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Abstract. The 3D thermal convection in the
Boussinesq approximation with heating from
below and dynamo in the cube are considered.
We study dependence of the convection
intensity and magnetic field generation on the
latitude in β-plane approximation. It is shown
that kinetic energy gradually increases from the
poles to the equator more than order of
magnitude. The model predicts the strong
azimuthal thermal wind, which direction
depends on the sign of the thermal convective
fluctuations. The spatial scale of the arising
flow is comparable to the scale of the physical
domain. The magnetic energy increases as well,
however dynamo efficiency, i.e., the ratio of the
magnetic energy to the kinetic one decreases to
the equator. This effect can explain
predominance of the dipole configuration of the
magnetic field observed in the planets and stars.
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The approach is useful for modeling of the mag-
netohydrodynamic turbulence in planetary cores
and stellar convective zones.

1. Introduction

3D modeling of convection and dynamo processes in
the planetary cores and convective zones of the stars is
a modern branch of the magnetohydrodynamic (MHD)
simulations [Rüdiger at al., 2013]. There are two ap-
proaches which are usually used. For the large-scale
fields modeling the MHD equations are solved in the
spherical geometry, see, e.g., [Jones, 2000]. Inclusion
of the realistic boundary conditions and distributions
of the energy sources in the model let to simulate the
various observable features of the magnetic fields, like
the spatial and temporal spectra of the magnetic fields,
the butterfly diagrams in the case of the solar dynamo,
reversals of the geomagnetic field.

However similarity of observations and simulations
sometimes can be misleading because the parameters
used in 3D models are still quite far from the desired
ones. Briefly, the main problem is a turbulence which
simulation requires resolution of the small scales. The
other difficulty is the anisotropy of the flow, concerned



with the rapid daily rotation, as in the case of the plane-
tary cores. The spherical models which have dense dis-
tribution of the mesh grid points near the poles, require
the small time step (because of the Courant condition),
and therefore do not suit to the turbulence modeling.
Meanwhile, simulations in the Cartesian geometry with
the homogeneous grids could be very helpful. These
simulations reproduce the cascade processes between
the scales, are helpful for estimates of the turbulent
coefficients, and demonstrate various remarkable prop-
erties of the MHD turbulence [Brandenburg and Sub-
ramanian, 2005].

In spite of the fact that these two approaches were
used for years, the flat layer dynamo simulations did
not take into account the latitude dependence to the
moment. In other words the angle between the an-
gular rotation axis Ω and gravity g was set to zero
[Jones and Roberts, 2000], [Buffett, 2003], [Cattaneo
et al., 2003]. This choice of parameters corresponds
to the geographic poles. Having in mind that the most
common configuration of the magnetic field in plan-
ets and stars is the dipole, and 3D spherical dynamo
models predict existence of the toroidal counterpart,
concentrated at the mean latitudes, it looks tempt-
ing to include the latitude dependence in the flat layer



models immediately. The lack of the papers, devoted
to this problem in the geodynamo and stellar applica-
tions, looks quite surprising because in the meteorology
the latitude dependence, known as the β-plane approx-
imation, was already used in the Cartesian models for
a long time [Pedlosky, 2012].

The other motivation of this paper is to distinguish
the physical effects related to the angle between Ω and
g definitely, leaving apart influence of the inner core and
spherical boundaries, which can change hydrodynam-
ics1, and the magnetic field generation substantially.

Below we consider the standard 3D MHD model in
the rapidly rotating cube. The model includes the ther-
mal convection equations in the Boussinesq approxima-
tion with the heating from below. The liquid is con-
ductive and at the large magnetic Reynolds numbers
the fluid motions can generate the magnetic field. To
solve these equations we use MPI C++ code, based on
the predictor-corrector method [Canuto et al., 1988].
We check how these processes depend on the angle be-
tween Ω and g. Some analytical predictions, based on
the analogy with the motion of the charged particle in
the electromagnetic field are considered as well.

1The sign of the boundaries curvature defines the direction of
the Rossby waves propagation [Busse, 2002].



