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Abstract. The paper analyzes a possible
cause for the universal behavior of the
covariating fluctuations of planet gravity. The
consideration based on the idea that the
topography fluctuations are governed by a
random Markov process leads to universal
dependence k−2with k being the amplitudes of
the j-th spherical harmonic of the terrain profile.
This law known as the Kaula’s rule is then
derived from the solution of the Fokker – Plank
equation for the fluctuations of the terrain
profile as the function of the horizontal
coordinate. The respective diffusivities for Earth
and Venus are retrieved from the existing
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Introduction

The Kaula’s rule [Kaula, 1966] sometimes called “the
rule of thumb” exists for over half a century. However,
its origin is unknown. In its original form it claims
that the terrestrial gravity field fluctuations expanded
in spherical harmonics have the spectral asymptotics
proportional to j−2, where j is the number of the har-
monic. Similar behavior was established to hold on
Moon, Mars [Rexer and Hirt, 2015], and Venus [Tur-
cotte, 1997]. In this decade the same property has
been found for asteroid Vesta whose diameter does not
exceed 300 km [Konopliv et al., 2014] and for asteroids
of few kilometers in size [McMahon et al., 2016]. In
later 1980-s it was found that surface reliefs of Earth
and Venus have the same j−2 asymptotics [Turcotte,
1997]. In [Rexer and Hirt, 2015] the harmonics with j
up to tens thousands have been computed. This means
that gravity field fluctuations and relief are connected.
Therefore “the rule of thumb” is expected to be a law
whose nature still awaiting for explanation.

Here we use the Fokker – Planck equation in the
form presented by A. N. Kolmogorov, [1934] and its
further results of its statistical analysis developed by his
pupils A. M. Obukhov [Obukhov, 1959] and by A. S.



Monin and A. M. Yaglom, 1975]. The basic equation
formulated in [Kolmogorov, 1934] is more general than
it is necessary here. Later this equation was used for
studying other natural phenomena: like turbulence in
[Obukhov, 1959], and recently sea wind waves spec-
tra, the cumulative distribution of litospheric plates,
etc. in [Golitsyn, 2018]. This impelled us to return to
an attempt to derive analytically the Kaula’s rule. For
reader’s convenience we present the description of ideas
and methods of [Kolmogorov, 1934; Obukhov, 1959;
Monin and Yaglom, 1975] rarely used in general geo-
physics but still appearing in various papers and books
during past decades.

Basic Equations

In the beginning of 1930-s A. N. Kolmogorov had pub-
lished three papers on analytical methods in the prob-
ability theory. The two-page work [Kolmogorov, 1934]
contains the essence of his approach started by A. Ein-
stein and developed further by Fokker and Planck. Kol-
mogorov proposed a fundamental solution to the evolu-
tion equation for the probability distribution p(ui , xi , t)
of the 6D vector u, x provided a delta correlated force
causes the respective Markov process. This is an ap-



proximation of the processes where correlation time of
the random forces is much shorter than the reaction
time of the considered system. In 1D approximation
the action of respective random accelerations at with
〈a(t1)a(t2)〉 = a2δ(t1 − t2) can be described by the
simplest equations [Gledzer and Golitsyn, 2010],

du(t)

dt
= a(t),

dx(t)

dt
= u(t), (1)

where u(t) and x(t) are the velocity and displacement
of a particle under random acceleration a(t).

A. N. Kolmogorov used a Fokker-Planck type equa-
tion [Kolmogorov, 1934] to describe the evolution of
the probability density p(ui , xi , t),

∂p

∂t
+ ui

∂p

∂xi
= D

∂2p

∂u2
i

, (2)

where D is a coefficient of diffusion in the velocity
space. The fundamental solution1 to eq. (2) has the
form (see also [Monin and Yaglom, 1975], §24.4):

1 In the original paper [Kolmogorov, 1934] the middle term un-
der exponent was absent.



p(ui , xi , t) =

( √
3

2πDt2

)3

exp

[
−
(
u2
i

Dt
− 3uixi

Dt2
+

3x2
i

Dt3

)]
.

