
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 10, ES2005, doi:10.2205/2007ES000251, 2008

Prediction of extreme events: Fundamentals and
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[1] In many cases extreme events of different nature induce catastrophic consequences.
Therefore, in each case prediction of them is a long-living challenging problem of extremely
high stakes. With a break-through in informatics many data relevant to catastrophic
extremes became available for intensive search and testing of empirical “precursors”, as
well as of conceptual hypotheses, thus, creating a fertile land for pattern recognition
technique. Here we present the results of application of the same, perhaps, the simplest
methodology to geophysical and socio-economical systems. Specifically, we (i) demonstrate
the achievements of the on-going global monitoring of seismic activity aimed at prediction
of the great and major earthquakes worldwide, which accommodates more than 15 years of
real-time experience, and (ii) describe in more detail the quantitative experimentation in
finding precursors of starts and ends of economic recessions, episodes of a sharp increase
in the unemployment rate, and surges of homicides in a mega-city. INDEX TERMS: 0500
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1. Introduction

[2] Usually, prediction of extreme events is quite a diffi-
cult problem. By definition, an extreme event occurs rarely
in a sequence of kindred phenomena that, usually, implies
investigating a small sample of case-histories with a help
of delicate statistical methods and data of different quality,
collected in various conditions. Many of extreme events clus-
ter and/or have self-similar distribution in space-time that,
evidently, contradicts with a typically accepted simplified
model of random occurrence. Such situation complicates
additionally search for and definition of precursors, which
could be used effectively in a prediction method. In the
frames of objectivism’s viewpoint on probability it is not
possible to give quantitative and/or probabilistic claims of
the efficiency of a method for prediction of extreme events
without a long series of its successes and failures-to-predict
that, in turn, is impossible without its long enough testing
by prediction determined in real time. Statistics of the ratio
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of the number of failures to the total of successes and failures
and the relative measure of the space-time volume of alarms,
obtained during such testing, is necessary and sufficient for
the assessment of reliability and potential of a method as of
a prediction instrument, as well as it provides basic infor-
mation for its improvement. Let us note that potential of
usage is problem specific, i.e., it depends on a problem, and
requires knowledge of a specific cost-and benefit function for
the choice of an optimal strategy of prediction.

[3] These simple fundamentals are illustrated here with
examples of the on-going prediction of extreme events in
geophysical and socio-economical systems. Each system is
considered as a complex hierarchical dissipative one and, ev-
idently, possesses an important feature in common: persis-
tent reoccurrence of extremes, i.e., abrupt overall changes,
interpreted here as “critical transitions”. The following crit-
ical transitions are included: (i) large earthquakes in geo-
physical systems of the lithosphere blocks-and-faults, (ii)
starts and ends of economic recessions, (iii) episodes of a
sharp increase in the unemployment rate, (iv) surge of the
homicides in socio-economic systems.

[4] These studies are based on a heuristic search of phe-
nomena preceding critical transitions. We use the methodol-
ogy of pattern recognition of infrequent events developed for
studying rare phenomena of highly complex origin that, by
their nature, limit the possibilities of using classical statisti-
cal or econometric methods. Our goal is to identify by an-
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Figure 1. Possible outcomes of prediction.

alyzing the observable quantitative integrals and indicators
the robust and unambiguously defined prediction algorithms
of the “yes or no” variety. Given the values of integrals and
indicators available to a given date, each of the algorithms
provides unambiguous answer to the question whether a crit-
ical transition should be expected in the next time interval.

[5] Specifically, in terms of pattern recognition, an algo-
rithm (a “recognition rule”) solves uniquely the following
problem:

[6] given the time series of certain relevant indicators prior
to a moment of time t,

[7] predict whether the critical transition will or will not
occur during the time period (t, t + τ).

[8] If the prediction is “yes”, the period (t, t + τ) is the
“period of alarm.”

[9] The possible outcomes of such a prediction are illus-
trated in Figure 1. Such “yes or no” prediction of specific
extraordinary phenomena is different from predictions in a
more traditional sense, i.e., extrapolation of a process in
time, which is better supported by conceptual classical the-
ories.

[10] The probabilistic component of such prediction is rep-
resented by the estimated probabilities of alarms on one side
and failures to predict on the other. The probabilistic com-
ponent is inevitable when a highly complex non-stationary
process is considered, since the predictability of an originat-
ing non-linear dynamical system is limited in principle.

[11] If the algorithm is found and validated, it may be
used in the two ways: (i) as a quantitative and reproducible
description of phenomena premonitory to the critical tran-
sition that would provide empirical constraints for the theo-
retical modeling of the relevant process and (ii) as a practical
tool complementing the existing methods of prediction of the
critical transition.

[12] The methodology of the studies described below could
be attributed to the so-called “technical” analysis, consisting
of a heuristic search for phenomena preceding critical tran-
sitions. The alternative would be a “fundamental” analysis,
focusing on “cause-and-effect” mechanisms leading to a crit-
ical transition under consideration. Regretfully, our knowl-
edge of “cause-and-effect” mechanisms might be too concep-

tual and far from the nature of phenomenon under study.
Therefore, the methodology used here is the pattern recog-
nition of infrequent events developed by the artificial intel-
ligence school of the Russian mathematician I. M. Gelfand
[Gelfand et al., 1976] for the study of rare phenomena of
highly complex origin. A distinctive feature of this method-
ology is the robustness of the analysis, which helps to over-
come both the complexity of the process considered and the
chronic imperfection of the data; in that aspect it is akin
to exploratory data analysis, as developed by the statistics
school of J. Tukey [Tukey, 1977]. Robust analysis – “a clear
look at the whole” – is imperative in a study of any complex
system [Gell-Mann, 1994]. The surest way not to predict
such a system is to consider it in too fine detail [Crutchfield
et al., 1986].

[13] The approach differs from but complements classi-
cal statistical and econometric methods such as regression
analysis and ARIMA [Engle and McFadden, 1994]; see also
Stock and Watson [1989], Klein and Niemira [1994], and
Mostaghimi and Rezayat [1996] usually applied in socio-
economical research. For comparison of this approach with
the multiple regression analysis see Keilis-Borok et al. [2000]
where a preliminary algorithm for the prediction of eco-
nomic recessions is developed. Multiple regression analysis
is not applied but the linear regression coefficients for sin-
gle macroeconomic indicators are used to approximate the
trends.

[14] The pattern recognition approach has been success-
fully applied to prediction in seismology and earthquake pre-
diction [e.g. Gelfand et al., 1976; Keilis-Borok and Press,
1980; Keilis-Borok and Soloviev, 2003; Press and Allen,
1995; Press and Briggs, 1975], geological prospecting [e.g.
Press and Briggs, 1977] as well as of the outcome of Amer-
ican elections [Keilis-Borok and Lichtman, 1993; Lichtman
and Keilis-Borok, 1989] and in many other fields, as given
in the references in these papers. Here the simplest ver-
sion of such a methodology, called the “Hamming distance”
[Gvishiani and Kosobokov, 1981; Keilis-Borok and Soloviev,
2003; Lichtman and Keilis-Borok, 1989; and refs. therein]
is used. It is applied for classification of binary vectors into
two classes on the basis of learning samples, which are used
to determine a reference binary vector (kernel) with com-
ponents that are typical for one class. The binary vectors
under consideration are classified as belonging to this class
if Hamming distance from them to the kernel is not greater
than a certain threshold.

2. Geophysical Systems

[15] In this section we consider prediction of large earth-
quakes that occur in seismically active systems of the litho-
sphere blocks-and-faults.

2.1. Are Earthquakes Predictable?

[16] The temporal predictability of large earthquake oc-
currences requires a special comment on the recently re-
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Table 1. Classification of earthquake predictions

Temporal, in years Spatial, in source zone size L

Long-term 10 Long-range Up to 100
Intermediate-term 1 Middle-range 5–10
Short-term 0.01–0.1 Narrow 2–3
Immediate 0.001 Exact 1

vived discussions [Cyranoski, 2004; Geller et al., 1997; Wyss,
1997], (Nature Debates, 1999, http://www.nature.com/na-
ture/debates/earthquake/equake frameset.html). No cur-
rent theory of dynamics of seismic activity can answer this
question. Inevitably, a negative statement that asserts a
non-trivial limitation on predictability is merely a conjec-
ture. On the other hand, forward testing of a reproducible
prediction method and, so far, in no other way, can un-
equivocally establish a certain degree of predictability of
earthquakes. The results of the on-going real-time monitor-
ing of the global seismic activity aimed at intermediate-
term middle-range prediction of the largest earthquakes
(http://www.mitp.ru) has proved [Kossobokov and Shebalin,
2003; Kossobokov et al., 1999] the high statistical signif-
icance of the two methods, algorithms M8 [Keilis-Borok
and Kossobokov, 1990a] and MSc [Kossobokov et al., 1990],
which short descriptions are given below, did confirm a pos-
itive statement on predictability of earthquakes. Further-
more, it appears that in some cases the inverse cascading
of seismic activity to a catastrophe evolves through long-,
intermediate-, short-, immediate-term and even nucleation
[Ellsworth and Beroza, 1995] phases.

