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A mathematical model of the crustal waveguide

A. V. Karakin

VNIIGeosystem, Moscow

Abstract. The two-layer model of the upper crust waveguide developed in [Karakin, 1990a;
Karakin and Kambarova, 1997] is studied. The upper layer is poroelastic and the lower
layer (the waveguide proper) can be in poroviscous or elastic dilatancy states. The model
is based on the concept of two concurrent processes that are alternately active in the lower
layer (waveguide): dilatancy and compaction. Horizontal tectonic forces displace the upper
layer relative to the lower one. As a result, the porous space in the lower layer experiences
dilatancy expansion, and fluids are sucked into the waveguide from upper and lower layers.
The porous structure of the waveguide is then destroyed, which is accompanied by the
transition of the system into the poroviscous state. The lithostatic pressure expels the fluids
upward from the waveguide. This paper is devoted to the mathematical analysis of this
model. A new formulation of the boundary value problem is proposed and a wave solution
of the pertinent equations is given. Self excited waves in crustal waveguides are assumed
to provide the driving mechanism of the vertical fluid migration in the upper crust. This
migration gives rise to oil and gas deposits if the fluid flows strike impermeable anticlinal
beds (traps). This model is a constituent part of the general concept of the mechanism
responsible for mud volcanism. Faults cutting the traps and reaching the surface initiate
the formation of mud volcanoes. Analysis of the waveguide model can provide constraints
on the feeding conditions of mud volcanoes. The concept of the upper crust fluid regime
proposed in the paper reconciles the hypotheses of the organic and inorganic origins of
hydrocarbon accumulations. Hydrocarbon fluxes enter the crustal waveguide both from
above (organic origin) and from below (inorganic origin). These fluid fluxes are reworked
in the waveguide, after which they move upward. As a result, accumulated hydrocarbons
display features of different origins.

Introduction

Numerous studies [Fyfe et al., 1978; Grigoryev, 1971;
Smith, 1968] provide evidence that the underground water
forms a unified underground hydrosphere. Water (bound
and free) in the crust is comparable in volume with ocean
water and amounts to 4% of the crust volume. Such an
amount of crustal water has a significant effect on all geo-
logical processes in the crust. One may naturally expect that

Copyright 2001 by the Russian Journal of Earth Sciences.

Paper number TJE01067.
ISSN: 1681–1208 (online)

The online version of this paper was published October 29, 2001.
URL: http://rjes.agu.org/v03/TJE01067/TJE01067.htm

the fluid effects are strongest in fractured, higher permeabil-
ity layers, including waveguides. Therefore, the relevance of
this problem is doubtless.

Seismic, magnetotelluric and other studies show that the
deep crust has a complex layered structure. Drilling data
[Overdeep Kola Drillhole, 1984] and interpretation of deep
seismic soundings [Seismic Models..., 1980] indicate that the
crust is strongly fractured and saturated with fluids. The
Kola hole yields evidence of the most fractured section in a
depth interval from 7 to 10 km. Fracturing involves the en-
tire crust and reaches the upper mantle. On the whole, the
crust is composed of alternating rigid, seismically transpar-
ent and seismically opaque layers, the latter being waveg-
uides. Data on the continental crust waveguides were sum-
marized by Krasnopevtseva [1978]. Figure 1 presents a map
showing crustal waveguides in the territory of the former
USSR. According to seismic data, a waveguide is character-
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278 karakin: a mathematical model of the crustal waveguide

Figure 1. Map showing waveguides on the territory of the former USSR: (1–3) waveguides in the (1)
upper, (2) middle and (3) lower crust; (4) areas where waveguides are reliably absent; (5) areas with two
waveguides in the upper and middle crust; (6) areas where waveguides are probably absent; (7) areas
where waveguides are probably present in (a) upper and (b) middle crust; (8–10) position of crustal
waveguides as constrained by surface waves from earthquakes: (8) upper, (9) middle and (10) lower
crust.

ized by stronger attenuation and lower velocities of seismic
waves. Magnetic measurements show that its electrical con-
ductance ranges from 200 to 2000 S, which is much higher
than the conductance of crustal layers above and below the
waveguide. Although waveguides are widespread throughout
the crust and occur at various depths, some regular features
are recognized in their occurrence in the continental crust.
They are more frequent at depths of 10–15 and 20–25 km.
Their thickness varies from 1–2 to 15–17 km, most often
amounts to 4–10 km and is typically higher in tectonically
active zones. The velocity difference between the waveguide
and surrounding rock masses varies from 0.1 to 1.0 km/s in
the middle and upper crust. This velocity jump tends to
increase with depth.