(3)
A. M. Obukhov [Obukhov, 1959] was the first who

analyzed and used this equation. He showed that the
coefficient D is proportional to the generation/dissipation
rate of the kinetic energy of the random motions D =
ε/2. The details of his analysis are presented in [Monin
and Yaglom, 1975; Golitsyn, 2018]. The solution (3)
demonstrates that the seeked probability distribution
has the normal character. This solution has two scales
(angular brackets mean ensemble averaging):〈

u2
i

〉
= εt,

〈
x2
〉
≡ r = εt3, ε = 2D. (4)

Combining the scales for velocity and coordinates
Obukhov formulated the scale for the mixed moment
〈uixi〉 = K in terms of ε as

K = εt2. (4’)
The time dependencies eqs (4) and (4’) were veri-

fied numerically for the ensembles of N randomly mov-
ing particles [Gledzer and Golitsyn, 2010]. Figure 1
demonstrates that even for N = 10 the relationships
(4) fulfil satisfactorily as it is shown in Figure 1. More-



Figure 1. Temporal behaviour of the second ve-
locity and coordinate moments for different particle
ensemble sizes as in [Gledzer and Golitsyn, 2010] (see
text).



over, on introducing the dimensionless variables to non-
dimensional ones (denoted with tilde overhead)

t = t̃τ , u = ũ(ετ)1/2, r = r̃(ετ3)1/2

reduces eq. (2) to the universal or selfsimilar form
[Gledzer and Golitsyn, 2010]

∂p

∂ t̃
+ ũ

∂p

∂ r̃
=

1

2

∂2p

∂ũ2
. (5)

The scales (4) can be interpreted as the structure
functions with zero initial conditions which allow us
to introduce their spectral forms [Monin and Yaglom,
1975]. If we replace t by r (see eq. (4)), exclude
time from the second scale (4) and put it into the first
scales and to (4’) and substitute the result into eq.
(4’), we obtain the results of Kolmogorov – Obukhov
of 1941 Du(r) = (εr)2/3 and Richardson – Obukhov
[Obukhov, 1941; 1959; Richardson, 1926; 1929] for
the eddy diffusion coefficient:

K (r) = ε1/3r4/3. (6)

These are the results for the inertial interval of tur-
bulence. The results as relations (4) are valid irrespec-
tive of the space dimension and the numerics prove it
[Gledzer and Golitsyn, 2010]. It is surprising that since



1920s nobody tried to understand why the Richard-
son’s “law of – 4/3” holds up to 2–3 thousands km in
the horizontal direction [Richardson, 1926; 1929], i. e.
the vertical component and full velocity isotropy are
not important. In 1999 Lindborg [Lindborg, 2008] an-
alyzed the experimental data of commercial flights in
terms of structure functions. He showed that the de-
pendence r2/3 is traced up to distances of 2 thousands
km. His results in terms of the eddy diffusion explain
the Richardson results of 1920-s. These facts can be
explained starting with a two-page note of Kolmogorov,
1934 [Kolmogorov, 1934], and the following develop-
ment of his results by Obukhov, [1959] and Monin and
Yaglom, [1975]. Only the Markov properties of the pro-
cess are important rather than the full isotropy except
in horizontal direction. Our numerics of 2010 [Gledzer
and Golitsyn, 2010] confirmed this independence of the
space dimensionality for the second moments with the
accuracy of the numerical coefficients up to 0 (1).