[17] Following common perception many investigators usu-
ally overlook spatial modes of predictions concentrating their
efforts on predicting the “exact” fault segment ready to rup-
ture (e.g., the Parkfield earthquake prediction experiment),
which is by far a more difficult and might be an unsolvable
problem. Being related to the rupture size L = L(M) of the
incipient earthquake of magnitude M , such modes could be
summarized in a classification of location of a source zone
from a wider prediction ranges (Table 1).

[18] From a viewpoint of such a classification, the earth-
quake prediction problem is naturally approached by a hier-
archical, step-by-step prediction technique, which accounts
for multi-scale escalation of seismic activity to the main rup-
ture [Keilis-Borok, 1990]. Table 1 disregards term-less pre-

Table 2. Worldwide performance of earthquake prediction algorithms M8 and M8-MSc: Magnitude range M8.0+

Large earthquakes Percentage of alarms Confidence level, %

Test period Predicted by Total

M8 M8-MSc M8 M8-MSc M8 M8-MSc

1985–2007 12 9 17 32.93 16.78 99.83 99.93
1992–2007 10 7 15 29.17 14.54 99.71 99.70

dictions although identification of earthquake-prone areas,
e.g., by pattern recognition methods [Gorshkov et al., 2003],
deliver a zero-approximation for a target earthquake loca-
tion. Moreover, the Gutenberg-Richter law suggests limit-
ing magnitude range of prediction to about one unit, i.e.,
M0 ≤ M ≤ M0 + ∆M and ∆M < 1. Otherwise, the statis-
tics would be related to dominating smallest earthquakes
and, therefore, attributing it to much larger events is mis-
leading.

[19] The on-going real-time monitoring of the global seis-
mic activity aimed at intermediate-term middle-range pre-
diction of the largest earthquakes has a 15-year history now
[Healy et al., 1992; Kossobokov et al., 1999]. Tables 2 and 3
give the up-to-date summary of the prediction outcomes and
prove certain predictability of the great and major earth-
quakes beyond any reasonable doubt (the achieved confi-
dence is above 99%).

[20] It is notable that to drive the achieved confidence
level below 95%, the real-time monitoring should fail to pre-
dict the next six M8.0+ or nineteen M7.5+ events in a row,
which seems unlikely. The results require special comments
in the following sections. Since the estimates presented in
the tables use the most conservative measure of the alarm
volume accounting for empirical distribution of epicenters,
called measure µ below, we describe it first, and then ex-
plain what stand behind M8 and MSc and their global and
regional testing.

2.2. How to Measure Space Occupied by Seismic
Activity?

[21] Are the results of the earthquake prediction experi-
ment better than the random guessing or they are not? A
statistical conclusion about that could be attributed in the
following general way:

[22] Let T and S be the total time and territory con-
sidered; At is the territory covered by the alarms at time
t; τ × µ is a measure on T × S (we consider here a direct
product measure τ × µ reserving a general case of a time-
space dependent measure ν for the future more sophisticated
null-hypotheses); N counts the total number of large earth-
quakes with M ≥ M0 within T × S and n counts how many
of them are predicted. The time-space occupied by alarms,
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Table 3. Worldwide performance of earthquake prediction algorithms M8 and M8-MSc: Magnitude range M7.5+

Large earthquakes Percentage of alarms Confidence level, %

Test period Predicted by Total

M8 M8-MSc M8 M8-MSc M8 M8-MSc

1985–2007 32 16 57 30.27 9.79 99.99 99.99
1992–2007 22 10 45 24.29 8.79 99.97 99.50

A =
⋃
T

At, in percentage to the total space-time considered

equals

p =

∫
A

d(τ × µ)

∫
T×S

d(τ × µ)

.

[23] By common definition the two dual levels of statistical
significance and confidence of the prediction results equal to

α = 1−B(n− 1,N,p)

and
1− α = B(n− 1,N,p) ,

where B is the cumulative binomial distribution function.
The smaller is the significance level α, the larger is the con-
fidence level 1−α and the higher is significance of predictions
under testing.

[24] When testing temporal predictability of earthquakes
it is natural to make the following choice of the product mea-
sure τ×µ: the uniform measure τ , which corresponds to the
Poisson, random recurrence of earthquakes and the mea-
sure µ proportional to spatial density of epicenters. Specifi-
cally, determine the measure µ of an area proportional to the
number of hypo- or epicenters of earthquakes from a sample
catalog, for example, earthquakes above certain magnitude
cutoff Mc. This empirical spatial measure of seismic distri-
bution is by far more adequate than the literal measures of
volume in km3 or territory in km2 for estimating statistical
significance of the prediction results. Evidently, the literal
measures of volume or territory equalize the areas of high
and low seismic activity, at the extreme, the areas where
earthquake happen and do not happen.

[25] The actual, empirical distribution of earthquake lo-
cations is the best present day knowledge estimate of where
earthquakes may occur. The recipe of using the µ-measure
and counting p is the following: Choose a sample catalog.
Count how many events from the catalog are inside the vol-
ume or the territory considered; this will be your denomina-
tor. At a given time, count how many events from the cata-
log are inside the area of alarm; this will be your numerator.
Integrate the ratio over the time of prediction experiment.
This is the exact way of computing Percentage of alarms and
Confidence level in Table 2 (where the catalog sampled all
earthquakes of magnitude 4 or larger from the NEIC Global
Hypocenter’s Data Base in 1963–1984).

[26] This simple recipe has a nice analogy, called Seismic
Roulette, that justifies using statistical tools available since
Blaise Pascal (1623–1662):

• Consider a roulette wheel with as many sectors as the
number of events in a sample catalog, a sector per each
event;

• Make your bet according to prediction: determine
which events are inside area of alarm, and put one
chip in each of the corresponding sectors;

• Nature turns the wheel.

[27] If you play seismic roulette systematically, then you
win and lose systematically. If the roulette is not perfect
and you are smart enough to choose an effective strategy,
then your wins will outscore loses! There is evident op-
tion of switching to “antipodal” strategy [Keilis-Borok and
Soloviev, 2003; Molchan, 1994] when the losses outscore
wins. The results of the global test of the algorithms M8
and MSc did confirm “imperfection” of Nature in recurrence
of the great and major earthquakes and suggest using it for
the benefit of the population exposed to seismic hazard.

2.3. The M8 and MSc Algorithms

[28] Both algorithms are reproducible earthquake predic-
tion methods that satisfy the consensus definition [Allen et
al., 1976] and make use of seismic activity reported in rou-
tine seismic catalogs. The M8 is applied first. It scans the
territory in question for the areas in alarm (Figure 2), so-
called Time of Increased Probability, TIP. The MSc is ap-
plied to reduce the area of alarm by analyzing dynamics at
lower magnitude levels of seismic hierarchy. Sometimes, the
data is enough to get a near-perfect outline of the incipi-
ent large earthquake. More often the catalog of earthquakes
is exhausted already at the M8 analysis and the prediction
remains in the middle range.

[29] The M8 intermediate-term earthquake prediction al-
gorithm was designed by retroactive analysis of dynamics
of seismic activity preceding the greatest, magnitude 8.0 or
more, earthquakes worldwide, hence its name. Its prototype
[Keilis-Borok and Kossobokov, 1984] and the original version
[Keilis-Borok and Kossobokov, 1987] were tested retroac-
tively at recorded epicenters of earthquakes of magnitude
8.0 or greater from 1857–1983. Figure 3 shows, as an exam-
ple of the M8 prediction in the real time, the case-history of
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Figure 2. General scheme of applying reproducible earthquake-prediction algorithm: Areas of investi-
gation overlay seismic region; seismic sequences in each area gives reproducible description of the present
state, which is then used to diagnose an alert, so-called time of increased probability, TIP.

the 4 June 2000, MS8.0 Sumatra earthquake: The Andaman-
Sumatra-Java segment of the global prediction map issued in
January 2000 along with epicenters of the great main shock
and its first aftershocks are given on the left, while, on the
right, the figure depicts the space–time diagram of seismic
activity in the circle of investigation (Test no. 34) with ra-
dius 667 km where the alarm was in progress when the great
earthquake happened and below it presents the functions of
algorithm M8 with their abnormal values marked by heavy
dots. The arrows indicate the great shock, and small circles
stand for smaller magnitude earthquakes used by the algo-
rithm for determining the alarm. The distance along the
seismic belt measured in kilometers from the center of the
circle is plotted on the vertical axis. Time is plotted along
the horizontal axis.

[30] The algorithm M8 uses traditional description of a dy-
namical system adding to a common phase space of rate (i.e.
number of mainshocks, N) and rate differential (i.e., devia-
tion of N from a longer-term average, L) the dimensionless

concentration (i.e., the average source size divided by the
average distance between sources, Z) and a characteristic
measure of clustering (i.e., maximum number of aftershocks,
B). The analysis of seismic activity in one region may distin-
guish a number of magnitude ranges and deliver a hierarchy
of predictions [Keilis-Borok and Kossobokov, 1990b].

