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Abstract. The paper presents a new
mathematical approach, entitled Seismic
Activity monitoRing by Discrete mathematical
analysis (SARD) and aimed at seismic level
assessment. It is based on application of
well-proven algorithms of Discrete Mathematical
Analysis (DMA) for the study of earthquake
catalogs. The possibility of applying the
proposed method for the territory of California,
Kamchatka Peninsula and the Caucasus is
shown. Evaluation of efficiency of the developed
method is carried out using an error diagram.
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Introduction

The problem of reliable estimation of seismic hazard
is an important task not only for seismology, but for
all geophysical studies. Its solution is of great social
and economic importance. The urgency of the prob-
lem rapidly increases with the vigorous growth of ur-
ban territories. According to the UN statistics, seismic
catastrophes account for more than 50% of the total
number of natural disasters and dominate all types of
catastrophes. Earthquakes are the most complex nat-
ural phenomena associated with the dynamics of litho-
spheric plates, the accumulation of tectonic stresses
and their drops. Strongest earthquakes lead to serious
economic and financial loss and numerous casualties.
A significant part of the territory of the Russian Fed-
eration (about 25%), which resides 27 Russian regions
with a population of more than 20 million people, is
situated in seismic zones. Here, recreational facilities
are developing rapidly.

Over the past 35 years in many countries, which
are characterized by significant seismic activity, includ-
ing occurrence of strongest earthquakes, scientific re-
search on the creation of methods for earthquake pre-
diction has been significantly developed. The experi-



ence amassed in international geophysics testifies that
the creation of systems of complex observations, pro-
viding for the required sampling rate in space and time,
a continuous collection of prognostic data with the
leading role of seismological observations, is of fun-
damental importance for the successful solution of the
problem of determining the place, time and strength of
the expected earthquake [Laverov et al., 2008]. The
countries that have reached the highest level of meth-
ods and techniques for seismic risk assessment and
earthquake prediction are Japan, the USA and China.
China has the most powerful system of seismological
monitoring, oriented on earthquake prediction. Several
thousand seismic stations operate in the USA. In most
earthquake-prone areas, for example in California, the
density of the seismic network is such that the average
distance between stations is about 10 km. Seismolog-
ical monitoring of the territory of USA is carried out
by the US Geological Survey (http://www.usgs.gov/).
High density of networks of seismological and geophys-
ical observations is typical for the territory of Japan.
However, in comparison to China, research on earth-
quake prediction in Japan is coordinated to a much
lesser extent.

The state of seismological observations in Russia

http://www.usgs.gov/


is characterized by departmental disunity of the con-
ducted work, decrease in the level of financial support
of observational networks, and technical deterioration
of equipment [Laverov et al., 2008]. Currently there
are no sufficiently developed observational networks for
monitoring within seismically active regions of Russia.
All these factors significantly reduce the provision of
seismic safety for the population over the territory of
this country. In this regard, the development of a math-
ematical approach for monitoring the rate of seismic
regime in the regions of Russia on the basis of discrete
mathematical analysis (DMA) is certainly topical.

To predict an earthquake means to determine with
sufficient reliability its location, time and magnitude.
Hence, it is necessary to know how and where the
earthquake source is being prepared and to monitor the
successive stages of its development.

The physical and geological basis and the principal
possibility of forecasting earthquakes are determined by
two conditions. First, the strength of the rocks com-
posing the Earth’s crust is heterogeneous: the stronger
sections alternate with the weak ones. Secondly, the
stresses accumulate slowly, for hundreds of years. Un-
der these conditions, the preparation of a large rupture
is preceded by successive acts of destruction of many



less durable sites, each of which causes a small earth-
quake. Observing the weak seismicity, it is possible to
identify the place and estimate the strength of a future
strong earthquake.

Typically, medium-term precursors appear several
years or months before the main strong earthquake
[Novikova and Rotvain, 1996]. They are based on the
following characteristics of the seismic flow: the level of
seismic activity, its variations over time, and the spa-
tiotemporal grouping of earthquakes [Keilis-Borok et
al., 2001].

A new approach to the analysis of geophysical data
(discrete mathematical analysis, DMA), created and
developed at the Geophysical Center of the Russian
Academy of Sciences, is based on fuzzy mathematics
and provides efficient monitoring of dynamic geophys-
ical processes irregular in time and space, highlighting
the background or normal component of the behavior of
these processes and the anomalous component. At the
same time, during such monitoring, the researcher him-
self determines the “virtual” nodes of the grid. They
may not coincide with the nodes of real observations
and there may be more of them than nodes of real
observations.

