k = 1, 2, ... , K , because the function µn(ν) is odd
(ν∗k are positive roots of (4)). Then the asymptotics
of a separate wave mode at a far distance from the



perturbation source has the form

η ≈
K∑

k=1

D(z , z0, ν∗k)√
2πξ|µ′′(ν∗k)

cos(µ(ν∗k)ξ − ν∗ky − π

4
) (5)

where the sum is taken over all of the K stationary
points. The wave region is concentrated inside the
wedge with the half-angle ϕ = arctan q. On the ray
y/ξ =const, the field decreases as

√
ξ, and in this

case, the wave length λ of the wave mode along the
ray is constant: λ = 2π/(µ(ν∗) − ν∗y/ξ). Solving
the equation µ(ν)− νy/ξ = Φ together with (4) for ξ
and y , we obtain the lines of equal phase determined
parametrically (with parameter ν)

ξ =
Φ

µ(ν)− µ′(ν)ν

y =
µ′(ν)Φ

µ(ν)− µ′(ν)ν

Asymptotics (5) cease to work near the wave fronts,
i.e., in the case where the stationary points tend to
reach for each other and µ′′(ν) → 0. We consider
the asymptotics in a neighborhood of the wave fronts,



Figure 1. Brunt-Vaisala frequency distribution.

assuming that ξ and y are large. The wave fronts are
determined by the values ν0

i for which µ′′(ν0
i ) = 0.

Then in the neighborhood of the points ν = ν0
i , the

function µ(ν) admits the expansion

µ(ν) = µ(ν0
i ) + qi(ν − ν0

i )− bi(ν − ν0
i )3 + ...

and the position of the wave fronts is determined by the
formula y = qiξ. The asymptotics of the wave field
near each of the wave fronts have the form [Bulatov
and Vladimirov, 2012, 2015]
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ηi ≈
D(z , z0, ν0

i )
3
√

3biξ
Ai
ξqi − y

3
√

3biξ
(6)

Here,

Ai(τ) =
1

2π

∞∫
−∞

cos(τ t − t3/3)dt

is the Airy function. The total wave field is obtained
by summing over all values ν0

i (i = 1, ... , I ) for which

µ′′(ν0
i ) = 0; η =

∑I
i=1 ηi .

3. Numerical Results and Discussions

The numerical computations are based on the use of
the typical distribution of the Brent-Vaisaala frequency
with a single thermocline maximum, which is shown
in Figure 1 [Massel, 2015; Mei et al., 2017; Moro-
zov, 2018; Pedlosky, 2010 Sutherland, 2010; Velarde
et al., 2018]. All numerical results are further given
for the second wave mode and the values z = 40 m,
z0 = 60 m. We introduce the notation: M = V /C ,
where C = ∂ω(k)/∂k is the maximal value of the group



velocity of internal waves of the second mode which is
equal to C = 0.836 m/s. Figure 2a,b,c,d illustrate the
results of computations of the function µ′(ν) for dif-
ferent fixed values of M . These results show that, for
this buoyancy frequency distribution, one can observe
the dispersion pattern for which the function µ′(ν) has
three extrema (the value of I is equal to 3): two max-
ima q1, q2 (left and right) and a minimum q3, and
always q3 < q1,2.

Numerical computations show that the qualitative
pattern of dispersion dependence µ′(ν) is strongly af-
fected by the values of M . Indeed, for M < 1, the
values of the two maxima q1,2 (left and right in Fig-
ure 2) are of the same order, for small values of M ,
the left maximum is less than the right one, as M in-
creases, the value of the left maximum of the function
µ′(ν) increases, and for M0 = 0.546 < 1, the values
of the left and right maxima coincide: q1 = q2 (this
means that the two wave fronts simultaneously enter
the fixed observation point). Thus, for M < M0, we
have q1 < q2, and for M > M0, we have q1 > q2.
Further, as M increases, the values of the left maxi-
mum q1 of the function µ′(ν) increase noticeably, and
for M > 1, this maximum is always attained for ν = 0.

For critical generation modes when the source ve-



locity V is close to the maximal group velocity of in-
ternal wave propagation C , i.e., as M → 1, the max-
imal value q1 of the function µ′(ν) asymptotically be-

haves as 1/
√
|M2 − 1| [Bulatov and Vladimirov, 2012,

2015]. Figure 3 presents the maximal and minimal val-
ues of the function µ′(ν) depending on the parame-
ter M : qi = qi(M), i = 1, 2, 3. In this fig-

ure, the dashed line shows the function 1/
√
|M2 − 1|

which, as numerical computations show, well describes
the qualitative behavior of the dispersion dependence
µ′(ν) for critical modes of generation of internal waves
for wide ranges of the perturbation source velocities.
Figure 4 illustrates the dependence of the half-angles
ϕi(M) = arctan qi(M), i = 1, 2, 3 of the correspond-
ing wave fronts on the parameter M . The half-angles
ϕ2(M), ϕ3(M) corresponding to the right maximum
and minimum of the function µ′(ν) are monotone de-
creasing functions of the parameter M . The half-angle
ϕ1(M) corresponding to the left maximum q1 of the
function µ′(ν) first increases to 90 degrees (critical
generation mode M → 1) and then monotonically de-
creases as the parameter M > 1 increases.

