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Latitude dependence of convection and magnetic field generation
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The 3D thermal convection in the Boussinesq approximation with heating
from below and dynamo in the cube are considered. We study dependence
of the convection intensity and magnetic field generation on the latitude in
𝛽-plane approximation. It is shown that kinetic energy gradually increases
from the poles to the equator more than order of magnitude. The model
predicts the strong azimuthal thermal wind, which direction depends
on the sign of the thermal convective fluctuations. The spatial scale of
the arising flow is comparable to the scale of the physical domain. The
magnetic energy increases as well, however dynamo efficiency, i.e., the
ratio of the magnetic energy to the kinetic one decreases to the equator.
This effect can explain predominance of the dipole configuration of the
magnetic field observed in the planets and stars. The approach is useful for
modeling of the magnetohydrodynamic turbulence in planetary cores and
stellar convective zones. KEYWORDS: Thermal convection; magnetic fields;
planetary and stellar dynamo.
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1. Introduction

3D modeling of convection and dynamo pro-
cesses in the planetary cores and convective zones
of the stars is a modern branch of the magnetohy-
drodynamic (MHD) simulations [Rüdiger at al.,
2013]. There are two approaches which are usu-
ally used. For the large-scale fields modeling the
MHD equations are solved in the spherical geom-
etry, see, e.g., [Jones, 2000]. Inclusion of the realis-
tic boundary conditions and distributions of the
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energy sources in the model let to simulate the
various observable features of the magnetic fields,
like the spatial and temporal spectra of the mag-
netic fields, the butterfly diagrams in the case of
the solar dynamo, reversals of the geomagnetic
field.

However similarity of observations and simu-
lations sometimes can be misleading because the
parameters used in 3D models are still quite far
from the desired ones. Briefly, the main problem
is a turbulence which simulation requires resolu-
tion of the small scales. The other difficulty is the
anisotropy of the flow, concerned with the rapid
daily rotation, as in the case of the planetary cores.
The spherical models which have dense distribu-
tion of the mesh grid points near the poles, re-
quire the small time step (because of the Courant
condition), and therefore do not suit to the tur-
bulence modeling. Meanwhile, simulations in the
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Cartesian geometry with the homogeneous grids
could be very helpful. These simulations repro-
duce the cascade processes between the scales, are
helpful for estimates of the turbulent coefficients,
and demonstrate various remarkable properties
of the MHD turbulence [Brandenburg and Subra-
manian, 2005].

In spite of the fact that these two approaches
were used for years, the flat layer dynamo simula-
tions did not take into account the latitude depen-
dence to the moment. In other words the angle
between the angular rotation axis Ω and gravity
g was set to zero [Jones and Roberts, 2000], [Buf-
fett, 2003], [Cattaneo et al., 2003]. This choice of
parameters corresponds to the geographic poles.
Having in mind that the most common configu-
ration of the magnetic field in planets and stars is
the dipole, and 3D spherical dynamo models pre-
dict existence of the toroidal counterpart, concen-
trated at the mean latitudes, it looks tempting to
include the latitude dependence in the flat layer
models immediately. The lack of the papers, de-
voted to this problem in the geodynamo and stel-
lar applications, looks quite surprising because in
the meteorology the latitude dependence, known
as the 𝛽-plane approximation, was already used
in the Cartesian models for a long time [Pedlosky,
2012].

The other motivation of this paper is to dis-
tinguish the physical effects related to the angle
between Ω and g definitely, leaving apart influ-
ence of the inner core and spherical boundaries,
which can change hydrodynamics2, and the mag-
netic field generation substantially.

Below we consider the standard 3D MHD model
in the rapidly rotating cube. The model includes
the thermal convection equations in the Boussi-
nesq approximation with the heating from below.
The liquid is conductive and at the large magnetic
Reynolds numbers the fluid motions can gener-
ate the magnetic field. To solve these equations
we use MPI C++ code, based on the predictor-
corrector method [Canuto et al., 1988]. We check
how these processes depend on the angle between
Ω and g. Some analytical predictions, based on
the analogy with the motion of the charged parti-
cle in the electromagnetic field are considered as
well.