Spectral Representations

For further development we need an analytical connec-
tion between the second moments and their spectral
representations when both of them are power laws. Let



us consider first the structure function D(t) = Atγ,
0 < γ < 2. The relation to the spectrum is [Monin
and Yaglom, 1975]

D(t) = 2

∫ ∞
0

(1− cosωt)E (ω)dω, (7)

The inversion gives for the spectrum [Monin and Ya-
glom, 1975; Yaglom, 1955; 1986]:

E (ω) =
C

ωγ+1
,C =

A

π
Γ(γ + 1) sin

πγ

2
, (8)

where Γ is the gamma function. The length scale re-
lated to the mean square displacement of a randomly
moving particle has therefore the spectrum Cω−4,C =
A/π and for the velocity scale

〈
u2
〉

= εt the spectrum

is εω−2. According to the terminology introduced by
Yaglom, [1955; 1986] the spectrum ω−2 corresponds to
a process with stationary increments of the first order
(0 < γ < 2), while the spectrums ω−4 has the station-
ary increments of the second order (2 < γ < 4). In
order to avoid the singularity at ω → 0 the transfor-
mation kernel in eq. (7) should be (1− cosωt)n, with
n = 1 for velocities, and n = 2 for coordinates.



Toward Thumb Rule

When a flying altimeter measures the relief, we obtain
a temporal variations of height signal h(t). The time
t here is related to horizontal coordinate as y = ut, u
being the flight velocity. The standard Fokker – Planck
equation with stochastic velocity fluctuations in this
case is

∂p

∂t
= D

∂2p

∂h2

If y = ut it transforms to

∂p

∂y
= D1

∂2p

∂h2
,D1 =

D

u
. (9)

The diffusion coefficient D1 has the dimension of
length. But if the vertical Lz and horizontal Ly scales
are different, then D1 = L2

z/Ly which reflexes clearly
the diffusion character of the relief formation process
during millions years. Equation (9) yields the scale and
the structure functions for zero initial condition in the
form: 〈

h2(y)
〉

= D1y

with the corresponding spectrum



S(k) = D1k
−2, k = 2π/λy , (10)

λy being the corresponding horizontal wave length. This
equations applicable for small scale continuous areas.
The spectrum of the relief slopes in this approximation
is Sζ(k) = k2S(k) = D = const. The constancy of a
spectrum is referred to as “white noise”. The slope of
the relief

dh(y)

dy
= ς(y) (11)

for which we accept the hypothesis of δ-correlated hor-
izontal coordinates

〈ς(y1)ς(y2)〉 = ς2δ(y1 − y2) (12)

Equation (12) corresponds to the Markov character
of forces in [Kaula, 1966; Rexer and Hirt, 2015; Tur-
cotte, 1997]. Here ς2 may be interpreted as the mean
square slope angle, a dimensionless value.

Now we return to the reliefs of concrete planets. Re-
cently an extensive paper on ultrahigh spherical har-
monics analysis for topography of Earth, Mars and
Moon has appeared [Rexer and Hirt, 2015] with the
horizontal resolution up to hundreds of meters. Much
earlier analyses of topography for Earth and Venus were



given in [Turcotte, 1997]. In that book there are also
the data for mountain, hilly and plain areas of hun-
dred kilometers in size at the Oregon state. The flights
were done in various directions in each type of terrain.
For records in the range 1 – 60 km the mean expo-
nent value of these spectra were found [Golitsyn, 2003]
to be 2.03 ± 0.04. Unfortunately, there were no data
in [Turcotte, 1997] for spectral amplitudes. Obviously
k−2 small size spectrum is a continuation of what Kaula
found for large scale harmonics.

In the book [Turcotte, 1997] the spectral exponent
2 (and other statistical measures, such as Hausdorff
measure, the fractal index d) were retrieved from the
original records. But no explanation of particular values
was proposed.

The analysis done by Kolmogorov [Kolmogorov, 1934;
Monin and Yaglom, 1975] several decades earlier was
clearer and simpler. The only assumption on δ-correlation
of slopes applies for the processes in consideration, i.e.
the Markov’s hypothesis. Such assumption is used in
many branches of theoretical physics meaning only that
the system reaction time is much larger than the cor-
relation time of stochastic influence on it [Golitsyn,
2003].