Gutenberg [1959] supposed that seismic waveguides exist
at asthenospheric depths. Afterward they were discovered
in the upper mantle, lower crust and near the surface in
rift zones. The low velocity zones were assumed to be re-
lated with the transition of the matter into amorphous state
[Magnitsky, 1968] and with partial melting [Turcotte and
Schubert, 1982]. This hypothesis suitable for the astheno-
sphere and consistent with its rheological properties was ex-
tended to the crust. However, temperatures in the crust
(particularly in its upper part) are too low to account for
the presence of melt inclusions throughout a large volume.
Therefore, other hypotheses were also examined and major-
ity of them related the waveguide properties to lithological
distinctions of rocks (e.g. the presence of graphite-bearing
rocks). The hypothesis on the lithological origin of waveg-

uides encounters serious difficulties. One of the difficulties
is the fact that the crust material is incessantly involved in
upward and downward movements giving rise to folds and
lithological unconformities, whereas waveguides occur, as a
rule, horizontally at a fixed depth. This indicates that they
are likely to be associated with the state, rather than com-
position, of the matter.

Comparison of seismic [Krasnopevtseva, 1978; Seismic
Models..., 1980] and geoelectric [Vanyan, 1984; Vanyan and
Shilovskii, 1983] data shows that low velocity and higher
electrical conductivity zones often (but not always) coin-
cide. The experimental data accumulated since the 1960s
suggest that at depths not greater than 30 km these zones
are most probably due to the presence in them of electrically
conducting fluids [Vanyan, 1984]. The volume concentration
of fluids in higher conductivity layers attains a few percent
[Feldman, 1976; Vanyan and Shilovskii, 1983]. Furthermore,
one cannot exclude a situation (most probable in the lower
crust), when the fluid in the porous structure of waveguide
is alternately represented by either melt or volatile (water)
fluids, depending on the thermal regime.

The fractured waveguide structure is naturally interpreted
in terms of the analysis of strength and fracture character-
istics of rocks, which are determined from laboratory tests
at appropriate pressures and temperatures and from various
theoretical models. The very notion of the strength of crustal
material needs to be additionally specified. The strength is
usually understood in mechanics as a loading limit of an
elastic-brittle or ductile material. However, the thus deter-
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Figure 2. Profiles of the generalized strength (a–f) in various regions differing in composition, structure
and thermal regime of lithosphere (see text for explanations).

mined strength depends on the time and mode of loading,
as well as on the scale of the study object. Therefore, it is
not a an authentic characteristic of the material. The no-
tion of creep strength related to a level of deviatoric stresses
at a given strain rate is introduced under nonlinear viscous
flow conditions. The strain behavior, the fracture mode
and thereby the essence of the strength notion change with
depth. For this reason, the so-called generalized strength,
including all of the above aspects, is introduced. The gen-
eralized strength characterizes the compliance of material
and its liability to fracture under real conditions at specific
depths and at pertinent pressures. The physical meaning
of this characteristic is somewhat indefinite, but it is very
beneficial to the study of mechanical properties of the crust.
Figure 2 plots the generalized strength versus depth varia-
tion [Ranalli and Murphy, 1987]. As seen from the figure, the
generalized strength strongly varies with depth. The upper
lithosphere (crust) is cold and strong. However, the general-
ized strength has local minimums at various depths, and the
first minimum is usually observed in the middle crust. Fig-
ure 2a characterizes the lithosphere of Precambrian shields
with a 40-km thick granite crust. The strength starts de-
creasing from depths of 20–25 km. Figure 2b plots the re-
sults calculated for a cold, normally thick continental crust

stratified into granite (about 20 km thick) and basite lay-
ers. Weakened zones are observed at the boundary between
them. Figure 2c presents the strength curve calculated for
the cold continental lithosphere with a 60-km thick gran-
ite layer characteristic of Mesozoic-Cenozoic collision zones
(Tien Shan and Tibetan plateau). The lower crust strength
drop here is much larger than under the cold Precambrian
shields. Figure 2d characterizes a situation similar to Fig-
ure 2c except that the crust is divided into granite and basite
layers.

The picture is basically different in tectonically active re-
gions, as is seen from Figures 2e, 2f. Figure 2e characterizes
a 30-km thick continental crust under conditions of extension
or shear (Basin and Range Province or San Andreas fault).
The weakened brittle layer is at a depth of 10–15 km here.
Given similar conditions and a crust stratified into granite
and basite layers, two minimums appear at the bases of these
layers (Figure 2f).

