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Abstract. The problems of remote
monitoring systems for detection and
classification of anomalous phenomena in the
environment with appropriate algorithms and
software are considered. The technique of
detecting and classifying anomalous phenomena
in the investigated medium suggested in this
paper allows us to solve the problems of
measurement and detection on a real time basis.
A scientific basis for multi-channel remote
monitoring systems has been developed. New
methods and algorithms for processing remote
sensing data and formation of updated
databases for improving our knowledge about
environment were used. The system is based on
modern computer technologies and
high-performance computing systems. It is clear
that the analysis of integrated contact and
remote measurements can increase reliability of
estimations of parameters of natural systems
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and solve the problem of planning of thesemea-
surements. Application of remote monitoring is
related in many cases to the acceptance of the
statistical decision about the existence of any
given phenomenon on a surveyed part of the
study site. One of the features of information
gathering for such a decision is the impossibility
of obtaining statistical samples in large amounts.
Therefore, it is necessary to develop the opti-
mum algorithms of identification of random sig-
nals characterized by the samples of limited data
under the conditions of a priori parametric indef-
initeness.

Introduction

Development and organization of remote monitoring
systems (RMS) is an exclusively difficult, complex, mul-
tidisciplinary problem. Experimental methods of envi-
ronmental research play an important role in its solu-
tion. The primary issues of the realization of such ex-
periments are mass gathering of the information on the
studied object, efficiency of its processing, and authen-
tic data interpretation on the basis of analytical and
numerical mathematical models. Therefore, within the



limits of RMS application it is possible to allocate the
systems of the automated radio physical experiments
aimed at the following functions [Armand et al., 1987,
1997; Mkrtchyan, 1982]:

• collection and storage of reliable information about
the object under study;

• primary data processing, including identification,
decoding, and preliminary control of the field data
with the reduction of these data to some standard
forms;

• secondary data processing, including various math-
ematical and statistical methods, designed to per-
form identification, classification, and definition of
the typical characteristics of the object under study;

• prediction of the state of the object under study
on the basis of interpretation of the information
obtained using advanced mathematical methods.

Effective implementation of these functions under
modern conditions implies wide automation of the radio-
physical experiment, using the latest achievements of
experimental techniques and methods of processing the
observational data. Automation of radio-physical meth-



ods of environmental research opens new opportunities
for the researcher, namely:

• significantly reduces the time of research;

• increases the efficiency of experiments;

• provides multidisciplinary and rational use of ex-
pensive equipment;

• uses new methods of processing and interpretation;

• provides experimental information;

• frees the researcher from routine work.

A huge amount of information requires involvement
of complex technical and software tools that ensure effi-
cient processing, storage, and retrieval of the necessary
information about the objects. Successful implemen-
tation of the experiment often requires involvement of
a large number of a priori information. Therefore, it
is necessary to organize long-term storage of a large
amount of data and provide reference data and infor-
mation service on the data availability.

The complex and diverse structure of data from radio-
physical experiments results from the following: tech-
nical complexity of data recording devices, variety of
these devices, and multistage nature of research. Hence,



coordination of the information between different stages
of processing and analysis is needed, as well as the de-
velopment of optimal methods for processing informa-
tion containing conditions for the operational coordina-
tion of various types of computers and data recording
devices.

A large number of users of radiometric information
with a wide range of requirements implies, on the one
hand, centralized storage of data about the state of the
environment and the development of universal tools for
processing these data. On the other hand, the variety
of data and functional tasks of data processing requires
the development of special software.

Based on the abovementioned features of radio-
physical methods of environmental studies, we can for-
mulate the following principles for designing automated
systems for collecting and storing information in RMS:

• systematic approach;

• centralized storage of information;

• modularity;

• interactive mode of operation;

• typification.



A systematic approach to the automation of radio-
physical experiments includes combination of the the-
oretical research methods with the technical and soft-
ware tools integrated into an automated complex for
obtaining and processing radiometric information [Ar-
mand et al., 1987, 1997; Mkrtchyan, 2010a].

Remote Monitoring Systems for Marine

Ecosystems

One of the functions of RMS is the detection and clas-
sification of anomalous phenomena in the study site. It
is important to consider the conditions of uncertainty
in the location and possible dynamics of the anomaly
in the study site.