2. Dynamo in the Cube and Numerical

Methods

The dimensionless dynamo equations for an incompress-
ible fluid (∇·V = 0) in the cube of the height L = 2π,
rotating with the angular velocity Ω, in the Cartesian
system of coordinates (x , y , z) have the form:

∂A

∂t
= V × B + q−1∆A, B = rot A

E Pr−1

[
∂V

∂t
+ (V · ∇) V

]
=

rot B× B−∇P − 1Ω × V + Ra T 1z + E ∆V

∂T

∂t
+ (V · ∇) (T + T0) = ∆T .

(1)

Velocity V, magnetic field B (derived from the vector
potential A), pressure P and the typical diffusion time t
are measured in units of κ/L,√

2Ωκµρ;, ρκ2/L2 and L2/κ respectively, where κ is
the thermal diffusivity, ρ is the density, µ the perme-

ability, Pr =
κ

ν
is the Prandtl number, E =

ν

2ΩL2
is the



Ekman number, ν is the kinematic viscosity, η is the
magnetic diffusivity, and q = κ/η is the Roberts num-

ber. Ra =
αgδT L

2Ωκ
is the modified Rayleigh number,

α is the coefficient of the volume expansion, δT is the
unit of the temperature fluctuations T , g is the gravita-
tional acceleration, and T0 = 2π−z is the temperature
profile, corresponding to the heating from below.

The unit vector 1Ω defines direction of the angular
velocity Ω. The angle between Ω and gravity g, di-
rected along the z-axis, is equal to the colatitude θ,
which is related to the latitude as ϑ = 90◦ − θ.

The problem is closed with the periodical boundary
conditions in the (x , y)-plane. In z-direction the fol-
lowing simplified boundary conditions

T = Vz = Az =
∂Vx

∂z
=
∂Vy

∂z
=
∂Ax

∂z
=
∂Ay

∂z
= 0

at z = 0, 2π are used. Conditions for A are the so-
called pseudo-vacuum boundary conditions, correspond
to the following conditions for the magnetic field: Bx =

By =
∂Bz

∂z
= 0. Then the normal component to the

boundary of the electric current J = ∇× B is zero.
The system (1) was solved using the finite differences

of the second-order in space and time. For approxima-
tion of the time derivative the three-layer time scheme



was used:

∂f

∂t
=

3f n+1 − 4f n + f n−1

2 δt
,

where n denotes the time step δt.
For T and A the corresponding equations from (1)

were written in the form:

3f n+1 − 4f n + f n−1

2 δt
= 2 F n − F n−1 +

1

2
∇2f n+1,

(2)
where

F n = C n +
1

2
∇2f n, (3)

and C denotes the corresponding convective term.
Eqs(2),(3) with respect to f n+1 were solved using the
Gauss-Seidel method.

While using the vector potential A provides diver-
gence free of the magnetic field B, incompressibility of
the velocity field V should be provided by some special
technique. Here we use the
predictor-corrector method [Canuto et al., 1988], [Ban-
daru et al., 2016], introducing the intermediate veloc-



ity field V∗ by equation:

3 V∗ − 4 Vn + Vn−1

2 δt
= 2 Fn − Fn−1 +

1

2
∇2V∗,

(4)
where

Fn = −E Pr−1 (Vn · ∇) Vn + rot Bn × Bn−
1Ω × Vn + Ra T n 1z +

1

2
E ∆Vn.

(5)

Eqs(4),(5) lead to a Poisson-type equation for V∗.
Then pressure Pn+1 was derived from the continuity

equation by solving the another Poisson problem:

∇2Pn+1 =
3

2 δt
∇ · V∗

with the Neumann boundary condition for z-coordinate:

∂Pn+1

∂z
=

3

2 δt
V ∗z .

The last step provides incompressibility of the velocity
field:

Vn+1 = V∗ − 2δt

3
∇Pn+1.

The second order up-wind scheme was used for ap-
proximations of the convective terms in the heat and



the Navier-Stokes equations:

Vi
∂

∂x
Ti =

{
(3Ti − 4Ti−1 + Ti−2)Vi/(2δx), V ≥ 0

(−Ti+2 + 4Ti+1 − 3Ti)Vi/(2δx), V < 0,

(6)
where i denotes the index of the grid step δx . The
scheme (6) was used for y -,z-directions in the same
way.