Figure 5–Figure 11 illustrate the results of numerical
computations of the wave fields by formulas (3); the
points on the graphs show the position of the corre-



Figure 3. Dependences qi (M) and its approxima-
tion: line 1 – q1(M), line 2 – q2(M), line 3 – q3(M).

sponding wave fronts. The internal waves far field gen-
erated by a moving perturbation source (for y , ξ ≥ H)
is a sum of three wave trains. The times at which
they come to a fixed point in the observation variable
are determined by three wave fronts. For M < 1, the
far field of a separate mode within the internal grav-
ity waves located at a far distance from the moving
perturbation source at the observation point fixed with
respect to behaves as follows. For ξ < y/Q1 (Q1 = q2

for M < M0, Q1 = q1 for M > M0), the wave field is



Figure 4. Dependences ϕi (M): line 1 – ϕ1(M),
line 2 – ϕ2(M), line 3 – ϕ3(M).

negligibly small. For ξ = ξ1 = y/Q1, the wave front of
the first wave train enters the fixed observation point,
and the field in a neighborhood of the wave front is ex-
pressed in terms of the Airy function (η = η1, formula
(6)).

For y/Q1 < ξ < y/Q2 (Q2 = q1 for M < M0,
Q2 = q2 for M > M0), the field consists of a single
wave train. For ξ = ξ2 = y/Q2, the second wave
train also enters the observation point, and the field in
a neighborhood of its wave front is also expressed in



Figure 5. Elevation η at y = 0.25 km, M = 0.4 <
M0.

terms of the Airy function, formula (6). For y/Q2 <
ξ < y/q3 (q3 is equal to the minimal value of µ′(ν)
for the given M), the wave field consists of two terms:
η = η1 + η2. For ξ = ξ3 = y/q3, the third wave train
also enters the observation point (formula (6)), and
for ξ > y/q3, the field consists of three terms: η =
η1+η2+η3. As numerical computations show, for M <
1, the wave trains that have amplitudes of the same
order of magnitude and commensurable wave lengths
make equal contributions to the total wave field, and
therefore, the wave pattern is a complicated system of



Figure 6. Elevation η at y = 3 km, M = 0.4 <
M0.

wave beatings (Figure 5, Figure 6). The contribution of
the third term to the total wave field is noticeable at the
distances y , ξ ≤ H and only for M < M0 (Figure 5).
As numerical computations show, for this distribution
of the buoyancy frequency, the contribution of the term
η3 corresponding to the minimum of the function µ′(ν)
to the far fields of generated internal waves (for y ,
ξ ≥ H and for M > M0) is negligibly small, and it
does not practically make any contribution to the total
field (Figure 8, Figure 9).

Indeed, for M > M0, the typical values of q3 are



Figure 7. Elevation η at y = 3 km, M = M0.

small compared to the values of q1,2, and hence the
term η3 makes a contribution for large values of ξ for
which the wave field amplitude (decreasing as

√
ξ for

large ξ) is sufficiently small. For M = M0, we have
q1 = q2, and hence there are two wave trains simul-
taneously entering the observation point fixed with re-
spect to the variable y for ξ = ξ1 = ξ2 = y/q1 = y/q2

(Figure 7). Table 1 shows the results of computations
of the quantities ξ1, ξ2, ξ3 for the values y , M used in
the numerical computations (Figure 5–Figure 9).