DMA makes it possible to monitor the time- and



space-dependent finite dynamic process. The essence
of monitoring includes digitization, topological filtra-
tion, association with monitoring nodes, the aggrega-
tion of time series, and finally recognition of quiet/
anomalous structures.

DMA-Monitoring of Seismic Level

Discrete mathematical analysis is a new approach to
data analysis, developed at the Geophysical Center of
the Russian Academy of Sciences. DMA is a series
of algorithms aimed at solving the main tasks of data
analysis: clustering and tracing in multidimensional ar-
rays [Agayan et al., 2014; Agayan and Soloviev, 2004;
Gvishiani et al., 2017b, 2017c; Mikhailov et al., 2003;
Soloviev et al., 2016; etc.], morphological analysis of
surface [Gvishiani et al., 1994, 2008d; etc.], search for
anomalies and trends in records [Gvishiani et al., 2003,
2004, 2008a, 2008b, 2008c; Soloviev et al., 2012a,
2012b; etc.]. All DMA algorithms are united by a com-
mon formal basis, based on fuzzy comparisons of num-
bers and proximity measures in discrete spaces. The
idea of DMA is to create discrete analogues of the con-
cepts of classical mathematical analysis: limit, continu-



ity, smoothness, connectivity, monotonicity, extremum
etc. DMA algorithms and their combinations provide
a way to monitor the seismic process, irregular both in
time and in space.

Let’s consider an example: X is any seismic catalog
in the domain Ω. The essence of monitoring:

0. The beginning is digitization. In time it is division
into equal intervals {δti}. In space it is selection of
monitoring nodes {ωj} in the domain Ω.

1. Clustering (topological filtration – allocation of a
reference dense subset Yi in the image X (δti) of the
process X in the interval δti by means of the algorithm
discrete perfect sets (DPS) [Gvishiani et al., 2013a,
2013b, 2013c]: Yi = DPS(X (δti)).

2. Transfer of clustering to the monitoring nodes
(the spatial grid of interest) is the construction of the
fuzzy activity measure µ(ωj)(i) ∈ [0, 1] [Soloviev et al.,
2013] by the DMA methods for each node ωj relative to
the process X for the period δti through the proximity
ωj to Yi .

3. Postulation – monitoring Mon(X ) is the aggrega-
tion of time series in the monitoring nodes {µ(ωj)(i)}.

4. Statistical, wavelet and DMA-analysis Mon(X )
with subsequent conclusions on the grid ωj . In partic-
ular, recognition of quiet/anomalous structures within



a grid.
SARD (Seismic Activity monitoRing by Discrete math-

ematical analysis) [Dzeboev, 2017], a method we ap-
ply here, continues a series of the DMA methods suc-
cessfully applied to the analysis of earthquake catalogs.
The seismic process is analyzed by studying its behav-
ior at the nodes of the coordinate grid with a given
interval (reference points) and constructing measures
of activity. As a measure of activity, we use the value
µ, determined by the algorithm of topological filtration
(clustering) DPS [Agayan et al., 2014; Gvishiani and
Dzeboev, 2015; Gvishiani et al., 2013a, 2013b, 2016,
2017c] or its adaptive version A-DPS (adaptive discrete
perfect set).

The DPS algorithm is the part of DMA [Gvishiani
et al., 2008a], an algorithmic approach that is being
developed in the Geophysical Center of RAS under the
leadership of A. D. Gvishiani. It is included in its DMA-
clustering block [Agayan and Soloviev, 2004; Gvishiani
et al., 2008d]. DMA-clustering algorithms solve the
problems of topological filtering of multidimensional
data sets, highlighting in these arrays the most sig-
nificant parts and cutting off the non-essential ones.
DPS is the result of further development of ideas pre-
sented in [Agayan et al., 2014]. As the results of the



research showed [Gvishiani et al., 2013a, 2016; etc.],
it can be used for recognizing the locations of strong
earthquakes’ possible occurrence along with the classi-
cal EPA method (Earthquake-Prone Areas recognition)
[Gvishiani and Dubois, 2002, Gvishiani et al., 2017a;
Soloviev et al., 2014].

The calculated measure µ varies within the interval
[−1, 1]. In contrast to the classical measure of seis-
mic activity [Riznichenko, 1967], the measure µ reflects
the relative density of epicenters that varies over time
in comparison with the spatial environment. A local
increase in time of the parameter µ may reflect an in-
crease in the activity of weak earthquakes, often accom-
panying the final stage of the preparation of a strong
earthquake [Keilis-Borok et al., 2001; Kossobokov and
Shebalin, 2003]. Thus, the variation of µ in time can
be also used for diagnosis of periods of seismic haz-
ard level increase and for estimating the forthcoming
earthquake location.