The weakened crustal zones fracture under strong shear
deformations and develop into waveguides with fractured
porous structure. This concludes the possible general de-
scription of the mechanism of waveguide formation. How-
ever, the generalized strength is too general and vague
notion, and the actual fracture mechanism is more com-
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Figure 3. Generalized description of brittle-plastic failure of geomaterials under thermodynamic condi-
tions of the continental crust.

plex. Therefore, it is appropriate to consider other fracture
schemes.

Nikolaevskii [1990] proposed a concept accounting for ex-
perimental results and observed crustal structure (Figure 3).
The plots and diagrams shown in Figure 3 illustrate the clas-
sification the pre-fracture regime and the fracture itself as a
function of depth. The upper part of the figure presents the
ultimate stress, elastic limit and dilatancy onset versus pres-
sure. The latter curve characterizes the ultimate shear at
which the dilatancy expansion of the elastic medium begins
as a result of cracking. The lower part of the figure presents
experimental plots and diagrams of fracture, showing the
fracture behavior as a function of pressure and tempera-
ture at various depths of the continental crust: the fracture
mode alone varies with depth, whereas the fracture itself

develops to depths as great as the lowermost crust. If the
lateral compression is small, the cracks are parallel to the
compressive stress. This accounts for the fact that fracture
and major fault planes in the upper crust are subvertical.
A system of inclined fractures develops at greater depths.
This is consistent with experimental data indicating that in-
clined cracks arise in a sample at higher pressures. As the
depth further increases and the Coulomb friction force be-
comes comparable with the ultimate strength, the stick-slip
fracture due to the failure of material along the crack edges
develops. Finally, the Coulomb friction force exceeds the
ultimate strength, the fracture along major cracks becomes
basically impossible, the entire medium becomes embrittled
and deformations occur as a cataclastic flow. The zone of
total fracture and cataclastic flow arises below the Conrad
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boundary; the state of material in this permeable and frac-
tured zone can no longer change. The transition to the true
plasticity (the medium is impermeable) occurs at the Moho.

Figure 4 shows the crustal structure as derived from seis-
mic data (after [Bott, 1971]). The state transitions inter-
faces shown in Figure 3 correspond in Figure 4 to seismic
boundaries F, C and M – Forsch, Conrad and Moho. The
Forsch boundary is an interface marking the transition from
inclined faults to the stick-slip (dilatancy) faulting.

This concept implies that crustal waveguides are identi-
fied with the stick-slip faulting zone between the Forsch and
Conrad boundaries. The dilatancy effect associated with
the pore volume enlargement takes place in this zone. Also,
listric faults widen and flatten out here as is evident from
various geophysical observations. The dilatancy expansion
gives rise to the vacuum effect of sucking a fluid [Nikolaevskii,
1990]. Note that this scheme is rather formal and very ap-
proximate. It does not account for changes in the direc-
tion and value of tectonic stresses, as well as effects of fluids
and dynamics of layers. In particular, the scheme does not
account for the fact that the structure of layers is largely
dependent on their preceding state, implying that the struc-
ture and the properties of the crust are described by evolu-
tionary geomechanical equations including state diagrams.
Therefore, the Nikolaevskii scheme should be regarded as a
starting hypothesis providing very general ideas.

The displacement of overlying layers along a waveguide
can be effected through a mechanism similar to lubrication.
This is consistent with the concept of tectonic stratification
[Tectonic Stratification..., 1980] underlying the idea of two-
stage plate tectonics [Lobkovskii, 1988]. In accordance with
these schemes, the crust consists of layers strongly differ-
ing in viscosity. The upper, most rigid part of the crust
is divided into microplates moving relative to one another
similar to macroplates in the classical scheme of plate tec-
tonics. The problem of driving tectonic forces responsible

Figure 4. Crustal structure from seismic data (F, C and M
are, respectively, Forsch, Conrad and Mohorovicic bound-
aries).

Figure 5. Diagram illustrating the two-layer model of a
waveguide. The upper layer is elastic, and the lower layer
has a complex rheology. The lateral arrow shows the direc-
tion of the tectonic forces applied. The top arrow shows the
direction of the wave motion.

for the motion of the system as a whole is also solved within
the framework of the latter. These forces produce intraplate
deformations and displacements of upper layers relative to
lower ones. The energy of global motion is converted into the
energy of regional movements of microplates which can be
intricate and involve several levels, because not only waveg-
uides but also the lowermost layers of the crust, involved in
the cataclastic flow, can be plastic.