This approach was realised in C++ code with MPI.
The whole domain was divided into (N × N), subdo-
mains in (x , y) coordinates, where the MHD equations
(1) were solved. The subdomains exchanged by its
boundaries at the each time step n. In this paper the
mesh grid (295× 295× 125) in (x , y , z) coordinates,
and N = 6 were used. The simulations were done at
two linux workstations Intel(R) Xeon(R) CPU E5-2640
with 40 cores and 128Hb common memory at the sta-
tion. Each run required 2-4 days, depending on the
time step δt, which was in the range (2÷ 5) 10−7.

3. Pure Convection

Before to consider the full dynamo the pure turbulent
convective regime with E = 4 10−5, Ra = 9 103, Pr = 1
was studied. Ten runs with step 10◦ in the latitude ϑ



were performed. After some intermediate stage solu-
tions reached the quasi-stationary states. To measure
the intensity of convection we estimated the mean over
the volume kinetic energy, see Figure 1, defined as

Ek =
1

2V

∫
V

V2 d r3, V = 8π3.

The considered regimes correspond to the developed
turbulence with the Reynolds number
Re = 2π

√
2 Ek/3� 1. All the energies increase from

the poles to the equator. Only E x
k at the equator has

sharp minimum. This behaviour is expectable because
at the equator, ϑ = 0, x-components of the Corio-
lis and Archimedean forces are zero, and the non-zero
value of Vx is provided by the non-linear term in the
Navier-Stokes equation only. The ratio of the maxi-
mum and minimum of Ek is 22. This effect is quite
strong and should be explained in some way.

Moreover, analysis of the spatial structure of the
flows, see Figure 2, reveals that the small-scale cy-
clonic convection, existed at the poles, changed to the
large-scale convection at the equator. Note, that the
Reynolds number in the latter case is larger, and the
flow is “more” turbulent, but in the same time it is
large-scale. It should be noted that Vy -component



Figure 1. The latitude dependence of the kinetic ener-
gies. E x

k , E y
k , E z

k denote the kinetic energies of Vx -, Vy -,
and Vz -components of the velocity, respectively. The total
kinetic energy Ek = E x

k + E y
k + E z

k .

at the equator is perpendicular to Ω and it should be
twisted at the small scale in the similar way, as it was
at the poles.

To find the origin of the large-scale convection the
analogy with the motion of the charged particle in the
constant electromagnetic field, considered in the next
section, is instructive.
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4. Analogy with the Charged Particle

Moving in the Electromagnetic Field

Similarly to the motion of the charged particle in the
constant in time and homogeneous in space electro-
magnetic field, see [Arzimovich and Lukianov, 1972],
we consider two limiting cases, where Archimedean force
and angular rotation velocity of the system are directed
along the same axis, and the other, where these forces
are perpendicular.

In the first, the most studied case, which corre-
sponds to the geographic poles, the flow is acceler-
ated by the Archimedean force ∼ Ra T . Due to the
Coriolice force any motion in the orthogonal plane to
the gravity and Ω is twisted with radius r , defined by
relation Ro V 2

⊥/r ∼ V⊥, i.e. r ∼ Ro V⊥, where V⊥
is the velocity orthogonal to Ω. The Rossby number
Ro = Pr−1 E for the Earth’s core ∼ 10−15. Even with
V⊥ ∼ Re = 109, estimated from the large-scale veloc-
ity, based on the west drift of the geomagnetic field, one
has r ∼ 10−6 in units of the liquid core’s scale. Taking
into account decrease of the kinetic energy spectrum
will only decrease estimate of r . This estimate is valid
for the large velocities with negligible viscous dissipa-
tion.



The linear analysis at the threshold of convection
generation, where viscous diffusion is important, also
predicts existence of the small scale in the perpendic-
ular plane: r ∼ E1/3 = 10−5 [Roberts, 1968], [Busse,
1970].

The both estimates demonstrate that the small-scale
convection at the poles is a quite natural phenomenon,
and it appears in the rapidly rotating objects with Ro =

E ·Pr� 1 even at the critical Rayleigh numbers.
For the other case, which corresponds to the equa-

tor plane, let Archimedean force is still directed along
the z-axis and Ω along x , and the initial velocity is at
the (y , z)-plane. Then the trajectory of the particle
remains in the same plane, and its motion is described
by equations:

Ro ÿ = ż
Ro z̈ = −ẏ + Ra T ,

(7)

where dot is for the time derivative.
Eqs (7), written in the reference system moving with

the velocity v along the y -axis, after substitution y1 =
y − vt, have the form:

Ro ÿ1 = −ż
Ro z̈ = ẏ1 + v + Ra T .