Spherical Harmonics

For large planetary scale features the spherical har-
monic analysis is used. Let us consider the relief on
a sphere z(ϕ, θ) with a radius r , where ϕ is longitude,
0 ≤ ϕ < 2π, θ is a co-latitude, 0 ≤ θ ≤ π. Then

∂z(ϕ, θ)

r∂θ
= ςθ(ϕ, θ)

is the slope angle. Let us introduce x = cos θ and
present the relief as a sum of normalized associated

Legendre polinomials P
|m|
j (x),

z(ϕ, θ)

r
= −

∞∑
j=1

j∑
m=−j

ajm exp(imϕ)Φ
|m|
j (x), (13)

Φ
|m|
j (x) = N

|m|
j P

|m|
j (x),

∫ 1

−1
Φ
|m|
j (x)Φ

|m|
i (x)dx = δji , N

|m|
j =(

2j + 1

2

(j − |m|)!

(j + |m|)!

)1/2

.

Then due to eq. (13) the relief slope is expressed
through the derivative,



ζθ(φ, θ) =

∞∑
j=1

j∑
m=−j

ajm exp(imϕ) sin θ
dΦ
|m|
j (x)

dx
.

(14)
Consider the mean normalized energy (in quadratic

sense) of the relief slopes as follows,

Eθ =

∫ 2π

0

∫ 1

−1
< ζ2

θ > dϕdx = (15)

2π

∞∑
j=1

j∑
m=−j

< |ajm|2 >
∫ 1

−1
(1− x2)

dΦ
|m|
j (x)

dx

2

dx .

We consider the mean values of the spectral com-

ponents < |ajm|2 > to be independent of m, which
is confirmed by observations and on practice [Kaula,
1966; Rexer and Hirt, 2015; Turcotte, 1997]. It thus
depends only meridional index j and can be found on
summing over longitudinal index m:

< |ajm|2 >=
α2

j(j + 1)(j + 1/2)
, (16)



where α is the mean angle of the relief slope. Taking
this into account and calculating the integrals in eq.
(15) we have on summing over m

Eθ = 2π

∞∑
j=1

Sj , Sj =
α2

j(j + 1)
, (17)

We thus obtain the constant spectrum of “white-
noise”, i.e. δ-correlation of θ Then for the relief energy
(as mentioned above), we derive a quadratic value in-
tegrated over the spectrum from (13),

E =

∫ 2π

0

∫ 1

−1
< z2 > dϕdx = (18)

2πr2
∞∑
j−1

j∑
m=−j

< |αjm|2 >
∫ 1

−1
(Φ
|m|
j (x))2dx =

2πr2
∞∑
j−1

j∑
m=−j

< |αjm|2 > .

It is clear from here that the mean of the spectral
components (17) provides the spectrum relief ∼ j−2 at
j >> 1, as was found from the empirical data of refs
[Kaula, 1966; Konopliv et al., 2014; McMahon et al.,



2016; Rexer and Hirt, 2015; Turcotte, 1997].

E = 2π

∞∑
j=1

j∑
m=−j

r2a2

j(j + 1)(j + 1/2)
= (19)

2π

∞∑
j=1

r2a2(2j + 1)

j(j + 1)(j + 1/2)
=

4π

∞∑
j=1

r2a2

j(j + 1)
= 4πr2α2 = 4πrD1,

Here D1 is the horizontal diffusion coefficient and
∞∑
j=1

1

j(j + 1)
= 1 (note 1

j(j+1) =
1

j
− 1

j + 1
identity).

The dependence of our harmonic coefficients 1/j(j +1)
(see eq. (19)) differs from Kaula’s 1/j2 by the factor
1/j2(j + 1). At j = 4 it is equal to 1/80.