2The sign of the boundaries curvature defines the
direction of the Rossby waves propagation [Busse,
2002].

2. Dynamo in the Cube and Numerical
Methods

The dimensionless dynamo equations for an in-
compressible fluid (∇ · V = 0) in the cube of the
height L = 2𝜋, rotating with the angular velocity
Ω, in the Cartesian system of coordinates (𝑥, 𝑦, 𝑧)
have the form:

𝜕A

𝜕𝑡
= V ×B+ q−1ΔA, B = rotA

EPr−1

[︂
𝜕V

𝜕𝑡
+ (V · ∇)V

]︂
=

rotB×B−∇𝑃 − 1Ω ×V +Ra𝑇 1z + EΔV

𝜕𝑇

𝜕𝑡
+ (V · ∇) (𝑇 + 𝑇0) = Δ𝑇.

(1)
Velocity V, magnetic field B (derived from the

vector potential A), pressure 𝑃 and the typical dif-
fusion time 𝑡 are measured in units of 𝜅/L,√︀

2Ω𝜅𝜇𝜌;, 𝜌𝜅2/L2 and L2/𝜅 respectively, where
𝜅 is the thermal diffusivity, 𝜌 is the density, 𝜇

the permeability, Pr =
𝜅

𝜈
is the Prandtl number,

E =
𝜈

2ΩL2
is the Ekman number, 𝜈 is the kine-

matic viscosity, 𝜂 is the magnetic diffusivity, and

q = 𝜅/𝜂 is the Roberts number. Ra =
𝛼𝑔𝛿𝑇L

2Ω𝜅
is the modified Rayleigh number, 𝛼 is the coeffi-
cient of the volume expansion, 𝛿𝑇 is the unit of the
temperature fluctuations 𝑇 , 𝑔 is the gravitational
acceleration, and 𝑇0 = 2𝜋 − 𝑧 is the temperature
profile, corresponding to the heating from below.

The unit vector 1Ω defines direction of the an-
gular velocity Ω. The angle between Ω and grav-
ity g, directed along the 𝑧-axis, is equal to the
colatitude 𝜃, which is related to the latitude as
𝜗 = 90∘ − 𝜃.

The problem is closed with the periodical bound-
ary conditions in the (𝑥, 𝑦)-plane. In 𝑧-direction
the following simplified boundary conditions

𝑇 = 𝑉𝑧 = 𝐴𝑧 =
𝜕𝑉𝑥

𝜕𝑧
=

𝜕𝑉𝑦

𝜕𝑧
=

𝜕𝐴𝑥

𝜕𝑧
=

𝜕𝐴𝑦

𝜕𝑧
= 0

at 𝑧 = 0, 2𝜋 are used. Conditions for A are the so-
called pseudo-vacuum boundary conditions, cor-
respond to the following conditions for the mag-
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netic field: 𝐵𝑥 = 𝐵𝑦 =
𝜕𝐵𝑧

𝜕𝑧
= 0. Then the normal

component to the boundary of the electric current
J = ∇×B is zero.

The system (1) was solved using the finite dif-
ferences of the second-order in space and time.
For approximation of the time derivative the three-
layer time scheme was used:

𝜕𝑓

𝜕𝑡
=

3𝑓𝑛+1 − 4𝑓𝑛 + 𝑓𝑛−1

2 𝛿𝑡
,

where 𝑛 denotes the time step 𝛿𝑡.
For 𝑇 and A the corresponding equations from

(1) were written in the form:

3𝑓𝑛+1 − 4𝑓𝑛 + 𝑓𝑛−1

2 𝛿𝑡
= 2𝐹𝑛 − 𝐹𝑛−1 +

1

2
∇2𝑓𝑛+1,

(2)
where

𝐹𝑛 = 𝐶𝑛 +
1

2
∇2𝑓𝑛, (3)

and 𝐶 denotes the corresponding convective term.
Eqs(2),(3) with respect to 𝑓𝑛+1 were solved using
the Gauss-Seidel method.