(8)

Choosing v = −Ra T , one has circular motion in (y1, z)-



plane with frequency ∼ Ro−1. The trajectory in the
original (y , z)-plane is a trochoid, i.e. the superposi-
tion of the circular motion and the drift with velocity
v . In terms of the spherical geometry y corresponds
to the azimuthal direction. Addition of the initial ve-
locity in x-direction, which remains constant because
of absence of forces in this direction, does not change
situation.

In (8) T is a fluctuation of the temperature relative
to the non-convective distribution, and it can change
the sign. By analogy with the motion of the charge
in the magnetic field one has thermal separator, which
divides the hot (T > 0, v < 0) and cold (T < 0,
v > 0) flows.

Note that estimates of the radius of rotation in planes
perpendicular to the axis of rotation coincide in the
both cases. The difference is existence of a thermal
wind with a velocity v in the azimuthal direction in
the latter case. It is this wind has large spatial scale,
already detected in Figure 2 at the equator. Due to
the continuity equation the other components of the
velocity can also posses the large-scale counterpart, as
we observe it in Vz -flow.



5. Dynamo

Starting from the pure convection velocity and temper-
ature distributions, obtained in Section 3, and the small
magnetic field initial seed, the full dynamo system (1)
were integrated in time up to the state where all the
physical fields stabilised at the quasi-stationary regime.
The corresponding estimates of the magnetic energy,
defined as

Em =
1

2 RoV

∫
V

B2 d r3,

are ploted versus lattitude ϑ in Figure 3.
The behaviour of the magnetic energy is similar to

the kinetic energy up to some details near the equator
plane. The largest increase of the magnetic energy
with the latitude demonstrates By -component, which
is stretched by the strong large-scale thermal wind Vy .
In contrast to the total kinetic energy, Ek , the magnetic
energy Em slightly decreases at the equator. In some
sense it resembles behaviour of the magnetic field in
the spherical models with the odd configurations of the
magnetic field with respect to the equator, e.g., dipole.
Increase of the magnetic energy Em relative to the poles
can reach factor 4.



Figure 3. The latitude dependence of the magnetic
energies.

One can expect that the large-scale flow, based on
the thermal wind, and the small-scale cyclonic convec-
tion have different efficiencies of the magnetic field gen-

eration. To test this hypothesis the ratio ξ =
Em

Ek
was

plotted as a function of ϑ in Figure 4. It appears that in
the range of 50◦ < ϑ < 90◦ ξ is approximately constant
and then decreases to the equator in one order of the
magnitude. We conclude that the large-scale flow with
the small gradients is less effective than the cyclonic



Figure 4. The latitude dependence of the magnetic field
generation efficiency ξ.

convection with the non-zero net helicity [Reshetnyak,
2017].

6. Conclusions

Our simulations clearly demonstrate that the angle be-
tween the axis of rotation and gravity changes not
only the magnitude of the mean parameters in the flat
model, like energies, but the structure of the flow, its



spectra, as well. These effects are already notable at
the mean latitudes, where the magnetic energy maxi-
mum is localised in the spherical models, and should
be taken into account in future. Of course, due to va-
riety of the physical effects, application of these results
to the spherical shells, should be done carefully. Thus
existence of the well-known in geodynamo since [Glatz-
maier and Roberts, 1995], see also [Reshetnyak and
Pavlov, 2016], the large-scaled vortexes in the Taylor
cylinder at the large Rayleigh numbers, introduce the
new complexity in the model.

The other issue is improvement of the numerical
methods for the MHD turbulence modling. The finite
difference methods are the most promising approach
for the multi-core simulations. The modern higher or-
der approximations of MHD differential equations are
already comparable by accuracy to the spectral meth-
ods [Brandenburg and Subramanian, 2005], which for
years were the best choice for such problems. The main
advantage of the finite differences is their scalability
at the supercomputers. We hope that this paper can
be useful for the further development of the realistic
MHD turbulence models with rotation. In spite of the
incompressible form of convection’s equations, consid-
ered above, the substitute of variables V → ρV can



be used for transition to the anelastic approximation,
suitable to the dynamo in the compressible medium.
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