Limited efficiency, memory size, and operation speed
of onboard computers requires separation of the moni-
toring system into three subsystems (Figure 1): Fixing
Block (measuring block), Solving Block,
and Selector Block. The subsystems consist of the
blocks with the following functions: (1) periodic view-
ing of the sea surface elements; (2) recording “suspi-
cious” elements in the memory; (3) formation of the
anomaly motion from the traces of suspicious elements;
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(4) accumulation of the time series of the data about
fixed “suspicious” elements of a terrestrial surface to
make a statistically based decision whether these data
are related to the noise or signal; (5) multistage local-
ization of the anomaly search procedure.

Fixing Block includes the general scanner Φ1 and
memory Φ3, and also m blocks (Φ2i) for primary cri-
teria k1i for each channel (i = 1,m). Scanning of the
studied regions is performed using block Φ1. As a re-
sult of the operation of blocks Φ2i coordinates of the
“suspicious” elements of the region are transferred and
recorded in the free cells of memory Φ3.

Solving Block consists of m Pi blocks, each of
which consists of P1i blocks, analyzer, and the block
of secondary criterion k2i (i = 1,m). These blocks for
each channel determine together the noise or anoma-
lous nature of the signals among the “suspicious” ele-
ments found in the region.

Solving Block “k of m”. In this block a fixed
“suspicious” element is classified. If at least k chan-
nels from the total m channels fix the anomalous nature
of the “suspicious” element, then block (“solver k of
m”) makes the final decision on the signal character
of the fixed element. Otherwise, a decision is taken
about the noise character of the element [Armand et



al., 1997; Mkrtchyan, 2010a, 2015]. After making a
decision about the noise character of the analyzed el-
ement, the corresponding memory cells of memory Φ3
are erased and can record new data. If it is decided
that the analyzed element is not noise, but a signal,
then a command is given to Selector Block for more
precise localization of the anomalous element, and the
corresponding cells of the Φ3 memory are also erased.

Selector Block consists of block Π for optimum
multistage search and n devices (I1, I2, ... , In) whose
functions are consecutive specifications of the location
of anomalies in the specific element of the region ac-
cording to the data of block Π.

It is important that the space is quantized by el-
ements. This is determined by the resolution of the
applied measuring equipment.

Due to the dynamic change of the anomalies in time,
the monitoring system should monitor these changes.
Therefore, it must perform periodic viewing of space
elements much faster than this change occurs. The
system should also have time to process the stream of
the statistical information. The efficiency of the system
is determined by the ability to control these parameters.

The RMS should use n satellites of the similar type,
moving at speed V , uniformly located on a cyclic orbit



of length L. In this case, RMS returns to the same
place in the region with interval h, which must satisfy
the following relation

h =
L

nV
< ∆ν

where ∆ is the primary linear resolution of RMS, ν is
the velocity of the motion of anomalies. The quality of
RMS is determined by probabilities F of the false alarm
and D of the correct detection, the mean detection
time of ht anomalies including the pure time of search
and the highly probable time of trouble-free function-
ing of the RMS. The quality of RMS is also provided
by kinematic parameter h, energetic parameter E , the
amount of memory, and the technical reliability param-
eter, which is the probability of failure-free operation
of RMS during time ht. Parameter E determines the
signal-to-noise ratio when anomalies are detected.

The number of elements of resolution N in the study
region is

N =
S

∆2

To have high detection accuracy, it is necessary that
N > M . As a result, the detection procedure breaks
down into two stages [Armand et al., 1987, 1997;



Mkrtchyan, 1982]. At the first stage of detection, the
memory cells record the coordinates of the “suspicious”
elements of the region. At the second stage, the final
decision is made on the noise or signal character of the
ni element of the region

ni = fi(F ,D,E ), i = 0 or 1

where function fi depends on the statistical detection
procedure.