By the monitoring of seismic activity, we mean the
analysis and study of the behavior of the set of time se-
ries for measure µ at the reference points. Time series
are constructed with a constant step. At each step, the
time interval ti is considered. For each interval, with
the use of the DPS or A-DPS algorithm, a dense sub-



set of epicenters of earthquakes (clusters) is allocated.
The idea of application of the DPS algorithm (β, q) for
solving the task of seismic activity monitoring is to use
its free input parameter β – the level of the maximum
density of the determined dense clusters of epicenters
of earthquakes (we used the input parameter q to cal-
culate the localization radius). Parameter β ∈ [−1, 1]
allows the results of the DPS analysis of the earthquake
catalog for a certain period of time ti to be transferred
to the nodes of the regular geographic grid covering
the investigated region by constructing for each node
the measure µ(ti) of the activity of the seismic pro-
cess in its vicinity for the period of time ti . For this
purpose, the earthquake catalog is preliminarily divided
into time intervals ti . For each ti , a DPS clustering of
the earthquake catalog with discretely varying values
of parameter β is carried out and a measure µ(ti) cor-
responding to the maximum parameter β∗ ∈ [−1, 1] is
assigned to each grid node, at which the node is close
to the distinguished DPS(β∗, q)-clusters of earthquake
epicenters. If the node is not close to any of the sub-
sets selected by the DPS algorithm, then its measure
of activity is −1.

Since the seismic process in a certain spatial neigh-
borhood is irregular in time, and the change in the level



of its activity, often indicating an increase or decrease
in potential seismic risk, occurs over a certain time in-
terval, when assessing seismic activity at time ti , it is
necessary to take into account its time memory. For
this, at each instant of time ti , the value of measure µ
is recalculated with respect to the memory in the time
interval [ti−∆, ti−1] in the form of power averaging with
weighting coefficients:

µ∆(ti) =


∆∑

k=1

akµ(ti−k)p

∆∑
k=1

ak


1/p

∈ [0, 1],

ak =
1

k
, k = 1, ... , ∆

The measure µ∆ varies on the interval [0, 1]. It
should be noted that the calculation of the measure
µ∆ over a period of time ti is performed without the
involvement of µ(ti), and the values of measure µ for
∆ of the preceding time periods are used. Thus, we
get that the value of µ∆(ti) is a kind of forecast for a
period of time ti . In the future, under the monitoring
of seismic activity, we mean the analysis and study of



the behavior of a set of time series of the measure µ∆

at the grid nodes.

The Results of Applying the SARD

Method

California

Testing of the SARD method was carried out for the
territory of California and the adjoining states of the
USA within 30–44◦ N, 113–126◦ W. The ANSS cat-
alog (Advanced National Seismic System) for the pe-
riod 1962–2015 was used. Earthquake epicenters with
magnitude M ≥ 2.9 were chosen, because their repre-
sentativeness in the catalog during the considered pe-
riod was sufficient. We used the following values for
the input parameters: q = −2.0, time period ti − 1
month, latitude-longitude grid spacing – 0.5◦, spacing
by β − 0.05, ∆− 12 months, p = 2.

The analysis of the results of seismic activity moni-
toring obtained with the help of the developed method
was carried out for the period 1980–2015. Since 1980,
the catalog is fairly complete for the entire studied area.

As an example, Figure 1 shows the spatial distribu-
tion of the measure µ∆ on April 1, 2010. It is easy



Figure 1. Value of the measure µ∆ on April 1,
2010. The M = 7.24 earthquake epicenter on April
4, 2010 is shown with white asterisks.



to see two zones with large values of µ∆. This is the
zone in the south of central California near the border
with the state of Nevada and the zone on the border
with Mexico. Inside the second zone falls the epicenter
of the M = 7.2 earthquake on April 4, 2010, located
in the north of Mexico. Slightly smaller values of µ∆

are fixed in two zones: the coast of central California
and the ocean near the coast in northern California. In
April 2010, earthquakes with M = 4.0 − 4.5 occurred
in these zones.

Within the considered period 258 seismic events with
M ≥ 5 occurred in the studied area including the af-
tershocks and 146 main shocks. A significant part of
them occurred with the activity measure µ∆ exceeding
the level of 0.45.