In order to replace integers j by continuous wave
numbers j at j →∞, i.e. for small horizontal scales, we
shall use in eq. (13) the asymptotics of the polynoms

P
|m|
j (cos θ) at j →∞ :



P
|m|
j (cos θ) ≈ (−1)m

(
2

πj cos θ

)1/2

× (20)

× cos
(
α− π

4
+

mπ

2

)
, α =

(
j +

1

2

)
θ

Now instead of co-latitude θ we will use the length y
along the meridian assuming θ = 0 at the north pole,

y = rθ, 0 ≤ θ < π. (21)

Then we rewrite the phase α in eq. (20) as α = ydk(j+
1
2), where dk = j

r is an increment of the wave number
k = j · dk at j → ∞. Then for very small horizontal
scales one has at dk →∞,

α = ky , k = j · dk = j/r (22)

Now let us apply the wave number k in the eq. (18)
for the relief energy. At j →∞ we obtain

E = 2πD1k
−2 = 4πrα2k−2. (23)

Here 4πrα2k−2 = S(k) is the spectrum with dimen-
sion of the cubic length (recall that α the rms slope
angle). It can be seen that the value rα2 in eq. (23)



is proportional to the diffusion coefficient D1 in the
coordinate space.

The relief spectrum in eq. (19) differs from the
Kaula’s “rule of the thumb” ∝ j−2 by the multiplier
[j(j + 1)]−1. The relative difference between the two
at j → ∞ decreases as [j2(j + 1)]−1 but for small j it
is quite noticeable, e.g. at j = 1 the difference is 1/2,
and at j = 4 it is 20%. This shows that the hypothesis
on the “white noise” of the relief slope angles is not
accurate at these scales. Thus the corresponding relief
structure at j ≤ 5 could be different for each celestial
body due to its peculiar tectonics.

Results and Discussion

Our scheme of the relief evolution basing on eq. (9) of
the probability density changes is the horizontal diffu-
sion of the tectonically formed vertical structure under
the gravity acting along slopes. Slopes as a measure of
forces resist to winds; water and rocks are running down
along them, etc. Figure 2 (Figure 7.19 from [Turcotte,
1997]) presents the amplitudes of the relief spherical
harmonics: for Earth j ≤ 180 and for Venus j ≤ 50.
At j ≥ 4 all coefficients approach to the inverse square
dependence.



We compare our theoretical expression for harmonic
coefficients from eq. (19)

Sj =
4πrD1

j(j + 1)
(24)

to their empirical values from Figure 2.
The comparison has been done for selected harmon-

ics with accuracy about 10% within their value order.
The harmonic numbers for Earth were 5, 10, 20, 30,
40, 60, 90. This produced D1 = 1.3 ± 0.3 m. For
Venus the numbers 5, 10, 15, 20, 30, 40 and 50 pro-
duced D1 = 0.19 ± 0.03 m. Our diffusion coefficient
is determined with accuracy about 20%. The striking
difference between these two planets has been already
noted by [Turcotte, 1997]. However, one should recall
that Venusian data are related only to equatorial plates
[Turcotte, 1997]. The global relief characteristics can
be estimated with much higher precision and efforts
(see e.g. [Rexer and Hirt, 2015]), which we leave for
much younger colleagues, but we believe that it would
be worth doing.

Figure 3 presents the relief spectra as the functions of
the surface linear wave length k . The authors of [Rexer
and Hirt, 2015] have computed spherical harmonics for
Earth and Moon up to j = 46200 and for Mars up



Figure 2. Relief spectral harmonics for Earth and
Venus after [Turcotte, 1997].



to j = 23100. Our eqs. (20) – (23) present high
frequency harmonics in terms of k−2. At Figure 3 we
added straight lines corresponding to the spectra k−2

and k−4, the last for very high wave numbers. The
dependence k−2 holds well for Mars, line 1, and for
three terrestrial spectra, lines 3-5, with some steeping
for waves shorter than a few kilometers. The Moon
spectrum falls down and remains almost flat at 200 – 80
km, being very specific in this respect. This evidences
that the Moon is bombarded by the asteroids the size
of about 10 km, since the size of a crater is 10-20 times
exceeds the diameter of the asteroid.