[31] The algorithm recognizes criterion, defined by ex-
treme values of the phase space coordinates, as a vicinity
of the system singularity. When a trajectory enters the cri-
terion, probability of extreme event increases to the level
sufficient for effective provision of a catastrophic event (ev-
idently, the ranges of extreme values of the M8 algorithm
functions define the kernel used for classification of times by
the Hamming distance). The exact definitions and computer
code of the M8 algorithm are published [Healy et al., 1992;
Keilis-Borok and Kossobokov, 1990a; Kossobokov, 1997].

[32] Retrospectively the standard version of the algorithm
[Keilis-Borok and Kossobokov, 1990a] was applied to pre-
dict earthquakes with magnitudes from above 8.0 to 4.9 in
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Figure 3. Global testing of algorithms M8 and MSc, M0 = 8.0 [Kossobokov and Shebalin, 2003]:
The 4 June 2000 Sumatra earthquake. Observe the highlighted circular areas of alarm in the first
approximation determined by algorithm M8 and the highlighted rectangular areas of alarm in the second
approximation determined by algorithm MSc. A foreshock of magnitude 4.7 (diamond) occurred within
a day in advance of the great shock.

a number of regions worldwide. Its modified versions apply
also in regions of seismic activity lower than required by the
original version [Bhatia et al., 1989; Gahalaut et al., 1992;
Kossobokov et al., 1989; Latoussakis and Kossobokov, 1990;
Peresan et al., 2005; Romachkova et al., 1998].

[33] The second approximation prediction method MSc
[Kossobokov et al., 1990] was designed by retroactive analy-
sis of the detailed regional seismic catalog prior to the Eu-
reka earthquake (1980, M=7.2) near Cape Mendocino in
California, hence its name, Mendocino Scenario, and an ab-
breviation. Qualitatively, the MSc algorithm outlines such
an area of the territory of alarm where the activity, from the
beginning of seismic inverse cascade recognized by the first
approximation prediction algorithm (e.g. by M8), is contin-
uously high and infrequently drops for a short time. Such
an alternation of activity must have a sufficient temporal
and/or spatial span. The phenomenon, which is used in the
MSc algorithm, might reflect the second (possibly, shorter-
term and, definitely, narrow-range) stage of the premonitory
rise of seismic activity near the incipient source of the main
shock. In reduction of territorial uncertainty of the M8 pre-
dictions, the MSc algorithm outperforms by at least a factor
of 2 a few simple alternatives like the earthquake-prone cells
in the area of alarm or the most active cells that contain
certain part of the recent seismic activity [Kossobokov et al.,
1990].

2.4. Testing Earthquake Predictions

[34] After prediction of the Spitak 1988 and Loma Prieta
1989 earthquakes in real-time J. H. Healy, V. G. Kossobokov,
and J. W. Dewey designed a rigid test to evaluate the M8
algorithm [Healy et al., 1992]. Since 1991 each half-year the
algorithm has been applied in a real time prediction mode to
monitor seismic dynamics of the entire Circum Pacific (that
is the reason for distinguishing the two periods of testing
in Table 2: since the design of the algorithm in 1985, and
since the formal publication of the settings for global mon-
itoring in 1992). More extended testing, for all seismically
active territories on Earth where seismic data is enough to
run the standard version of algorithm M8 was carried on
in parallel [Kossobokov and Khokhlov, 1993; Kossobokov et
al., 1992, 1999]. Unfortunately, testing in seismic regions of
the Former Soviet Union where the rescaling of the original
M8 algorithm was tested first in 1986 on the “Earthquakes
in the USSR” catalog aimed mostly at M6.5+ earthquakes
were discontinued due to the collapse of the state and some
of its seismological structures. The testing included Vrancea,
Caucasus, Turkmen territories, Pamirs and Tien Shan. The
reestablishment of seismic monitoring aimed at prediction
of large magnitude earthquakes in Vrancea, Caucasus and
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Central Asia looks feasible nowadays, specifically after the
development of a recently proposed scheme for the spatial
stabilization of the intermediate-term middle-range predic-
tions [Kossobokov et al., 2002]. The scheme, named M8S,
makes use of the multiple application of the M8 algorithm
in a large number of objectively distributed circles of investi-
gation and aims at elimination of spatially sporadic alarms.
In fact, it appears to guarantee a more objective and reli-
able diagnosis of times of increased probability and, at the
same time, is less restrictive to input seismic data. At the
moment it is used for the real-time monitoring of the Italian
territory being aimed at M6.5+, M6.0+, and M5.5+ earth-
quakes [Peresan et al., 2005].

[35] In the Global Test aimed at M8.0+ earthquakes
the algorithms M8 and MSc are applied in 262 over-
lapping circles of investigation, of which 170 scan near-
uniformly Circum-Pacific and its surroundings, 92 circles
taken from Alpine-Himalayan Belt and Myanmar (25 in
Mediterranean, 25 in Asia Minor and Iran, 28 in Pamirs-
Hindukush, and 14 in Myanmar). These cover about 80–
90% of the major seismic belts of the Earth. The com-
plete set of predictions in 1985–2007 could be viewed at
http://mitp.ru/predictions.html, although the access to
those in progress is restricted. In general, the alarms last for
about five years, but could expire before or extend beyond
this limit under unusual local changes of seismic regime. On
average the M8 alarms cover less than one third of the whole
seismic territory considered, while MSc reduces this area by
another factor of two (Table 2). The probability gain in con-
firmed predictions depends on locality and varies from 2–3 in
regions of extremely high activity, like Tonga-Kermadek, to
20–100 in regions where recurrence of the great earthquakes
is much lower than average, like southern Sumatra or Tibet.

[36] Aimed at M7.5+ earthquakes the algorithms are ap-
plied in 180 circles, which in total cover about 75% of the
major seismic belts. 147 of them represent seismic regions
of Circum Pacific, while the remaining 33 ones compose
of 15 from Mediterranean, 4 from Iran, 11 from Pamirs-
Hindukush, and 3 from Myanmar. On average the M8
alarms cover about one quarter (24.29% in accordance with
measure µ since 1992, Table 3) of the whole seismic territory
considered, while MSc reduces this area below 10%. For this
magnitude range, certain decay in performance is observed
in the recent years. There are indications that this could be
inflicted by the changes either in the global seismic regime or
in reporting the magnitudes or both: (i) most of the failures-
to-predict occurred during the unusual rise of seismic energy
release, have magnitude below 7.75 and are thrust or normal
faulting [Kossobokov et al., 1999]; (ii) starting form 1993 the
NEIC changed the procedures of the global database com-
pilation, substituting MS from Pasadena and Berkley with
values of MW from Harvard and USGS.

2.5. Can Mega Earthquakes Be Predicted?

[37] The statistics given in Table 2 do not include the re-
cent mega-earthquakes in Indonesia that are much stronger
than M8.0+ events. Specifically, the size of the 26 Decem-
ber 2004, MW9.3 (MS8.8) off the west coast of Northern

Sumatra Great Asian, Sumatra-Andaman mega-thrust and
its follower the 28 March 2005, MW8.7 (MS8.4) Nias earth-
quake, brings them out of the list of target earthquakes of
the Global Test. (Note that the most recent great earth-
quakes on 12 September 2007 MW8.4 and 7.9 (MS8.5 and
8.1) that stroke southern Sumatra at 1110 and 2349 GMT,
correspondingly, were successfully predicted in course the
Global Test.)

[38] First of all, the linear dimension of the source of the
first one is about 1000–1300 km, i.e., about the diameter
of circles of investigation used in the Global Test of M8 to
predict M8.0+ earthquakes. The linear dimension of the sec-
ond one is above 450 km. The source length of the M8.0+
events in 1985–2003, usually accounts to about 150–300 km.
Therefore, since the logic of the methodology suggests the
proportions of investigation about 5–10 times larger than
the target earthquake size, it would be naive and ambigu-
ous to expect a success of the monitoring aimed either at
M8.0+ or M7.5+ earthquakes in predicting the 26 Decem-
ber 2004 and 28 March 2005 events. According to the M8
algorithm predictions we were not expecting any M8.0+ or
M7.5+ events in the Indian Ocean neither during the second
half of 2004 nor in the first half of 2005 and, in fact, these
did not happen.

[39] On the other hand, if on 1 July 2004 someone, enough
ambiguous to extend application of the M8 algorithm into
unexampled magnitude range aiming at M9.0+ earthquakes,
then he or she would have diagnosed Time of Increased Prob-
ability in advance of the 2004 Sumatra-Andaman mega-trust
event. The genuine M8 computer code run with the target
earthquake magnitude threshold equal to 9.0 and the radius
of CI’s increased to 3000 km determines the current alarm.

[40] In fact, this is a unique unexampled confirmation
that the algorithm, designed for prediction of M8.0+ earth-
quakes and tested in many applications rescaled for predic-
tion of smaller magnitude earthquakes (e.g., down to M5.5+
in Italy, http://www.mitp.ru/m8s/M8s−italy.html), is ap-
plicable for prediction of the mega-earthquakes of M9.0+
(and M8.5+). Of course, we are not that ambiguous to go
from the first indication to a routine prediction, but feel
the 26 December 2004 case history very important for gen-
eral understanding of the methodology and the Problem of
Earthquake Prediction, in general.