We assume that the memory size of the monitor-
ing system is limited by M cells, and the information
stream is capable to process N space elements. In each
element, the source of the information is defined by
stochastic function ξi(t). If M ≥ N , the solution of
the problem of the statistical analysis of the informa-
tion stream is reduced to the accumulation of data in
the memory cells and its subsequent processing using
the methods of mathematical statistics. In case when
M < N it is necessary to develop an algorithm of accu-
mulation of statistics related only to the “suspicious”
elements of the information stream. Depending on the
signal-to-noise ratio stochastic function ξi(t) is defined
by probability density fa(x). Let the choice of “suspi-
cious” elements in the memory of the monitoring sys-
tem correspond to the case ξ > X , where X is the



specified threshold. If a = a0 for the noise only in the
stream ξi(t) and a = a1 for the signal plus noise, then
the probabilities of fixing of signal and noise elements
would be written as

pS =

∞∫
X

fa1(x)dx , pN =

∞∫
X

fa0(x)dx

We assume that the proportions of the signal and
noise elements at time moment t are equally distributed
in space as 1− γ(t) and γ(t), respectively. Then, the
random number κ(t) of the “suspicious” elements fixed
at time moment t, would have the following distribu-
tion:

P[k(t) = k] = PNγ,pN(k1)× PN[1−γ],pS(k2)

Pn,p(m) = Cm
n pm(1− p)n−m

Knowing the needed time interval for the realization
of one survey of the study region related to a fixed time
unit, we can calculate the probability of memory over-
flow of the monitoring system P[µ(t) > M] at time
moment t. We will consider the case of discrete time,
when the moments of occurrence and the termination
of processing of the elementary noise or signal are iden-
tified with the nearest integer. We assume that each



specific element is processed in a separate cell of mem-
ory up to the moment of the final decision whether
it has the noise or signal character. After that the
memory cell is cleared, and it can receive further infor-
mation. In this case the number µ(t) of the memory
cells occupied at time moment t is represented as an
ordinary integer function.

Let us introduce the following functions

gt(x) =

∞∑
k=0

P[k(t) = k]xk

Gt(x) =

∞∑
m=0

P[µ(t) = m]xm

Let us consider that processing time of one element
at the moment t = s is a random variable ν(s) with
the specified distribution P[ν(s) < t] = Fs(t). Then
we have:

Gt(x) =

t∏
s=h

gs{1 + [1− Fs(t − s)](x − 1)}

Further, we get the following expressions for the mean



value and dispersion:

Eµ(t) =

t∑
s=h

Ek(s)[1− Fs(t − s)]

Dµ(t) = Eµ(t)+

t∑
s=h

[Dk(s)− Ek(s)][1− Fs(t − s)]2

If κ(s) is characterized by the Poisson distribution
with parameter λ(s) = Eκ(s) = Dκ(s), then µ(s) is
also characterized by the Poisson law with parameter
Λ(t) = Eµ(t).

All these considerations are true if the value of M
is not limited. If M = const > Λ(t), then µ(s) is
characterized by the truncated Poisson distribution

P [µ(t) = m;M = const] = PΛ(t),M(m) =

(Λm(t)

m!

)/ m∑
l=0

Λl(t)

l !
, m < M

Consequently, the efficiency of the monitoring sys-
tem is determined by the probability of the overflow



of its memory, i.e. the probability of the information
losses. In a more general case, to assess the efficiency
of the monitoring system for detecting anomalies on
the Earth’s surface, it is necessary to consider the op-
eration of all its subsystems, taking into account their
individual memory limits and data processing speed.

The criteria for assessing the efficiency of the moni-
toring systems are ultimately determined by the proba-
bility of the performance of their tasks, which is a com-
plex function of the parameters of the systems and the
environment. In the case of the theoretical considera-
tions, the model of the environment plays an important
role. One of the possible models of this kind is based
on the use of the concept of “patchiness” of the space
under study. The mobile anomaly breaks the spotted
structure; as a result its trace is formed. Since the
patches can have different nature, the efficient detec-
tion algorithm must be multi-channel, capable of ana-
lyzing hydrophysical, biological, acoustic, optical, and
physico-chemical information.

The probability of the overflow of the memory of the
solution block during running time TΣ is estimated as:

P ≥ 1− TΣ{1− Φ[(M − Λ)Λ−1/2]}

where Φ is the Gaussian integral.