We evaluated the effectiveness of the method us-
ing an error diagram [Molchan, 1991; Shebalin, 2006].
The considered space and time are divided into cells of
1 month×0.5◦. If we introduce the threshold µ0 for the
measure µ∆, then exceeding this threshold can be con-
sidered as a prediction of an earthquake with M ≥ 5 in
a given spatial cell during the subsequent time interval.
We specified earthquakes with M ≥ 5 with epicen-
ters outside the cells with prediction as missed targets.
Their proportion is shown in the error diagram along



the ordinate axis (Figure 2). The abscissa shows the
probability of an accidental earthquake M ≥ 5 in a cell
with a prediction in accordance with a given model of
seismicity [Shebalin et al., 2014]. As a rule, the simplest
model of seismicity is used, in which the probability of
an earthquake is proportional to the number of earth-
quakes registered in a given cell, with a magnitude, for
example, M ≥ 4. Therefore, the probability of acciden-
tal entry is often interpreted as the proportion of space-
time of alarms weighted by seismicity [Kossobokov and
Shebalin, 2003]. The greater the deviation of the error
diagram from the diagonal (the diagonal corresponds
to random guessing), the more effective the algorithm
is [Shebalin, 2006]. It can be seen from the diagram
that the effectiveness of the developed method of mon-
itoring the level of the seismic regime is considerably
high. The results obtained are significantly different
from random guessing.

Kamchatka

The SARD approach has been implemented for
the seismically active region of the Kamchatka
Peninsula. The catalog of earthquakes of Kam-
chatka and the Commander Islands (Kamchatka



Figure 2. Error diagram for California. Thick dark
line shows the relationship between the percentage of
missed targets and the percentage of declared alarms
for all earthquakes with M ≥ 5 in the studied area,
thin light line shows only major shocks with M ≥ 5.



branch of the Geophysical Service of Russian
Academy of Sciences. Earthquake catalog of the
Kamchatka Peninsula and the Commander Islands,
http://www.emsd.ru/sdis/earthquake/catalogue/ cat-
alogue.php) for the period 1962–2015 was used with
a depth of hypocenters not exceeding 70 km [Fedotov
and Solomatin, 2015; Levina et al., 2013]. The cat-
alog contains earthquakes with ML ≥ 3.5, where ML

is the Kamchatka regional magnitude [Abubakirov et
al., 2018]. We used the following values for the in-
put parameters: q = −2.5, time period ti – 1 month,
latitude-longitude grid spacing – 0.5◦, spacing by β –
0.05, ∆ – 12 months, p = 2.

The analysis of the results of the monitoring of the
level of seismic activity in Kamchatka, obtained with
the SARD method, was carried out according to earth-
quake data since 1980, due to the fact that from that
time the catalog is sufficiently complete for the entire
studied area.

For the period 1980–2015 in Kamchatka, ac-
cording to the catalog (Kamchatka branch of
the Geophysical Service of Russian Academy
of Sciences. Earthquake catalog of the Kam-
chatka Peninsula and the Commander Islands.
(http://www.emsd.ru/sdis/earthquake/catalogue/

http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php
http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php
http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php


catalogue.php), there were 6 earthquakes with
ML ≥ 6.5 without excluding the aftershocks. Five of
them occurred when measure µ∆ exceeded the level of
0.45, three of them occurred with µ∆ > 0.55.

Figure 3 provides an example of the spatial distri-
bution of the values of measure µ∆ on March 1, 1992
(Figure 3a) and December 1, 1997 (Figure 3b), white
asterisks show epicenters of earthquakes with ML ≥
6.5, that occurred on March 2, 1992 and on December
5, 1997, respectively.

Figure 3 shows the zones with high values of the
measure of seismic activity µ∆ along the coast of cen-
tral Kamchatka. It can be seen in Figure 3a that the
epicenter of the earthquake that occurred on March 2,
1992 with ML = 6.6 (MGCMT

w = 6.8), is located in
the northeast of Avacha Bay in the zone for which the
values µ∆ > 0.64 were the maximum for the entire re-
gion in the figure at the beginning of the corresponding
month. The epicenter of the earthquake on December
5, 1997 with ML = 7.0 (MGCMT

w = 7.8) is located in
the southeast of the Kamchatka Gulf in the zone with
values µ∆ > 0.56 and is shown in Figure 3b with white
asterisk.