[41] What is the extent in space and time of the M8 algo-
rithm TIPs for M9.0+? The answer is thought provoking:
in the 25 years of retrospective analysis of available data
there was one cluster of TIPs in 1984–1989 around west-
ern Mediterranean (a compact union of the eight out of the
262 circles of investigation) plus another one in 1994–1999
around Cascadia plate (a compact union of the five circles of
investigation off the western coast of U.S.), which produce no
M9.0+ event. The union of TIPs to date has global extent:
it encountered the maximum of 145 circles of investigation
in 2003, 124 – by the time of the 2004 Sumatra-Andaman
mega-trust; the 47 circles of investigation in alarm to date
cover about one half of the global seismic belts (49.09% in
accordance with measure µ). Having in mind the evidence,
which suggests clustered occurrence of seismic events includ-
ing mega-earthquakes, we cannot reject such a possibility of
further confirmations in the nearest future.
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2.6. Implications

[42] The M8 and MSc algorithms, which test is presented
here, make use of seismic activation and the growing corre-
lation of earthquakes at the approach of the Big One. The
predictions could be done on the basis of earthquake catalogs
routinely available in the majority of seismic regions. There
are evident limitations in performance. With more complete
catalogs and, hopefully, with other relevant data the areas
of alarm may be substantially reduced in the second and,
perhaps, further approximations at the cost of additional
failures-to-predict.

[43] The M8 and MSc algorithms are neither optimal
nor unique. Together with other methods [Harte et al.,
2003; Keilis-Borok and Rotwain, 1990; Keilis-Borok et al.,
1988; Shebalin et al., 2003; Vorobieva, 1999; etc.] they hall-
mark a break-through in earthquake prediction research that
leads from term-less assessment of seismic hazard to reliable
intermediate-term alert of increased probability. The accu-
racy could be improved in course of a systematic monitoring
of the alarm areas and by designing a new generation of
earthquake prediction technique of higher accuracy.

[44] Thus, the approach has already demonstrated effi-
ciency of the pattern recognition technique in solving the
earthquake prediction problem at global and regional scales
and form the basis of Quantitative Earthquake Prediction.
The achievements of pattern recognition in the design of the
reproducible algorithms predicting large earthquakes and
the verified statistical validity of their predictions confirm
the underlying paradigms:

• Seismic premonitory patterns exist;

• Formation of earthquake precursors at scale of years
involves large size fault system;

• The phenomena are similar in a wide range of tectonic
environment;

• The phenomena are universal being observed in other
complex non-linear systems.

[45] Seismic Roulette is not perfect. Therefore, the ex-
isting reliable predictions of limited accuracy could be used
in a knowledgeable way to the benefit of population living
in seismic regions. The methodology linking them to opti-
mal strategies for disaster management exists and is rather
developed [Molchan, 2003]. The intermediate-term middle-
range accuracy is quite enough for undertaking earthquake
preparedness measures, which would prevent a considerable
part of damage and human loss, although far from the total.

[46] The predictions also provide reliable empirical con-
strains for modeling earthquakes and earthquake sequences.
The prediction results evidence that distributed seismic ac-
tivity is a problem in statistical physics. They favor the hy-
pothesis that earthquakes follow a general hierarchical pro-
cess that proceeds via a sequence of inverse cascades to pro-
duce self-similar scaling (intermediate asymptotic), which
then truncates at the largest scales bursting into direct cas-
cades [Gabrielov et al., 1999].

3. Socio-Economic Systems

[47] In this section we consider prediction of starts and
ends of economic recessions, episodes of a sharp increase
in the unemployment rate, and surges of the homicides in
a mega-city. Prediction is given by a discrete sequence of
alarms (Figure 1). Its accuracy is captured by statistics of
false alarms (including their total space-time) and failures
to predict.

[48] It have been found for the five recessions in the USA
since 1962 to 1996 that each of them is preceded by a spe-
cific pattern of 6 economic indexes, which are defined at the
lowest (binary) level of resolution. This pattern was present
during 6 to 14 month before each recession and at no other
time, suggesting a hypothetical prediction algorithm. The
algorithm is exceedingly robust: the retrospectively diag-
nosed alarms remain about the same after variation of its
adjustable numerical parameters, and of other non-unique
decisions, involved in its determination. Another algorithm
has been formulated for predicting the end of an American
economic recession by means of analysis of the same macroe-
conomic indicators within the recession period. It indicates
up to 6 months long time interval, during which recession
will end. First application of the algorithm to out of sample
data (not used in its development) is successful: it predicted
that the last recession started in April 2001 would end be-
tween July and December 2001 and that recession indeed
ended in November 2001.

[49] A specific “premonitory” pattern of three macroeco-
nomic indicators that may be used for algorithmic prediction
of FAUs has been found for unemployment in France between
1962 and 1997. Among seven FAUs identified within these
years six are preceded within 12 months by this pattern that
appears at no other time. The application of this algorithm
to Germany, Italy and the USA yields similar results. The
first advance prediction, for the USA for early 2000, has been
successful.

[50] The analysis of statistics of several types of crime in
Los Angeles over the period 1975–2002 focused on how these
statistics change before a sharp and lasting rise (“a surge”)
of the homicide rate. The goal was to find an algorithm for
predicting such a surge by monitoring the rates of different
crimes. The results may be summarized as follows: episodes
of a rise of burglaries and assaults simultaneously occur 4
to 11 months before a homicide surge, while robberies de-
cline. Later on, closer to the rise in homicides, robberies
start to rise. These changes are given unambiguous and
quantitative definitions, which are used to formulate a hy-
pothetical algorithm for the prediction of homicide surges.
The retrospective analysis shows that this algorithm is ap-
plicable through all the years considered despite substantial
changes both in socio-economic conditions and in the count-
ing of crimes. Moreover, it gives satisfactory results for the
prediction of homicide surges in New York City as well. Sen-
sitivity tests show that predictions are stable to variations
of the adjustable elements of the algorithm.

[51] Decisive validation of these findings requires experi-
mentation in advance prediction, for which these studies set
up a base. Particularly encouraging for this further research
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Table 4. American Economic Recessions, 1960–2003

# Peaks Troughs

1 April 1960 February 1961
2 December 1969 November 1970
3 November 1973 March 1975
4 January 1980 July 1980
5 July 1981 November 1982
6 July 1990 March 1991
7 March 2001 November 2001

Note: Peak is the last month before a recession, and trough is the
last month of a recession (a recession ends in this month).

is the wealth of yet untapped possibilities: we have used so
far only a small part of the data and mathematical models
that are currently available and that are relevant to dynam-
ics of complex socio-economic systems.

3.1. Prediction Targets

[52] Recessions. The first months of the recessions
and the first months after them are considered as moments
of critical transitions. These months are given by the Na-
tional Bureau of Economic Research (NBER). Seven reces-
sions occurred from January 1960 to April 2002 are listed
in Table 4 according to the NBER data. When starts of
the recessions are predicted the targets are the first months
after the peaks. When ends of the recessions are predicted
the targets are the first months after the troughs.

[53] Unemployment. A specific phenomenon in the
dynamics of unemployment: a sharp increase in the rate of
unemployment growth is considered as the prediction tar-

Figure 4. Fast acceleration of unemployment (FAU):
schematic definition. Thin line – monthly unemployment;
with seasonal quasiperiodic variations. Thick line – monthly
unemployment, with seasonal variations smoothed away.
The arrow indicates a FAU – the sharp bend of the smoothed
curve. The moment of a FAU is the target of prediction.

Figure 5. Target of prediction – the Start of the Homicide
Surge (“SHR”); schematic definition. Gray bar marks the
period of homicide surge.

get. Qualitatively, this phenomenon is illustrated in Fig-
ure 4. The thin line is the monthly number of unemployed
u(t), including seasonal variations. After smoothing u(t)
to eliminate such variations, the function U(t) is obtained.
The prediction target is the starting month of a strong and
lasting increase in U(t). An example is the turning point in-
dicated by the arrow in Figure 5. We call this target by the
acronym FAU, for “Fast Acceleration of Unemployment.”

[54] Homicide statistics. A specific phenomenon in
crime dynamics: a large and lasting increase in the homicide
rate is considered as the prediction target. Qualitatively,
this phenomenon is illustrated in Figure 5. The prediction
target is the starting month of a large and lasting increase
in the smoothed monthly homicide rate. It is indicated by
the arrow in Figure 4. We call it by the acronym SHS, for
“Start of the Homicide Surge.”

3.2. Common Notations

[55] Socio-economic systems are described by monthly se-
ries of indexes, e.g. industrial production, long- and short-
term interest rates, statistics of different crime types etc.
Let f(m) is one of such series.

[56] Common notation here and below is W f

(
l

q
, p

)
–

the local linear least-squares regression of a function f(m)
within the sliding time window (q, p):

W f

(
l

q
, p

)
= Kf (q, p)l + Bf (q, p), q ≤ l ≤ p . (1)

It is assumed here that m, l, q, and p are integers that stand
for consecutive numbers of months during a time period un-
der consideration.
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[57] To expose premonitory (relative a critical transition)
changes in the behaviour of f(m) two following functions
are introduced, depicting the trend by a linear least-squares
regression (1) of f(m).