The explanation for the relief spectral decrease from
k−2 to k−4 can be explained by rejecting the δ-correlation
for the relief slopes hypothesis. The simplest correla-
tion function is

Bθ(θ(y1)θ(y2)) ∼ exp(−βy), y = y2 − y1, (25)

where β ≈ 1/h and h is mean relief height. Its spec-
trum is

Sθ(k) =
β

π(β2 + k2)
, (26)

and if we know the spectrum of the derivatives, i. e.
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angles, the spectrum of the value itself, relief, would
be

Sθ(k) = k2S2
θ (k) =

k−2β

π(β2 + k2)
. (27)

This spectrum has both right asymptotes: at h2 �
β2 it would be proportional to k−2 and in inverse case
for small distances it ∼ k−4. The gravity acceleration
on the Moon is six times weaken that on Earth and
other conditions equal the relief inhomogeneities there
could be formed easier and higher.

Conclusion

Our analysis is based on the Fokker – Planck – Kol-
mogorov, FPK, equation cast into eq. (9) for altimeter
records. It has the solution

〈
h2
〉

= D1y for the mean
square of the relief height. Here D1 is the horizon-
tal diffusivity of the relief. Such a solution has the
spectrum S(k) = Dk−2, with k = 2π/λ along the hor-
izontal direction. The modified FPK equation is based
on the hypothesis of the time δ-correlation of acting
forces which in this case corresponds to horizontal δ-
correlation of the relief slope angles. The spherical har-



monics of the relief have been found by Kaula to follow
the inverse-square rule for the harmonic number j . Our
“white noise” hypothesis on the horizontal spectrum
of the slopes slightly modifies the Kaula’s rule for high
harmonics by replacing the inverse square dependence
by the factor [j(j + 1)]−1. The difference decreases as
[j2(j + 1)]−1. The numerator in eq. (24) gives the
constant for the Kaula’s rule.

Rather crude estimate of diffusion coefficients D1

performed for Earth yields D = 1.3 m, several times
higher than for Venus. A similar investigation may
also be performed for the planetary gravity field fluc-
tuations with similar results, though in this case one
should account for the internal structure and tecton-
ics. Consideration of statistical scales (4) as structure
functions with zero initial conditions allows us to pro-
pose their spectral representation. For the very high
harmonics with continuous spectrum the spectral be-
haviour changes from k−2 to k−4, see eqs. (25) – (27).

It can be concluded that the Kaula’s rule for grav-
ity field as well as for the relief is an asymptotic con-
sequence of the random walk laws, for the first time
formulated by Einstein (see [Bridgman, 1921]) and in
the most general and practical way by Kolmogorov
and his successors in 1934 [Monin and Yaglom, 1975;



Obukhov, 1959; Yaglom, 1986].
Thus the line of study may be considered as the

model, the base for use the dimensional analysis for
investigation of various processes. When obtaining di-
mensional formulas one always should remember that
the formulas must contain a numerical coefficient which
could be retrieved from the data of observations. The
formulas can be valid only in a certain range of dimen-
sionless similar numbers. In certain situations there can
be more than one such number. How should one act
in these cases? One should consult to professor G. I.
Barenblatt, 1996; 2003], who was Kolmogorov’s stu-
dent.

Geophysical interpretation of these results is wait-
ing for a thorough analysis. Because the Kaula’s con-
stant for gravity field is used to obtain the information
on the internal structure of celestial bodies (mascones,
isostasy), the diffusion coefficient D1 could contain the
information on tectonics, surface material properties,
etc. This coefficient is an analogue for the Kaula’s
gravity field fluctuation constant. Much work has yet
to be done by much younger people since the total age
of the two present authors is not far from 160 yrs.
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