We evaluated the effectiveness of the developed
method using error diagram [Shebalin et al., 2014] (Fig-

http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php
http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php
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ure 4). For this purpose, the considered time and space
were divided into cells. The earthquake forecast with
ML ≥ 6.5 was estimated as exceeding a certain thresh-
old by measure µ∆. Errors such as “missed targets”
were the earthquakes with ML ≥ 6.5, falling beyond
the cells with accurate prediction. In the error dia-
gram (Figure 4), the abscissa shows the probability of
an accidental earthquake with ML ≥ 6.5 in the cell
with a prediction, the ordinate shows the fraction of
errors such as “missed targets”, the diagonal corre-
sponds to random guessing [Dzeboev, 2017; Shebalin
et al., 2011]. To estimate an accidental entry of a
strong earthquake in a cell with a prediction, the sim-
plest model of seismicity was used in which the proba-
bility of an earthquake is proportional to the number of
earthquakes with ML ≥ 5.5 recorded in a given spatial
cell [Kossobokov and Shebalin, 2003; Shebalin et al.,
2014]. The greater the deviation of the error diagram
from the diagonal, the more effective the algorithm is
[Shebalin et al., 2011]. Figure 4 shows that the pro-
posed method is effective. The presented results differ
from random guessing.



Figure 4. Error diagram for Kamchatka. Thick
dark line shows the relationship between the pro-
portion of missed targets and the proportion of
declared alarms for all earthquakes with ML ≥ 6.5
in the studied area, thin light line shows only major
shocks with ML ≥ 6.5.



The Caucasus

We use the SARD method for the territory of the Cau-
casus within 40–44◦N and 41–51◦E. The catalog of
earthquakes was compiled using the catalogs “Earth-
quakes in the USSR” (1962–1991) [Nauka, 1997] and
“Earthquakes of Northern Eurasia” (1992–2008) [GS
RAN, 2013] with depths of hypocenters not exceeding
70 km. To monitor the level of activity of the seismic
process, we chose the epicenters of earthquakes with
M ≥ 3.0. It is worth noting that in connection with
the absence of a homogeneous catalog of magnitudes
for the considered region. The known correlation rela-
tionships between magnitudes were applied [Bormann,
2012; Rautian et al., 2007]. We used the following val-
ues for the input parameters: q = −3.0, time period
ti – 1 month, latitude-longitude grid spacing – 0.5◦,
spacing by β – 0.05, ∆ – 12 months, p = 2.

Analysis of the results of the monitoring of the level
of seismic activity in the Caucasus obtained with the
help of the SARD method has been carried out based
on earthquake data since 1990. From that time the
catalog is sufficiently complete for the entire studied
area.

In 1990–2008, in the Caucasus, according to the



compiled catalog, more than 100 earthquakes with M ≥
5.0 occurred excluding the aftershocks. Most of them
occurred at the measure µ∆ exceeding the level of 0.5.

Figure 5 provides an example of the spatial distribu-
tion of the values of measure µ∆ on December 1, 1994
(Figure 3a) and September 1, 1999 (Figure 3b), white
asterisks show epicenters of earthquakes with M > 5.0,
that occurred on December 12, 1994 and September
19, 1999, respectively.

In Figure 5a the earthquake epicenter with M = 5.1
was located in the area, for which the values of µ∆ >
0.55 were the maximum for the entire region in the
figure at the beginning of the corresponding month.
The epicenter of the earthquake in Figure 5b with M =
5.4 is shown with white asterisk, located within the area
with the values of µ∆ > 0.65.

To evaluate the effectiveness of the SARD method
we constructed an error diagram [Shebalin et al., 2011]
(Figure 6). The earthquake forecast with M ≥ 5.0 was
estimated as exceeding a certain threshold by measure
µ∆. Errors such as “missed targets” were the earth-
quakes with M ≥ 5.0, falling beyond the cells with
accurate prediction. To estimate an accidental entry
of a strong earthquake in a cell with a prediction, the
epicenters of the earthquakes with M ≥ 4.0 were used.
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Figure 6. Error diagram for the Caucasus.
Thick dark line shows the relationship between the
proportion of missed targets and the proportion of
declared alarms for all earthquakes with M ≥ 5.0
in the studied area, thin light line shows only major
shocks with M ≥ 5.0.



Figure 6 shows that the proposed method is effective.
The presented results differ from random guessing.

It is worth noting that the results of applying the
SARD method for the territory of the Caucasus are
less representative than for Kamchatka and even more
so for California [Dzeboev, 2017]. One of the possible
reasons may be the known heterogeneity of the catalog.

Conclusions

• A new mathematical method SARD is proposed
for monitoring the level of the seismic regime for
estimating the probability of a strong earthquake.

• The possibility of using SARD for the territory of
California, the Kamchatka Peninsula and the Cau-
casus is shown.

• To evaluate the effectiveness of SARD we con-
structed an error diagram which showed that the
proposed method was effective. The obtained re-
sults differ from random guessing.
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