Kf
(

m

s

)
= Kf (m− s, m) . (2)

This function that is a regression coefficient defined as in
(1) approximates the trend of f(m) in a time window of s

months long, (m−s, m). The value of Kf
(

m

s

)
may be used

for determination of a precursory pattern that appears in
month m since it is attributed to the end of the time window
where it is determined; accordingly it does not depend on
information on the future (after month m).

Rf

(
m

q

)
= f(m)−W f

(
m

q
, m− 1

)
. (3)

This function depicts deviation of an index from its long-
term extrapolation. Here the linear least-squares regression
(1) is determined on a time interval (q, m − 1), and it is
assumed that this interval is rather long, i.e. m− q is large.

[58] Let g(m) be function (2) or (3) or source series f(m)
itself. If g(m) demonstrates premonitory behavior then a
robust quantitative definition of this is given as follows. The
values of g(m) are defined on the lowest level of resolution,
distinguishing only the values above and below a threshold
T g(Q). It is defined as a percentile of a level Q, that is, by
the condition that g(m) exceeds T g(Q) during Q% of the
months considered.

3.3. Start of Recession

[59] The time period from January 1959 to April 1996
has been initially considered [Keilis-Borok et al., 2000]. Six
recessions occurred during this period; they are identified in
Table 4 by the last month before a recession (“peak”) and
the last month of a recession (“trough”). The time series,
consisting of monthly values of the six indexes, are analyzed.
These indexes that were already known [Stock and Watson,
1989, 1993], as correlated with the approach of a recession
are listed below (abbreviations are the same, as in [Stock and
Watson, 1993]):

[60] IP. Industrial Production, total: index of real (con-
stant dollars, dimensionless) output in the entire economy.
This represents mainly manufacturing because of the difficul-
ties in measuring the quantity of output in services (services
include travel agents, banking, etc.).

[61] LHELL. Index of “help wanted” advertising. This is
put together by a private publishing company that measures
the amount of job advertising (column-inches) in a number
of major newspapers.

[62] LUINC. Average weekly number of people claiming
unemployment insurance.

[63] INVMTQ. Total inventories in manufacturing and
trade, in real dollars. Includes intermediate inventories (for
example held by manufacturers, ready to be sent to retailers)
and final goods inventories (goods on shelves in stores).

[64] FYGM3. Interest rate on 90 day U.S. treasury bills
at an annual rate (in percent).

[65] G10FF. Difference between interest rate on 10 year
U.S. Treasury bond, and federal funds interest rate, on an-
nual basis.

[66] It has been found looking at the dependence of the
indexes on time that trough the whole period the indexes IP,
and INVMTQ have an evident upward trend; the indexes
LHELL, LUINC, FYGM3, and G10FF have no such trend.

[67] Time periods. The time of each recession and
5 months after it were eliminated, since the behaviour of the
indexes may have some special features during a recession
and its aftermath; the interval 5 month is chosen, because
subsequent recessions are officially considered as different
ones, only if they are separated by at least six months. At
this stage the period before the first recession (since it starts
too close to the beginning of the data set) and the period
after the sixth one were excluded also. Thus the following 5
periods were used for the search of premonitory phenomena.

W1: August 1961–December 1969 (101 months);
W2: May 1971–November 1973 (31 months);
W3: September 1975–January 1980 (53 months);
W4: January 1981–July 1981 (7 months);
W5: May 1983–July 1990 (87 months).

The combination of these periods W = W1 ∪ W2 ∪ W3 ∪
W4 ∪ W5 contains 279 months. In all calculations the unit
of time is a year and duration of a month is 1/12. Months
are identified by their sequential numbers, i = 1, 2, . . . .

[68] Hypothesis. The index G10FF (Figure 6) seems
to become unusually low before the recessions. Premon-
itory behavior of other indexes is not so clear but their
temporal trend is changing, when a recession is approach-

ing. To expose these changes functions Kf
(

m

s

)
(2) and

Rf (m) = Rf

(
m

q

)
(3) with q being the first month after

the end (the through) of the previous recession are used.
[69] For further analysis besides the original index G10FF,

the following 5 functions, which seem to have different pre-
vailing values close to an incipient recession and far from it
have been selected:

Functions: RIP(m), RINVMTQ (m), KLHELL
(

m

5

)
,

KLUINC
(

m

10

)
, RFYGM3 (m).

Abbreviations: IPR, INVR, LHK5, LUK10, FYG3R.
[70] The behaviour of these functions and of the index

G10FF suggests a hypothesis that the recessions considered
are often preceded by relatively large values of LUK10 and
FYG3R and relatively small values of IPR, INVR, LHK5,
and G10FF.

[71] Discretization. Following to Section 2.2. thresh-
olds T g(Q) have been determined for these six time series.
The relevant values of Q are given in Table 5. Now the
values g(m) are coded on the lowest level of resolution, 0
or 1, discriminating only the values g(m) ≤ T g(Q) and
g(m) > T g(Q). It will be convenient to give the same no-
tation, say 1, to the values, which became more frequent,
when a recession is approaching. Accordingly, 1 is specified
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Figure 6. Index G10FF, the threshold of discretization is shown by a horizontal line, shaded vertical
bars indicate recessions.

for the values g(m) > T g(Q) in the case of the functions
LUK10 and FYG3R, and for the values g(m) ≤ T g(Q) in
the case of the four other time series.

[72] After the discretization the description of situation
in each month has been reduced to a binary vector with 6
components. Each component has been defined in such a
way, that (if the hypothesis is correct) the values “1” would
became more frequent when a recession is approaching. Ac-
cordingly, the description of pre-recession situations would
be close to the vector (1,1,1,1,1,1), which is called the kernel.
Let D(m) be the number of zeros in a code of a month, a
– its Hamming’s distance from the kernel. One can assume
that the approach of a recession is recognized by the small
values of D(m). A priori this is not clear, in spite of the
way the zeros are defined; for example, premonitory changes
of the functions may appear not simultaneously, even if the
above hypothesis is correct. But it has been found that the
values D(m) ≤ 2 are confined to 6 to 14 months, preced-
ing each recession. The change of D(m) with time suggests
the following prediction algorithm: an alarm is declared for

Table 5. Values of Q

g(m) Precursory value Q, %

IPR Low 75.0
INVR Low 25.0
G10FF Low 90.0
LHK5 Low 66.7
LUK10 High 16.7
FYG3R High 25.0

three months after each month with D(m) ≤ 2 (regardless
of whether this month belongs or not to an alarm which
has been already declared). Three months of alarm after
the month when D(m) ≤ 2 are introduced for the following
reasons: a premonitory phenomenon does not necessarily ap-
pear just before a recession; and it is preferable to merge the
alarms, which are close to each other.

[73] The alarms thus defined are shown in Figure 7 by
black bars. Note that each alarm extends also to first 2
or 3 months of a recession. One can see that all 5 reces-
sions were preceded by continuous alarms. The longest one
lasted 13 months, one alarm lasted 10 months, and 3 alarms
– 5 months. There were no false alarms. Total duration of
alarms, 38 months, is 13.6% of the time covered by the analy-
sis (W set). No recessions happened since March 1991; appli-
cation of this algorithm to the subsequent years, September
1991–April 1996, does not give a false alarm.

[74] Advance prediction covered subsequent 11 years,
up to now. The algorithm detected an alarm on May 2001,
one month later than it started according to NBER (Ta-
ble 4). It is too early to evaluate the rates of the errors.
Note that in practice detection of the alarm can be delayed
by the delay in updating the indexes.

3.4. End of a Recession

[75] The macroeconomic indicators listed above (Section
3.3.) were analyzed in order to find phenomena preceding
the end of an American economic recession.

[76] The data concerning the first 6 recessions from Table 4
were analyzed initially. Thus the following 6 periods were
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Figure 7. Alarms (shown by black bars) and recessions (shown by grey bars).

considered (for each recession a month before it (the peak)
and its last month (the trough) are included).

W1: April 1960–February 1961 (11 months);
W2: December 1969–November 1970 (12 months);
W3: November 1973–March 1975 (17 months);
W4: January 1980–July 1980 (7 months);
W5: July 1981–November 1982 (17 months);
W6: July 1990–March 1991 (9 months).

The total duration of these periods W = W1 ∪ W2 ∪ W3 ∪
W4 ∪W5 ∪W6 is 73 months.

[77] The original index G10FF and 5 functions RIP(m),

RINVMTQ(m), KLHELL
(

m

5

)
, KLUINC

(
m

10

)
, RFYGM3(m)

were used to formulate the algorithm for prediction of the
recession end. Abbreviation the functions are the same as

given in Section 3.3. When function Rf (m) = Rf

(
m

q

)
(3)

is calculated for periods W2 −W6 q is the first month after
the end (the through) of the previous recession; when it is
calculated for period W1 q is January 1960.

[78] Discretization has been made for these six time
series g(m) by means of thresholds T g(Q) that have been
determined considering all months included in the set W .
The relevant values of Q are given in Table 6. The val-
ues g(m) are coded on the lowest level of resolution, 0
or 1, discriminating only the values g(m) ≤ T g(Q) and
g(m) > T g(Q). The same notation “1”” has been given
to the values, which became more frequent, when the reces-
sion end is approaching. Accordingly, “1” is specified for the
values g(m) > T g(Q) in the case of G10FF and LUK10, and
for the values g(m) ≤ T g(Q) in the case of the four other
time series.