The accuracy of this assessment depends on the al-
gorithmic filling of the monitoring system blocks. In
particular, when using the method of sequential anal-
ysis to solve the problem of distinguishing hypotheses
and evolutionary forecasting technology, the data pro-
cessing procedure in the solution block is greatly sim-
plified and, consequently, the speed of decision making
is increased, reducing the data delay between the lock
and the solution block. Consideration of the theoret-
ical estimates of the magnitude of such delays is an
independent task.

Specific Properties of the Solution Block

(Solver). Efficiency of Multi-Channel

Detection

All the following discussion will be focused on the de-
tails of the MS solver associated with the uncertainty
of the probability distributions of the anomalies and the
background that are typical for monitoring situations.
This section deals with the case of the known distri-
butions, and the specificity of monitoring is associated
with the multi-channel detection of anomalies.

The MS subsystem Solving Block is based on the



classical and sequential procedures for choosing be-
tween two hypotheses. These procedures require set-
ting the probability densities fω0

(x) and fω1
(x), which

are usually unknown. Usually empirical analogues (his-
tograms) f ∗ω0

(x) and f ∗ω1
(x) obtained from the “train-

ing” samples of the limited volume n0 and n1, are usu-
ally known best of all. Therefore, the developed theory
can be used only for sufficiently large values of n0 and
n1, when the probability of converges with fω(x). In
the general case of development, the theory can serve
to obtain the best estimates of the procedures under
consideration.

The problem of detecting anomalies on the Earth’s
surface has a specificity associated with the so-called
patchiness of the studied space. Violation of the pa-
rameters of the patchiness can be a sign of the appear-
ance of anomalies in the study region. In real condi-
tions, the study of the patchiness of the medium and
the acquisition of statistical data in the Solver is a com-
plex and time-consuming task.

To solve the detection problems, statistical distribu-
tions of the patchiness of the background are neces-
sary. Patchy land has been studied by geo-botanists
for long [Mkrtchyan, 1982] using the method of the
so-called transepts, which have a common statistical



significance. We are only beginning to investigate the
elements of the sea surface [Mkrtchyan, 2010a, 2010b;
Mkrtchyan and Krapivin, 2010]. In the ocean, the line
of the transept corresponds to the line of the vessel’s
route.

Practically the most acceptable method to deter-
mine patches is the method of setting thresholds. In
this case, part of the space on which the index of the
medium over the given channel exceeds (l+-characteristic)
or does not exceed the (l−- characteristic) threshold
value belongs to the patch region.

To detect the anomalies on the Earth’s surface, the
signals can be drawn from different channels: tempera-
ture, acoustic, biological, optical, etc. It will be shown
below that the construction of a subsystem of multi-
channel detection will result in a greater efficiency than
the investigation of each of these channels separately
[Mkrtchyan, 1982, 2015].

To detect anomalies on the water surface of one of
the training samples, one can take, for example, the
background (l+, l−)-characteristics. Then, one can use
phytoplankton signal during the occurrence of anoma-
lies as a second training sample.

The study of background (l+, l−)-characteristics in



almost all channels and the construction of histograms
show that the amplitude characteristics have normal
distributions, and the (l+, l−)-characteristics have ex-
ponential distributions. Therefore, consideration of the
optimal decision procedures for these distributions is
important.

As noted above, for large values of n0 and n1, the
MS solver can be based on the classical and sequential
selection procedures between hypotheses.

If the probabilistic characteristics fω0
(x) and fω1

(x)
of the anomaly and the background are determined and
have the form of the normal or exponential distribution,
respectively,

fω(x) =


1

σ
√

2π
exp
[
−(x − ω)2

2σ2

]
ω exp(−ωk)

then the average values E0ν, E1ν (sample volumes
needed to determine the noise or signal character of
a given sample) can be calculated using the formulas
given in Table 1. These formulas take into account the
possibilities of using classical and sequential hypothesis
selection procedures.
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We used the following notations: α(β) is the proba-
bility of the error of the first (second) kind; uα and uβ
are quantiles of the normal distribution; A = (1−α)/β
and B = α/(1−β) are the thresholds of the sequential
procedure.