For M > 1, the wave pattern of generated far fields



Figure 8. Elevation η at y = 3 km, M = 0.7 >
M0.

is practically completely determined by the properties
of the wave train corresponding to the left maximum q1

of the function µ′(ν). This wave train is significantly
greater in the amplitude and has a greater wave length
(lower frequency), the wave trains corresponding to the
right maximum q2 and the minimum q3 of the function
µ′(ν) have lesser wave lengths (higher frequencies) and
hence are significantly less in the amplitude. Therefore,
no complicated wave beating pattern is observed for
M > 1, and the wave trains are significantly spread in
the space and propagate independently of each other;
namely, when one of the wave trains arrives, the contri-



Table 1. Wave Fronts Positions Along x-axis
for the Different Values of y , M

y , km M ξ1, km ξ2, km ξ3, km

0.25 0.4 < M0 0.65 1.8 3.8
3 0.4 < M0 7.8 21 45
3 M0 11 11 58
3 0.7 > M0 5.7 14 73
3 1.7 > M0 4.1 35 171

Table 2. Wave Fronts Positions Along y -axis
for the Different Values of ξ, M

ξ, km M y1, m y2, m y3, m

1 0.4 < M0 65 136 382
20 1.7 > M0 349 1697 14548

bution of another wave train to the total field becomes
negligibly small. For M > 1, the contribution to the
wave field of the third term corresponding to the min-
imum q3 of the function µ′(ν) is small, and the total
field is practically completely determined only by the
behavior of two terms (Figure 9).



Figure 9. Elevation η at y = 3 km, M = 1.7 >
M0.

If the far fields of internal waves are considered at
an observation point fixed with respect to the variable
ξ, then the wave pattern varies with the increasing dis-
tance from the traverse of the source motion as follows
(Figure 10, Figure 11). First, the wave front enters the
observation point y = y1 = q3ξ, and y < q3ξ, the field
is determined only by the term η = η3. Further, as
the traverse distance increases, the second wave front
arrives for y = y2 = ξQ2 (Q2 = q1 for M < M0 and
Q2 = q2 for M > M0). In the interval ξq3 < y < ξQ2,
the total field is the sum of two terms: η = η2 + η3,
and finally, at large distances from the traverse, the



Figure 10. Elevation η at ξ = 1 km, M = 0.4 <
M0.

third wave front arrives for y = y3 = ξQ1 (Q1 = q2 for
M < M0 and Q1 = q1 for M > M0). In the interval
ξQ2 < y < ξQ1, the wave field is the sum of three
terms: η = η1 + η2 + η3. For y > y3, the far wave
field is exponentially small. Table 2 shows the results of
computations of the quantities y1, y2, y3 for the values
of ξ, M used in numerical computations (Figure 10,
Figure 11).

An important specific feature of the internal wave
generation by a moving perturbation is that the char-
acteristic velocity of the typhoon motion is 3–5 m/s,



Figure 11. Elevation η at ξ = 20 km, M = 1.7 >
M0.

which is significantly greater than the typical maximal
group velocity of internal waves in the ocean. Thus,
when studying the formation of the ocean wave wake
behind the moving typhoon, the most physically re-
alistic case is the motion of a perturbation source at
a velocity greater than the maximal group velocity of
internal waves M > 1 [Gill, 1984; Mei et al., 2017;
Svirkunov and Kalashnik, 2014; Velarde et al., 2018].

One can assume that there is a relationship between
the amplitudes of generated internal waves (that are
large compared to the other generation modes) and



the motion of the source at a nearly critical velocity
(V = C ). Indeed, as the performed numerical com-
putations show, if the perturbation source moves at a
nearly critical velocity, then the amplitudes of gener-
ated internal waves can be significantly greater than
the wave amplitudes in other cases. For M → 1,
the amplitude of the generated field of internal waves
asymptotically increases as K0(|M2 − 1|), where K0

is the MacDonald function of order zero [Bulatov and
Vladimirov, 2012, 2015]. Thus, a rather noticeable
increase in the amplitude of generated internal waves
deep in the ocean can indicate that the velocity of un-
steady motion of a perturbation source (typhoon, at-
mospheric cyclone) is nearly critical in its unsteady mo-
tion.

4. Conclusion

The problem of generation of internal gravity wave far
fields by a moving perturbation source in the ocean
with an arbitrary distribution of the buoyancy frequency
is solved. The basic dispersion characteristics deter-
mining the properties of generated far wave fields are
studied analytically and numerically. The results of nu-
merical computations of the internal wave fields are



presented for different generation modes. It is shown
that the far wave fields of separate modes are sums of
wave trains, and the specific characteristics of genera-
tion of these wave trains are studied for different modes
of the source motion. If a source moves at a velocity
less than the maximal group velocity of internal waves,
then the wave field of a separate mode is a sum of
three wave trains equal in the amplitude. In this case,
the wave pattern of the total field is a complicated sys-
tem of wave beatings. If the source velocities are close
to the maximal group velocities of internal waves, then
one can observe a noticeable increase in the amplitudes
of generated wave fields. If the source velocities are
greater than the maximal group velocities of internal
fields, then the main contribution to the field of a sep-
arate mode is made only by one long-wave train. The
proposed approach can be used to model the trace of
internal waves generated by a moving typhoon in the
ocean.
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