[79] Hypothetical prediction algorithm. After dis-
cretization the monthly description of situation during a re-
cession is reduced to a binary vector with 6 components and
the “ideal” situation prior to the end of a recession, when all
indicators are precursory, is the vector (1,1,1,1,1,1), which
is called the kernel. Let D(m) be the number of zeros in a

Table 6. Precursory trends and values of Q

g(m) Precursory values Q, %

IP Low 75.0
INVR Low 50.0
G10FF High 33.3
LHK5 Low 75.0
LUK10 High 50.0
FYG3R Low 50.0

code of a month – its Hamming distance from the kernel.
The approach of the end of a recession may be recognized
by the small values of D(m). This suggests the following
algorithm: the precursory pattern appears if for three con-
secutive months D(m) ≤ 3 and the recession end is expected
during an interval of three months long after appearing this
pattern. The alarms (continuous intervals of this kind) ob-
tained by this algorithm for the recessions considered are
shown in Figure 8. The end of each of the 6 recessions is
preceded by an alarm and there are no false alarms. The to-
tal duration of alarms in all 6 recessions is 16 months, which
is 22% of total duration of the set W (73 months).

Figure 8. Results of application of the algorithm for pre-
diction of the end of a recession.
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Table 7. FAUs in France, 1965–1997

Time, year: month January 1970 January 1974 September 1977 July 1980 July 1983 May 1990 September 1995

“Magnitude” F∗ 7.6 22.6 5.3 15.7 9.2 20.3 9.4

Duration (me −m∗), 22 24 16 20 19 21 20
months

[80] The end of the last recession. The last reces-
sion (#7 in Table 4; Figure 8) starts in April 2001. Accord-
ing to the score D(m) the alarm for the end of that recession
starts in July 2001. In 2003 the NBER made a conclusion
that it did end in November 2001.

3.5. Fast Acceleration of Unemployment

[81] Each episode of a sharp increase in the unemployment
rate is called here Fast Acceleration of Unemployment, FAU.
The study [Keilis-Borok et al., 2005] described below used
databases issued by the Organization for Economic Cooper-
ation and Development [OECD, 1997] and the International
Monetary Fund [IMF, 1997]. Past FAUs were identified by
an analysis of the monthly statistics of unemployment. To
explore the predictability of FAUs the monthly indicators
listed below were analyzed:

[82] 1. IP: Industrial production index, composed of weig-
hted production levels in numerous sectors of the economy,
in % relative to the index for 1990.

[83] 2. L: Long-term interest rate on 10-year government
bonds, in %.

[84] 3. S: Short-term interest rate on 3-month bills, in %.
[85] For France the data sources are sufficiently complete

for the time period between January 1965 and May 1997,
and it is this period that is considered here. The analogues
of these indicators for the USA have been successfully used in
research on predicting American economic recessions [Keilis-
Borok et al., 2000; Stock and Watson, 1993; Section 3.3.].

[86] The definition of FAU described above qualitatively
(see Figure 4) is formalized here. Let u(m) is the monthly
number of unemployed including seasonal variations (m =
1, 2, . . .). FAUs are defined as follows. First, smooth-
ing out the seasonal variation of u(m) a function U(m) =

W u
(

m

m− 6
, m + 6

)
is obtained – a value of the regression

(1) over the time interval (m− 6, m + 6). Next, a function

F
(

m

s

)
= KU (m+s, m)−KU (m, m−s) is determined – the

Table 8. Trends and thresholds

Indicator Premonitory s Q, %
trend

IP: Industrial production index Upward 12 50%
L: Interest rate, long-term bonds Upward 12 33%
S: Interest rate, short-term bills Upward 12 25%

difference between the linear trends in regression (1) of U(m)
within s subsequent months and s preceding months. This
function with s = 24 months is used as a coarse measure of
unemployment acceleration. Finally, the FAUs are defined
by the local maxima of F (m) exceeding a certain threshold
F . The time m∗ and the height F ∗ of such a maximum are,
respectively, the time and the magnitude of a FAU. Acceler-
ation ends in a month me of the subsequent local minimum
of F (m).

[87] Monthly unemployment in France and the function
F (m) for the time period considered, from January 1965
through May 1997, are shown in Figure 9. One may see 10
that the threshold 4 identifies obviously outstanding peaks
of F (m). Seven FAUs identified by the condition F ∗ ≥F=4
are listed in Table 7. As we see, each such FAU is the begin-
ning of a long unemployment rise, lasting 16 to 24 months.
Since it is determined after a strong smoothing of the un-
employment rate, the meaningful accuracy of prediction may
hardly be better than about 2 months. Three “major” FAUs,
marked in bold in Table 7, are distinctly larger than the oth-
ers.

[88] This definition of the FAUs is applicable only in ret-
rospect, two years after a FAU occurs in order to ensure a
reliable identification of past FAUs.

[89] The “premonitory” trends of the indicators, which
tend to occur more frequently as a FAU approaches are ex-
plored here. The trends are approximated by the function

Kf
(

m

s

)
(2) with f replaced by the symbol of an indicator.

[90] Discretization has been made for each of these
functions g(m) by means of thresholds T g(Q) that have been
determined using all months under consideration.

[91] Premonitory trends. Values of thresholds T g(Q)
and empirically determined premonitory trends of the indi-
cators are summarized in Table 8. The premonitory behavior
of the indicators has a transparent qualitative explanation.

[92] The values g(m) are coded on the lowest level of res-
olution, 0 or 1, discriminating only the values g(m) ≤ T g(Q)
and g(m) > T g(Q) and the description of the unemployment-
relevant situation is reduced to a monthly time series of a
binary vector with 9 components, as is usual in the pattern
recognition of infrequent events. For convenience, the same
code, 1, is given to the “premonitory” trend of each indi-
cator, regardless of whether it is an upward or a downward
one.

[93] It is considered here how the approach of a FAU is
reflected in the collective behavior of the indicators. Its sim-
plest description is function D(m) – the number of non-
premonitory indicators for the month m. If the identifica-
tion of premonitory trends is correct then the value of D(m)

13 of 24



ES2005 kossobokov and soloviev: prediction of extreme events ES2005

Figure 9. Unemployment in France. Top: Monthly unemployment, thousands of people. Thin line:
u(m), data from the OECD database; note the seasonal variations. Thick line: U(m), data smoothed over
one year. Bottom: Determination of FAUs. F (m) shows the change in the linear trend of unemployment
U(m). FAUs are attributed to the local maxima of F (m) exceeding threshold F = 4.0 shown by solid
horizontal line. The thick vertical lines show moments of the FAUs.

should decrease as a FAU approaches. By definition D(m)
is the number of zeros in the binary code of the situation.
This is the so-called “Hamming distance” between that code
and the code of the “perfect” premonitory situation, when
all the components are equal to 1, that is, all the trends are
all premonitory.

[94] Since only three indicators IP , L, and S are consid-
ered the value of D(m) may vary from 0 to 3. Change of
D(m) through the time considered is juxtaposed with FAUs
in Figure 10. One can see that the minimal value D(m) = 0
appears within 1 to 12 months before a FAU and at no other
time. Data on Figure 10 suggest the following hypothetical
prediction algorithm: An alarm is declared for 6 months af-
ter each month with D(m) = 0 (regardless of whether this
month belongs or not to an already determined alarm). A
waiting period of 6 months is introduced because in three
cases (1977, 1980, and 1995) the premonitory pattern does
not appear right before a FAU. Results of prediction are

shown in Figure 11. One can see that this algorithm pre-
dicts 6 out of 7 FAUs, including all three major ones.

[95] The algorithm was also applied to the data on monthly
unemployment rates for the U.S. civilian labor force, as given
by USDL. Unlike Europe, unemployment in USA had no
general trend during the years considered. One can see this
in Figure 12. The FAUs are the times when unemployment
started to rise, that are the local minima of the unemploy-
ment rate. They are formally defined as follows. Let R(m)
be the smoothed monthly unemployment rate in a month
m. Then R(m) has the local minima in a month m∗ if for
j = 1, 2, 3, 4 R(m∗ − j) ≥ R(m∗) and R(m∗ + j) > R(m∗).
Seven such minima are identified within the period 1960–
1999 in August 1962 (9), March 1967 (3), February 1969
(28), July 1973 (24), May 1979 (19), March 1981 (21), and
May 1989 (38). The duration of the unemployment rise is
given in brackets after the corresponding months m∗, which
are the targets of our prediction.
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Figure 10. Collective performance of premonitory trends. Function D(m) is the number of non-
premonitory trends at month m. Vertical lines show FAUs. Alarms (shown by dark gray bars) are
declared for 6 months after each month when D(m) = 0.

Figure 11. Retrospective prediction of FAUs in France: alarms for FAUs (shown by black bars) and
periods of the unemployment growth (shown by grey bars) FAUs. Checkered bars indicate the times, for
which data on economic indicators were unavailable.