The permeability of rocks (particularly in fault zones) is
known to be rather high, and their strength is low in such
zones. Therefore, on a geological time scale, fluids should
have been inevitably expelled out of waveguides, cracks and
pores would have been closed and the waveguides themselves
would have disappeared. Simple estimates show that the
lifetime of waveguides in the upper crust is on the order of
102–104 years. There are no reasons to believe that waveg-
uides exist only at present. Apparently, they have existed
since the origination time of the continental crust. Then,
a driving mechanism should exist which periodically sucks
fluids back into the waveguide, thereby enhancing the frac-
turing of the latter.

The assumption on viscous rheology of some crustal layers
is supported by geological and geophysical evidence and is
consistent with the concept of the rheological [Nikolaevskii
and Sharov, 1985] and tectonic [Peive, 1981] stratification,
as well as with the concept of two-stage plate tectonics
[Lobkovskii, 1988].

1. Physical Properties of a Waveguide

The model proposed in [Karakin, 1990a; Karakin and
Kambarova, 1997] is represented by a system of two thin
layers (Figure 5) resting on a rigid impermeable substratum.
The upper layer is elastic and has a low permeability. The
lower layer (waveguide) is fractured and porous, is saturated
with aqueous fluids and possesses certain specific properties
of filtration and deformation.

The material of the lower layer can assume two states:
dilatancy and compaction. The skeleton in the first state is
elastic-brittle. The main factor controlling this regime is the
Coulomb-Mohr law relating normal (σ) and ultimate shear
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Figure 6. Diagram illustrating the state of the waveguide
medium. The movement of the representation point on a
closed contour in the phase plane (pa, f) corresponds to the
oscillatory cycle of the wave process at two points of the
waveguide located at its top and bottom and lying on a
vertical line. The remaining trajectory segments are the
same for all points lying on a vertical line.

(τ) stresses on a microlevel. When averaged and reduced to a
macrolevel, this law is represented by certain relations con-
necting macroscopic quantities. Since the porous medium
of waveguide is saturated, its stress state is defined by the
Terzaghi principle, according to which the total stress tensor
is divided into effective stresses σef

ij and pore pressure p :

σij = σef
ij − pδij . (1.1)

The Terzaghi principle states that the state of material is
defined by the effective stress tensor, or more specifically, by
its isotropic part. Another independent parameter of state
is the porosity f . The higher the porosity, the more prone
the porous structure skeleton to fracture.

The vertical force applied to the base of the elastic layer is
constant in the thin-layer approximation; it is independent
of the stress state of the two-layer system (in particular, it
is independent of the dilatancy expansion in the lower layer)
and is equal to the elementary column weight of the elastic
layer. The deviatoric stresses at the waveguide depth being
small compared to the rock pressure, the latter is constant
at the waveguide top and changes with depth in accordance
with the geostatic law. Only the pore pressure p and the
isotropic component of the effective stress tensor σef

kk experi-
ence significant variations. These quantities are interrelated
via relation (1.1) and therefore the pore pressure may be
taken as an independent controlling parameter p.

I assume that the aforementioned properties of this model
can be described in terms of a certain diagram of states. This
diagram can be simplified proceeding from the following con-
siderations. Formulating the problem in a vertical plane, I
introduce a system of coordinates (x, z) with a vertical axis
z directed upward. Using relation p = pa + ρgz + const, the
pore pressure can be divided into the geostatic component
(equal to ρgz + const) and the piezometric component pa

accounting for filtration. Here ρ is the density of the two-
phase medium and g is the gravity acceleration. In view
of the aforesaid, the values σef

kk and pa coincide. In other

words, the properties of the medium and the cyclic process
at any point of the waveguide can be described in terms of
the diagram of state in the plane (pa, f) shown in Figure 6,
where two areas of states I and II are separated by the curve
σ∗(f) at which the skeleton structure experience a qualita-
tive change.

An elastoplastic dilatancy regime takes place at pa < σ∗.
It is described by dilatancy equations which results from
averaging the formation process of cracks obeying each the
Coulomb-Mohr law. Due to shear loading under dilatancy
mode conditions the pore space expands, the pore pressure
decreases, and the waveguide sucks in fluids from both above
and below. Faults play the role of drainage channels. This
process is known in literature and has been repeatedly de-
scribed as seismic (or tectonic) injection or as a “seismic
pump.” The crack-pore volume enlarges up to a maximum
porosity value fmax at which the porous structure skeleton
fractures. The load is transferred at this moment from skele-
ton to fluid, and the pore pressure dramatically drops. At
pa > σ∗ the pore pressure is so high that the existence of
a coherent skeleton is basically impossible: the skeleton dis-
integrates into separate grains that can move relative one
another.