While using the vector potential A provides di-
vergence free of the magnetic field B, incompress-
ibility of the velocity field V should be provided
by some special technique. Here we use the
predictor-corrector method [Canuto et al., 1988],
[Bandaru et al., 2016], introducing the intermedi-
ate velocity field V* by equation:

3V* − 4V𝑛 +V𝑛−1

2 𝛿𝑡
= 2F𝑛 − F𝑛−1 +

1

2
∇2V*,

(4)
where

F𝑛 = −EPr−1 (V𝑛 · ∇)V𝑛 + rotB𝑛 ×B𝑛−
1Ω ×V𝑛 +Ra𝑇𝑛 1z +

1

2
EΔV𝑛.

(5)
Eqs(4),(5) lead to a Poisson-type equation for V*.

Then pressure 𝑃𝑛+1 was derived from the con-
tinuity equation by solving the another Poisson
problem:

∇2𝑃𝑛+1 =
3

2 𝛿𝑡
∇ ·V*

with the Neumann boundary condition for 𝑧-coor-
dinate:

𝜕𝑃𝑛+1

𝜕𝑧
=

3

2 𝛿𝑡
𝑉 *
𝑧 .

The last step provides incompressibility of the ve-
locity field:

V𝑛+1 = V* − 2𝛿𝑡

3
∇𝑃𝑛+1.

The second order up-wind scheme was used
for approximations of the convective terms in the
heat and the Navier-Stokes equations:

𝑉𝑖
𝜕

𝜕𝑥
𝑇𝑖 =

{︃
(3𝑇𝑖 − 4𝑇𝑖−1 + 𝑇𝑖−2)𝑉𝑖/(2𝛿𝑥), 𝑉 ≥ 0

(−𝑇𝑖+2 + 4𝑇𝑖+1 − 3𝑇𝑖)𝑉𝑖/(2𝛿𝑥), 𝑉 < 0,

(6)
where 𝑖 denotes the index of the grid step 𝛿𝑥.
The scheme (6) was used for 𝑦-,𝑧-directions in the
same way.

This approach was realised in C++ code with
MPI. The whole domain was divided into (𝑁 ×
𝑁), subdomains in (𝑥, 𝑦) coordinates, where the
MHD equations (1) were solved. The subdomains
exchanged by its boundaries at the each time step
𝑛. In this paper the mesh grid (295× 295× 125) in
(𝑥, 𝑦, 𝑧) coordinates, and 𝑁 = 6 were used. The
simulations were done at two linux workstations
Intel(R) Xeon(R) CPU E5-2640 with 40 cores and
128Hb common memory at the station. Each run
required 2-4 days, depending on the time step 𝛿𝑡,
which was in the range (2÷ 5) 10−7.

3. Pure Convection

Before to consider the full dynamo the pure tur-
bulent convective regime with E = 410−5, Ra =
9 103, Pr = 1 was studied. Ten runs with step
10∘ in the latitude 𝜗 were performed. After some
intermediate stage solutions reached the quasi-
stationary states. To measure the intensity of con-
vection we estimated the mean over the volume
kinetic energy, see Figure 1, defined as

𝐸𝑘 =
1

2𝒱

∫︁
𝒱

V2 𝑑 r3, 𝒱 = 8𝜋3.

The considered regimes correspond to the de-
veloped turbulence with the Reynolds number
Re = 2𝜋

√︀
2𝐸𝑘/3 ≫ 1. All the energies increase

from the poles to the equator. Only 𝐸𝑥
𝑘 at the equa-

tor has sharp minimum. This behaviour is ex-
pectable because at the equator, 𝜗 = 0, 𝑥-compo-
nents of the Coriolis and Archimedean forces are
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Figure 1. The latitude dependence of the kinetic
energies. 𝐸𝑥

𝑘 , 𝐸𝑦
𝑘 , 𝐸𝑧

𝑘 denote the kinetic ener-
gies of 𝑉𝑥-, 𝑉𝑦-, and 𝑉𝑧-components of the veloc-
ity, respectively. The total kinetic energy 𝐸𝑘 =
𝐸𝑥

𝑘 + 𝐸𝑦
𝑘 + 𝐸𝑧

𝑘 .

zero, and the non-zero value of 𝑉𝑥 is provided by
the non-linear term in the Navier-Stokes equation
only. The ratio of the maximum and minimum of
𝐸𝑘 is 22. This effect is quite strong and should be
explained in some way.