[96] Application of the algorithm. Indicators IP ,
S, and L have the following American equivalents (see Sec-
tion 2.3.). For IP – “industrial production, total”, IP ; for S
– interest rate on 90-day U.S. treasury bills, at an annual rate
(in percent), FYGM3; for L – interest rate on 10-year U.S.
treasury bonds, at an annual rate (in percent); FYGT10.

[97] Alarms and FAUs are juxtaposed in Figure 13.
One can see that 4 out of 7 FAUs are captured by alarms;
three FAUs, in 1962, 1969, and 1981, are missed; and there

Figure 12. Unemployment rates in the U.S. Thin line: r(m), original data. Thick line: R(m), data after
smoothing out the seasonal variations. The thick vertical lines show the moments when unemployment
started to rise (local minima of smoothed unemployment rate).

are three false alarms, in 1968, 1983, and 1994. The alarms
within the periods of unemployment growth are not regarded
as false ones. Total count of errors for the USA is worse that
for France, though the result is better than random.

[98] First advance prediction. An advance predic-
tion by the suggested algorithm is shown in Figure 13. It was
found by analysing the data for USA up to December 2000
that D(m) = 0 during the four months, from February to
May 2000. Accordingly, the algorithm declared the alarm for
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Figure 13. Prediction of FAUs in the USA. Notations are the same as in Figure 11.

the period from February to November 2000 [Keilis-Borok et
al., 2001]. The data on unemployment rates for the subse-
quent period, up to July 2002, confirmed that prediction: a
FAU materialized in July 2000. Obviously, that confirma-
tion is most encouraging, but much longer experimentation
is necessary to validate the algorithm.

[99] Numerous other warnings of a coming rise of unem-
ployment in the USA did appear during the first months of
2000, and even in the popular media. The particular feature
of the prediction discussed here, however, is that a formal
unambiguous algorithm obtained it and that it indicates a
specific time interval when the unemployment will start to
rise.

[100] The second alarm has been declared from May 2006
to April 2007 (Figure 14). Now (in December 2007) it is
impossible to determine confidently that there is FAU during
this period because the last month for that the data on the
unemployment rate are available is October 2007. When the
data for November 2007–January 2008 will be available we
shall be able to decide is there FAU in March 2007 or not.

Figure 14. Advance prediction of FAUs in the USA. Unemployment rate in the USA, 1997–2002: thin
curve shows original data; thick curve shows the rates with seasonal variations smoothed out. The gray
bars show the alarm periods, defined by analysis of macroeconomic indicators. The black vertical line
shows the actual start of the unemployment rise, as defined by an analysis of monthly unemployment
rates for the U.S. civilian labor force.

3.6. Homicide Statistics

[101] Dynamics of crimes reflects important aspects of sus-
tainability of our society and the risk of its destabilization –
a prelude to a disaster. Here, a prominent feature of crime
dynamics – surge of the homicides in a mega-city is consid-
ered [Keilis-Borok et al., 2003]. The study integrates the
professional expertise of the police officers and of the scien-
tists working on pattern recognition of infrequent events.

[102] In this study statistics of several types of crime in Los
Angeles over the period 1975–2002 is analysed. The analysis
focuses on how these statistics change before a sharp and
lasting rise (“a surge”) of the homicide rate. The goal is to
find an algorithm for predicting such a surge by monitoring
the rates of different crimes.

[103] The following data sources are used:
[104] (i) The National Archive of Criminal Justice Data,

placed on the web site (NACJD: http://www.icpsr.umich.
edu/NACJD/index.html). Carlson [1998] gives its descrip-
tion. This site contains data for the years 1975–1993.
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Figure 15. Total monthly number of homicides in Los Angeles city, 1975–1993. Data are taken from
(NACJD: http://www.icpsr.umich.edu/NACJD/index.html), Carlson [1998]. Thin curve – original time
series, h(m), per 3,000,000 inhabitants. Thick curve – smoothed series H(m), with seasonal variations
eliminated. Vertical lines show the targets of prediction – episodes of SHS. Gray bars are the periods of
homicide surge. Checkered bars are the alarms declared by the hypothetical prediction algorithm.

[105] (ii) Data bank of the Los Angeles Police Department
(LAPD Information Technology Division); it contains simi-
lar data for the years 1990 – May 2001.

[106] Here the data for 1975–1993 as taken from (NACJD:
http://www.icpsr.umich.edu/NACJD/index.html), Carlson
[1998] are analyzed. Let h(m), m = 1, 2 . . . , be the time se-
ries of the monthly number of all homicides. Figure 15 shows
the plot of h(m) in Los Angeles, per 3,000,000 inhabitants
of the city. To identify the episodes of SHS (see Figure 5
above) the seasonal variations, which are clearly seen in Fig-
ure 15, are smoothed out by replacing h(m) with its linear

least square regression (1): H(m) = W h
(

m

m− 6
, m + 6

)
.

Since H(m) is defined on the time interval (m− 6, m + 6),

Table 9. Types of crime considered (after Carlson [1998]; abbreviations are indicated in brackets)

Homicide Robberies Assaults Burglaries

• All (H) • All (Rob) • All (A)∗ • Unlawful not forcible entry (UNFE)
• With firearms (FRob) • With firearms (FA)
• With knife or cutting • With knife or cutting • Attempted forcible entry (AFE)∗

instrument (KCIR) instrument (KCIA)
• With other dangerous • With other dangerous
weapon (ODWR) weapon (ODWA)∗

• Strong-arm robberies • Aggravated injury
(SAR)∗ assaults (AIA)∗

Note: ∗ Analyzed in sensitivity tests only.

it depends on the future. Thus, it is admissible to define
prediction targets (but not precursors).

[107] The function H(m) is shown in Figure 15 by the
thick curve. Three time periods of a lasting homicide rise are
clearly seen: 1977–1980, 1988–1992 and a relatively shorter
period 1985–1986. The starting months of these periods:
April 1977, March 1985, and August 1988 are chosen as pre-
diction targets. They are marked in Figure 15 by vertical
lines.

[108] Here the monthly data on seven types of crimes out of
the 13 types listed in Table 9 are analyzed to look for “pre-
monitory” trends of each crime that tend to appear more
frequently as an SHS approaches. Prediction itself is based
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on the collective behavior of these trends, as analyzed be-
low. Orientation on a set of precursors has been found to
be rather successful in prediction research: an ensemble of
“imprecise” precursors usually gives better predictions than
a single “precise” precursor [e.g. Keilis-Borok and Rotwain,
1990; Zaliapin et al., 2003].

[109] Observation. According to police experience,
the crimes considered here often rise before an SHS.

[110] To smooth out seasonal variations, we replace the
plot f(m) of each type of crime is replaced by its regression

(1): F (m) = W f
(

m

m− 12
, m

)
. Regression is done over

the prior 12 months and does not depend on the future, so
that it can be used for prediction. These plots exhibit two
consecutive patterns:

[111] (i) First, one can see a simultaneous escalation of
burglaries and assaults within several (4 to 11) months be-
fore an SHS; at the same time robberies are declining.

[112] (ii) Later on, closer to an SHS, one can see, albeit
not so clearly, a simultaneous escalation of different kinds of
robberies.

[113] The first pattern is formally defined and explored

here. To quantify the above observation the function Kf
(

m

s

)
(2) is used to approximate the trends of the crimes where
f identifies the type of crime. Next, following the pattern

recognition approach, the trends (the values of Kf
(

m

s

)
)

are discretized on the lowest level of resolution: a binary
one distinguishes only the trends above and below a thresh-
old T g(Q) where g denotes a relevant function.

[114] According to the above observations, it is expected
that “premonitory” trends lay above the respective thresh-
olds for assaults and burglaries, while they lay below these
thresholds for robberies. One can see this in Figure 16, show-
ing the functions Kf (m − 12, m) for 7 crime types. For
convenience, the same code, 1, is given to the “premoni-
tory” trend of each crime, regardless of whether it is above
or below the threshold of discretization. The seven monthly
crime statistics considered here are thus reduced to a binary
vector with 7 components.

[115] The values of Q used for discretization are given in
Table 10.

[116] The simplest description of the collective behavior of
the trends is D(m) – the number of non-premonitory trends
at a given month m. If the identification of premonitory
trends is correct then D(m) should be low in the proximity
of an SHS. By definition D(m) is the number of zeros in the
binary code of the monthly situation. This is the so-called
“Hamming distance” between that code and the code of the
“pure” premonitory situation, {1,1,1,1,1,1,1} when all seven
trends listed in Table 10 are premonitory.

[117] Figure 17 shows the change of D(m) with time. The
value of D(m) may vary from 0 to 7 but the minimal ob-
served value is 1. That value appears within 4 to 11 months
before an SHS and at no other time. An examination of the
temporal change of D(m): An alarm is declared for 9 months
each time when D(m) ≤ ∆ for two consecutive months (re-
gardless of whether these two months belong or not to an
already declared alarm).

[118] The condition D(m) ≤ ∆ means, by definition, that
∆ or less trends are not premonitory at the month m. A
count of D(m) (Figure 17) suggests to take ∆ = 1. A waiting
period of 9 months is introduced because the premonitory
trends do not appear right before an SHS. The requirement
that this condition holds for two months in a row makes
prediction more reliable and reduces the total duration of
alarms.