Similar calculations can be carried out for any other
form of the dependence of the probability densities
fω0

(x) and fω1
(x). However, in the real situation it is

better to use empirical distributions fω0
(x) and fω1

(x)
instead of these dependencies. Therefore, in case of
limited n0 and n1 in the Solver Block it is possible to
use optimal learning algorithms for normally distributed
random and exponentially distributed quantities, de-
scribed in [Armand et al., 1987; Mkrtchyan, 1982]. In
the case when little is known about the background
and distributions of the anomalies, modern procedures
for pattern recognition can be used. However, unlike
optimal learning algorithms for normally and exponen-
tial distributed random values it is impossible to make
similar calculations for procedures of pattern recogni-
tion so far, since the average values of errors of the
first and second kind (ᾱ = F̄ and 1− β̄ = D̄) for them
are still unknown. Therefore, we shall further confine
ourselves to an algorithmic description of these very
efficient procedures used in the conditions of greater



uncertainty than the above-mentioned optimal proce-
dures.

Let us analyze in detail the effect that can be ob-
tained from multichannel procedures.

Let Di be the probability of correct detection of the
ith channel (i = 1,m), where Fi is the probability of
false alarm (i = 1,m). If we take a decision using the
rule “m of m”, then the corresponding probabilities of
correct detection D and false alarm F would be equal
to

F = Πm
i=1Fi , D = Πm

i=1Di

1 > Di > 0.5 > Fi > 0, respectively. It is clear that in
this case F improves, but D becomes worse.

We now consider the rule “k of m”. For simplicity,
we first assume that F1 = F2 = ... = Fi = ... = Fm,
D1 = D2 = ... = Di = ... = Dm. Then:



D = P
(
µ ≥ k

H1

)
=

1−
k−1∑
i=0

C i
mD

i
1(1− D1)m−i

F = P
(
µ ≥ k

H0

)
=

k−1∑
i=0

C i
mF

i
1(1− F1)m−i

(1)

Using the results of [Mkrtchyan, 1982], we can write
the asymptotic estimates of these sums:

D = 1−
k−1∑
i=0

C i
mD

i
1(1− D1)m−1 >

1− exp[−mk(
k

m
,D1)], D1 >

k

m

F =

k−1∑
i=0

C i
mF

i
1(1− F1)m−i < (2)

exp[−mk(
k

m
,F1)], F1 <

k

m

k(x , y) = x ln
(x
y

)
+ (1− x) ln

(1− x

1− y

)



Since the number of channels in practice is not very
large (of the order of five), we do recommend using
formulas (1), not asymptotic formula (2). We shall use
the exact formulas (1) in our specific calculations.

We introduce notations ηD = 1− (1−D)/(1−D1),
ηF = 1−F/F1. As can be seen, these values determine
the relative efficiencies of the multichannel approach
compared to the single-channel case.

In conclusion, we note that Selector Block is an
MS node that produces a refinement search (localizes
the location of the anomalies). The theory for the
Selector Block can be based on the theory of op-
timal search and game theory [Armand et al., 1987,
1997; Mkrtchyan, 1982, 2010a].

Model of Patchiness

Remote measurements consist of information acquisi-
tion, when the data of measurements, acquired from
the tracks of the flying system along the routes of sur-
vey, are directed to the input of the processing system.
As a result, a two-dimensional image of the investigated
object is recorded. Statistical model of patchiness for
the investigated space is one of the models of this im-
age.



In real conditions, the study of patches, acquisition
of their statistical characteristics for the procedure of
detection is quite a complex problem. It is necessary
to develop a criteria to distinguish the patches from
the other phenomena. For example, it is necessary to
determine such a threshold, which serves as the patch
indicator if the threshold is exceeded. It is also neces-
sary to develop a model presentation of the processes
of patch detection.

Threshold determination is the most obvious and
simple method for patch definition. In this case, the
part of space belongs to the region of patch, in which
the parameter of environment measured within the cho-
sen channel exceeds value (l+) or, on the contrary, does
not exceed the threshold value (l−). Let y = y(x1, x2)
be a function of coordinates (x1, x2) of points within
considered region. If we delineate the “level surface”
y = const on the surface of the region, then closed
curves of the y level that bound the “patches” are pro-
jected onto it.