Moreover, analysis of the spatial structure of the
flows, see Figure 2, reveals that the small-scale cy-
clonic convection, existed at the poles, changed to
the large-scale convection at the equator. Note,
that the Reynolds number in the latter case is lar-
ger, and the flow is “more” turbulent, but in the
same time it is large-scale. It should be noted that
𝑉𝑦-component at the equator is perpendicular to
Ω and it should be twisted at the small scale in
the similar way, as it was at the poles.

To find the origin of the large-scale convection
the analogy with the motion of the charged par-
ticle in the constant electromagnetic field, consid-
ered in the next section, is instructive.

4. Analogy with the Charged Particle
Moving in the Electromagnetic Field

Similarly to the motion of the charged parti-
cle in the constant in time and homogeneous in
space electromagnetic field, see [Arzimovich and
Lukianov, 1972], we consider two limiting cases,
where Archimedean force and angular rotation
velocity of the system are directed along the same

axis, and the other, where these forces are perpen-
dicular.

In the first, the most studied case, which cor-
responds to the geographic poles, the flow is ac-
celerated by the Archimedean force ∼ Ra𝑇 . Due
to the Coriolice force any motion in the orthog-
onal plane to the gravity and Ω is twisted with
radius 𝑟, defined by relation Ro𝑉 2

⊥/𝑟 ∼ 𝑉⊥, i.e.
𝑟 ∼ Ro𝑉⊥, where 𝑉⊥ is the velocity orthogonal
to Ω. The Rossby number Ro = Pr−1 E for the
Earth’s core ∼ 10−15. Even with 𝑉⊥ ∼ Re = 109,
estimated from the large-scale velocity, based on
the west drift of the geomagnetic field, one has
𝑟 ∼ 10−6 in units of the liquid core’s scale. Taking
into account decrease of the kinetic energy spec-
trum will only decrease estimate of 𝑟. This esti-
mate is valid for the large velocities with negligi-
ble viscous dissipation.

The linear analysis at the threshold of convec-
tion generation, where viscous diffusion is im-
portant, also predicts existence of the small scale
in the perpendicular plane: 𝑟 ∼ E1/3 = 10−5

[Roberts, 1968], [Busse, 1970].
The both estimates demonstrate that the small-

scale convection at the poles is a quite natural phe-
nomenon, and it appears in the rapidly rotating
objects with Ro = E ·Pr ≪ 1 even at the critical
Rayleigh numbers.

For the other case, which corresponds to the
equator plane, let Archimedean force is still di-
rected along the 𝑧-axis and Ω along 𝑥, and the ini-
tial velocity is at the (𝑦, 𝑧)-plane. Then the trajec-
tory of the particle remains in the same plane, and
its motion is described by equations:

Ro 𝑦 = �̇�
Ro 𝑧 = −�̇� +Ra𝑇,

(7)

where dot is for the time derivative.
Eqs (7), written in the reference system moving

with the velocity 𝑣 along the 𝑦-axis, after substitu-
tion 𝑦1 = 𝑦 − 𝑣𝑡, have the form:

Ro 𝑦1 = −�̇�
Ro 𝑧 = 𝑦1 + 𝑣 +Ra𝑇.

(8)

Choosing 𝑣 = −Ra𝑇 , one has circular motion in
(𝑦1, 𝑧)-plane with frequency ∼ Ro−1. The trajec-
tory in the original (𝑦, 𝑧)-plane is a trochoid, i.e.
the superposition of the circular motion and the
drift with velocity 𝑣. In terms of the spherical
geometry 𝑦 corresponds to the azimuthal direc-
tion. Addition of the initial velocity in 𝑥-direction,
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Figure 2. The 𝑥-sections of 𝑉𝑦-components (upper line) and 𝑧-sections of 𝑉𝑧-
components (bottom) of the velocity field. The left column corresponds to the pole,
and the right one – to the equator.

which remains constant because of absence of for-
ces in this direction, does not change situation.