[119] The alarms obtained by this algorithm are shown
in Figure 17 by the checkered bars. The total duration of
these alarms is 30 months, representing 14 percent of all
months considered. In real prediction such a score would be
considered quite satisfactory.

[120] The algorithm has been tested by application to “out
of sample” data not used in its development. Such tests are
always necessary to validate and/or improve a prediction
algorithm. Such a test is possible since the algorithm is self-
adaptive: the thresholds T g(Q) are not fixed but are adapted
to crime statistics, as the percentile of a level Q.

[121] Los Angeles, 1994–2002. So far we used the data
source [Carlson, 1998], (NACJD: http://www.icpsr.umich.
edu/NACJD/index.html) covering the years 1975–1993 was
used. To extend the analysis past 1993, the data of the
LAPD Information Technology Division, covering the time
period from January 1990 to May 2002 have been involved.
It has been found by comparing the data for the overlapping
three years that they are reasonably close, particularly after
smoothing.

[122] Figure 18 shows the homicide rates through the
whole period from 1975 to May 2002. Two SHS episodes
are identified in the later period 1994–2001. They are indi-
cated in Figure 16 by dashed vertical lines. The first episode
is captured by an alarm, which starts in the month of SHS
without a lead time. The second episode is missed in that
an alarm has started two months after it. That error has
to be put on the record; nevertheless the prediction remains
informative: during these two months the monthly homicide
number rose by only a few percent, giving no indication that
a lasting homicide surge has started.

[123] New York City. Figure 19 shows the monthly
total homicide rates in New York City per 7 million in-
habitants of the city. Two SHS episodes (February 1978
and February 1985) are identified. The prediction algorithm
gives two alarms, as shown in Figure 19 by checkered bars.
One of them predicts the second SHS, while the first one is

Table 10. Premonitory trends for selected crime types

# Crime type Premonitory trend s Q, %

1 Rob Below threshold 12 66.7
2 FRob “–” 12 66.7
3 KCIR “–” 12 50.0
4 ODWR “–” 12 87.5
5 FA Above threshold 12 50.0
6 KCIA “–” 12 50.0
7 UNFE “–” 12 50.0
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Figure 16. The regression coefficients Kf (m − 12, m) for seven crime types. See the defi-
nition (2) in Section 3.2. and notations in Table 9. Original data are taken from (NACJD:
http://www.icpsr.umich.edu/NACJD/index.html), Carlson [1998]. Horizontal lines and arrows show
respectively discretization thresholds and premonitory trends in accordance with Table 10. Vertical lines
show episodes of SHS. Gray bars indicate months when D(m) ≤ 1.
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Figure 17. Homicide surges and alarms determined by the
prediction algorithm. Start of a homicide surge is shown
by the vertical line. Function D(m) is the number of crime
statistics not showing premonitory trends at a month m.
Alarms (shown by checkered bars) are declared for 9 months,
when D(m) ≤ 1 during two consecutive month. Adjustable
parameters correspond to variant 10 given in Table 7.

missed. Another alarm is considered as a false one. Though
the failure to predict and a false alarm are disappointing, the
results as a whole appear to be useful: one of the two SHS is
captured by alarms lasting together 21 months, amounting
to 10 percent of the time interval considered.

Figure 18. Performance of prediction algorithm through 1975–2002. Data from [Carlson, 1998],
(NACJD: http://www.icpsr.umich.edu/NACJD/index.html) for 1975–1993 have been used to develop
the algorithm. It was than applied to the data from the Data Bank of the Los Angeles Police Depart-
ment (LAPD Information Technology Divison) for subsequent 9 years. Notations are the same as in
Figure 15. Dashed vertical lines indicate SHS episodes that occurred after 1993.

3.7. Discussion of Socio-Economical Implications

[124] If the crime dynamics is considered then on the prac-
tical side, the results given above enhance the capability to
identify a situation that is “ripe” for homicide surges and,
accordingly, to escalate the crime prevention measures. In
a broader scheme of things, a surge of crime is one of po-
tential ripple effects of natural disasters. Accordingly the
risk of a natural disaster is higher in such a situation. The
approach applied here – a heuristic “technical” analysis – is
not competing with but complementary to the cause-and-
effect “fundamental” analysis. The cause that triggered a
specific homicide surge is usually known, at least in retro-
spect. This might be, for example, a rise in drug use, a
rise in unemployment, a natural disaster etc. However, that
does not render predictions considered in this study redun-
dant. On the contrary, this approach might predict an un-
stable situation when a homicide surge might be triggered,
thus enhancing the reliability of cause-and-effect predictions.
Among available data that can be incorporated in the anal-
ysis are other types of crimes [Bursik et al., 1990], economic
and demographic indicators [Messner, 1983] and the terri-
torial distribution of crimes. It seems worthwhile to try the
same approach with other targets of prediction – e.g. surges
of all violent crimes; and to other areas, e.g. separate Bu-
reaus of the city of Los Angeles, or to other major cities.
In a broader scheme of things, this analysis discriminates
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Figure 19. Application of the prediction algorithm to New York City. Nota-
tions are the same as in Figure 15. Data are taken from [Carlson, 1998], (NACJD:
http://www.icpsr.umich.edu/NACJD/index.html). Homicide statistics is shown per 7,000,000 of
inhabitants.

stable situations from unstable, where the risk of different
disasters is higher. At the same time it would be important
to set up an experiment in advance prediction of homicide
surges in Los Angeles using the algorithm hypothesized here.
Successes and errors will both provide for evaluation of this
algorithm and for developing a better one.

[125] The alarms, obtained here, are rather durable. In a
second approximation they may be used as a background for
the search of the shorter-term ones. Note, that the shorter
alarms are not necessarily more useful for practical purposes
[e.g. Molchan, 1994].

[126] On theoretical side if confirmed by advance predic-
tion these findings would expand the known limits of pre-
dictability of socio-economic systems. They and the realm of
robust behavior patterns in macroeconomics provide heuris-
tic constraints for macroeconomic models. Besides econo-
metric models, as reviewed by Engle and McFadden [1994],
this refers also to models of non-linear systems such as de-
veloped in statistical mechanics [Allègre et al., 1995; Blanter
et al., 1997; Burridge and Knopoff, 1967; Gabrielov et al.,
2000; Newman et al., 1994; Zaliapin et al., 2003].

[127] The economic integration of the European Union is
increasing, along with the general globalization of the econ-
omy. This will not necessarily render the analysis irrelevant,
since the algorithms are very robust. In any case, economic
integration would make it easier to develop new algorithms

of this kind, with an even higher level of averaging of the
processes considered.

[128] Similarly, the results may not become irrelevant due
to some drastic change of the mechanisms controlling the
quickly accelerating modern economy. The premonitory pat-
terns considered here probably reflect some type of scenario
of transition to critical phenomena (one that is common for
many mechanisms in the case of non-linear dynamics). An
indirect confirmation is the uniform performance of the pre-
diction algorithm over the last 35 years.

[129] The results described above suggest the following
directions for further research: (i) here the indicators that
are sufficient for prediction have been identified, but not
all indicators potentially useful for that purpose; (ii) with
less robust predictions, premonitory patterns may be con-
sidered in the context of the accelerator hypothesis and,
more generally, the cointegration of each indicator separately
and in combinations, using Dickey-Fuller tests and Granger
causality concepts [Ericsson, 1998; Ericsson and MacKin-
non, 1999; Watson, 1994]; (iii) in the search for subsequent
approximations to prediction it would be interesting to ex-
plore, e.g., the changes of unemployment during the FAUs;
also, it may be preferable for purely computational reasons
to consider the reciprocal of unemployment as used in previ-
ous studies and the prediction of a decrease of unemployment
obviously deserves a parallel study.
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4. Final Remarks

[130] The examples of the on-going prediction of extreme
events in geophysical and socio-economical systems demon-
strate the efficiency, confirmed and potential, of the algo-
rithms designed by a common pattern recognition approach
for solving itchy challenging problems of practical interest.
The necessary prerequisites of verification of a pattern recog-
nition solution are the on-line availability of data used in
computation for relevant integrals and indicators, as well as
a setup of an unambiguous test experiment. The first is feasi-
ble in many branches of Science now, while the second needs
heuristic search of potential solutions and special efforts of
durable monitoring of the phenomenon in question.

[131] The achieved experience in the straight forward prac-
tical approach to earthquake prediction problem provided
already a unique collection of successes and failures that
permit their systematic analysis and further development
of the methodology. Obviously, the progress in Quantita-
tive Earthquake Prediction will require more data, novel pi-
oneering studies, and verification of arising hypotheses on
correlations between the occurrence of seismic events and
observable phenomena.

[132] Similar to earthquake prediction studies decisive val-
idation of the socio-economic findings described above re-
quires experimentation in advance prediction. Particularly
encouraging for further research is the wealth of yet un-
tapped possibilities, since only a small part of the data
and mathematical models that are currently available in the
fields and that are evidently relevant to considered critical
transitions have been used so far.
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