The algorithms for simulation of patchiness are based
on the numerical solution of the algebraic inequalities
determining coordinates of internal points of patches.
It is impossible to write the equation of contours of
patches in general. Therefore, contours of patches are



described by a system of simple algebraic equations
Σϕi(x , y) = 0, where ϕi(x , y) is the equation of an
elementary curve. To simplify the software implemen-
tation of simulation of patchiness image, the equation
of the circle with the varying coordinates of the cen-
ter and radius is taken as the ϕi(x , y). Complex forms
of patches are formed by overlapping of several circles
with different parameters on a plane of the drawing.
This is defined by the following system of inequalities:∑

{(x − ai)
2 + (y − bi)

2 − ri} ≤ 0

where x , y are the Cartesian coordinates of internal
points of patches, ai , bi , ri are coordinates of the centre
and radius of the i -th circle, respectively, and n is a
number of the circles composing the model image.

To simulate the randomness of the background dis-
tribution of patches the patchiness model parameters
ai , bi , ri are set by means of random-number genera-
tors. By changing the laws of the distribution of ran-
dom numbers and their statistical parameters, it is pos-
sible to obtain statistically different patchiness images.



Application

The criteria of estimation of the efficiency of the mon-
itoring systems are defined by the probability of their
operation with the given tasks, which is a complex func-
tion of parameters of the systems and environment. Ac-
cording to the theoretical viewpoint the environmental
model plays an important role. One of such possi-
ble models is being constructed using the concept of
“patchiness” of the studied region. Mobile anomaly
breaks the patchiness structure and as a result its trace
is formed. Since the patches can have various natures,
the efficient algorithm of the detection should be mul-
tichannel, capable to analyze the hydrophysical, bio-
logical, acoustic, optical, physical, and chemical infor-
mation [Armand et al., 1987, 1997; Mkrtchyan, 1982,
2010a, 2010b].

Figure 2 shows the example of the application of
RMS for monitoring of brightness temperature of the
surface of the Arctic Ocean based on the data of space
satellite Cosmos 1500 (8–9 February 1984). The data
were obtained from satellite Cosmos 1500, where ra-
diometers have been installed at the wavelengths λ1 =
0.8 cm, λ2 = 1.35 cm, λ3 = 8.5 cm.

The statistical data processing the microwave-



Figure 2. Results of the classification of the Arctic
ice field on the base of satellite radiometers data (8–9
February 1984). Ice-free water is shown with red lines;
one-year ice is shown with green lines; multi-year ice
is shown with blue lines; pack ice is shown with brown
lines.



radiometric measurements from satellite Cosmos 1500
allow to properly classify large-scale processes of the
study of the Arctic ice cover. In particular, it is pos-
sible to determine the position of the edge of the ice.
The ice cover is divided into 4 groups: ice-free wa-
ter, one year ice, multi-year ice, and pack ice. The
results of processing are shown in Figure 2. We get
4 clusters, which meet the following conditions on in-
vestigated surface: 1 – ice-free water; 2 – one-year ice;
3 – multi-year ice; 4 – pack ice. The errors of the de-
tected boundaries of the above clusters are as follows:
1 – 26%; 2 – 30%; 3 – 17%; 4 – 12%.

Conclusions

As noted above, the criteria of effectiveness of the mon-
itoring systems are ultimately determined by the fact
whether the system completes the task or not. This
probability is a complex function of the parameters of
the systems themselves and of the marine environment.
One of the possible models of this kind is based on the
use of the concept of sea surface “patchiness”.

The mobile anomaly destroys the patchy structure
and, as a consequence, its trace is formed. Since the



patches can have different nature, an effective detec-
tion algorithm must be multi-channel.

It follows from the aforesaid that statistical charac-
teristics of “patchiness” of the brightness temperatures
in the microwave range can be used for detection and
classification of the phenomena on the ocean surface.

The analysis of empirical histograms for “patchiness”
of the brightness temperatures in the microwave range
shows that in most cases (l+, l−)-characteristics would
be consistent with the exponential distribution, and
amplitude characteristics would correspond to the nor-
mal distribution. Therefore, to detect and classify the
phenomena on the ocean surface it is necessary to apply
optimal algorithms for the computer training. This will
allow to make statistical decisions about the aforesaid
distributions.
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