In (8) 𝑇 is a fluctuation of the temperature rela-
tive to the non-convective distribution, and it can
change the sign. By analogy with the motion of
the charge in the magnetic field one has thermal
separator, which divides the hot (𝑇 > 0, 𝑣 < 0)
and cold (𝑇 < 0, 𝑣 > 0) flows.

Note that estimates of the radius of rotation in
planes perpendicular to the axis of rotation co-
incide in the both cases. The difference is exis-
tence of a thermal wind with a velocity 𝑣 in the az-
imuthal direction in the latter case. It is this wind
has large spatial scale, already detected in Figure 2
at the equator. Due to the continuity equation the
other components of the velocity can also posses
the large-scale counterpart, as we observe it in 𝑉𝑧-
flow.

5. Dynamo

Starting from the pure convection velocity and
temperature distributions, obtained in Section 3,
and the small magnetic field initial seed, the full
dynamo system (1) were integrated in time up to
the state where all the physical fields stabilised at
the quasi-stationary regime. The corresponding
estimates of the magnetic energy, defined as

𝐸𝑚 =
1

2Ro𝒱

∫︁
𝒱

B2 𝑑 r3,

are ploted versus lattitude 𝜗 in Figure 3.
The behaviour of the magnetic energy is simi-

lar to the kinetic energy up to some details near
the equator plane. The largest increase of the
magnetic energy with the latitude demonstrates
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Figure 3. The latitude dependence of the mag-
netic energies.

𝐵𝑦-component, which is stretched by the strong
large-scale thermal wind 𝑉𝑦. In contrast to the
total kinetic energy, 𝐸𝑘, the magnetic energy 𝐸𝑚

slightly decreases at the equator. In some sense it
resembles behaviour of the magnetic field in the
spherical models with the odd configurations of
the magnetic field with respect to the equator, e.g.,
dipole. Increase of the magnetic energy 𝐸𝑚 rela-
tive to the poles can reach factor 4.

One can expect that the large-scale flow, based
on the thermal wind, and the small-scale cyclonic
convection have different efficiencies of the mag-
netic field generation. To test this hypothesis the

ratio 𝜉 =
𝐸𝑚

𝐸𝑘
was plotted as a function of 𝜗 in Fig-

ure 4. It appears that in the range of 50∘ < 𝜗 < 90∘

𝜉 is approximately constant and then decreases to
the equator in one order of the magnitude. We
conclude that the large-scale flow with the small
gradients is less effective than the cyclonic convec-
tion with the non-zero net helicity [Reshetnyak,
2017].

6. Conclusions

Our simulations clearly demonstrate that the
angle between the axis of rotation and gravity
changes not only the magnitude of the mean pa-
rameters in the flat model, like energies, but the
structure of the flow, its spectra, as well. These
effects are already notable at the mean latitudes,
where the magnetic energy maximum is localised
in the spherical models, and should be taken into

account in future. Of course, due to variety of the
physical effects, application of these results to the
spherical shells, should be done carefully. Thus
existence of the well-known in geodynamo since
[Glatzmaier and Roberts, 1995], see also [Reshet-
nyak and Pavlov, 2016], the large-scaled vortexes
in the Taylor cylinder at the large Rayleigh num-
bers, introduce the new complexity in the model.

The other issue is improvement of the numer-
ical methods for the MHD turbulence modling.
The finite difference methods are the most promis-
ing approach for the multi-core simulations. The
modern higher order approximations of MHD dif-
ferential equations are already comparable by ac-
curacy to the spectral methods [Brandenburg and
Subramanian, 2005], which for years were the best
choice for such problems. The main advantage
of the finite differences is their scalability at the
supercomputers. We hope that this paper can be
useful for the further development of the realistic
MHD turbulence models with rotation. In spite
of the incompressible form of convection’s equa-
tions, considered above, the substitute of vari-
ables V → 𝜌V can be used for transition to the
anelastic approximation, suitable to the dynamo
in the compressible medium.

Acknowledgment. The author acknowledges finan-
cial support from Russian Science Foundation, the grant
No16-17-10097.

Figure 4. The latitude dependence of the mag-
netic field generation efficiency 𝜉.
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