The waveguide material in this state is transformed into a
porous-granular structure with a viscously deformable skele-
ton possessing both shear and bulk viscosities, and the de-
formation process is accompanied by fluid filtration. Such a
medium is described by compaction (viscous consolidation)
equations.

Drainage of the system in the compaction regime is very
limited (because large cracks in outlet channels and faults
are closed) and occurs through the low-permeability roof of
the waveguide. Porosity in the compaction process decreases
to its minimum value f = fmin at which pores close. This is
accompanied by resurrection of the skeleton from the non-
viscous granular structure, the compaction regime is trans-
formed into the elastic-plastic mode, and the cycle is further
repeated.

I assume that the shear viscosity in compaction equations
is constant and the bulk viscosity and hydraulic resistance
(the inverse of permeability) are porosity dependent. Then,
the compaction equations of motion are generally nonlinear.
However, their solutions admit the principle of superposition
of shear and volume deformations, i.e. these components of
the solution can be treated independently of one another.
Moreover, the volume deformations and filtration processes
in the lower layer can be treated independently of the dy-
namics of the upper layer. The compaction phase duration
is equal to the time required for pores to diminish under
the action gravity from maximum to minimum sizes. This
process determines the compaction phase time alone (and
thereby the entire time interval of the wave motion) and
does not affect the deformation mode of the two-layer sys-
tem. The coupling of the upper and lower layers in the com-
paction phase affects shear deformations in the lower layer
alone. Therefore, the elastic and viscous layers form a coher-
ent system described by the Elsasser equation similar to the
equation describing the two-layer asthenosphere-lithosphere
system.

Thus, the pore space configuration changes at the maxi-
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mum (fmax) and minimum (fmin) values of porosity. These
states alternately change one another in a quasi-dynamic
regime illustrated by the diagram in Figure 6. The cyclic
structural variation is represented in this diagram by a closed
contour. The single and double dashes indicate respectively
the waveguide bottom and top in the dilatancy phase. The
respective trajectory segments are vertical, because the pore
pressure variation in the dilatancy phase are much weaker
than in the compaction phase. The distance between these
segments is ∆ρgH1, where ∆ρ the density contrast between
the skeleton and fluid.

The entire system is set in motion by a horizontal force of
tectonic origin applied to the upper elastic layer. This force
supplies the energy to the entire process. To a first approxi-
mation, the upper layer is under the action of homogeneous
horizontal normal stresses. The next approximation should
account for tangential stresses and the gradient of normal
stresses. The tangential stresses at the base of the elastic
layer are in equilibrium with the normal forces in this layer
and produce shear deformations in the lower layer. Thus, at
any time moment the waveguide is under shear conditions.

The force of resistance of the lower layer to the upper one
increases with the horizontal size of both layers and tends
to infinity as the horizontal size infinitely increases. Accord-
ingly, the normal tectonic force driving the system also tends
to infinity. Nevertheless, the model equations admit a wave
solution possessing periodical properties. Hence the neces-
sity to separate periodic and aperiodic components of the
solution and to correctly formulate the problem by specify-
ing appropriate boundary and additional conditions.

Such a separation is based on the assumption that all
nonstationary processes are periodic and the aperiodic com-
ponent of the solution is stationary. The driving force of the
process is represented by given stresses at infinity described
by a static aperiodic component. These stresses and the
work done by them are converted into a wave process. Con-
sequently, these two components should be related through
boundary conditions.

Note that the wave process complying with such an ide-
alized formulation is unrealistic. In reality, a 3-D problem
bounded in time and space should be solved. However, the
possibility of a correct formulation of the problem and the
existence of an idealized solution are basically important for
understanding the physical nature of this process.

Upon separating a stationary, monotonically increasing
component from the general solution of the two-layer sys-
tem, a wave solution to the residual problem is sought for as
follows. The dilatancy-mode porosity increases from its min-
imum to a maximum value. The compaction-mode porosity
decreases from its maximum to the minimum value. The
wave nature of the solution implies that the time t appears
the wave argument x−ut, where u is the wave velocity found
from the solution. Actually, the compaction equation alone
includes the time derivative, so that the wave period is deter-
mined by the compaction phase duration. The wave solution
can be considered existing if one succeeds in constructing a
periodic solution for the wave argument. This process will be
referred to as self-excited waves. Its driving force is provided
by horizontal tectonic stresses. Due to the aforementioned
specific properties of the waveguide material, the constant

horizontal tectonic forces give rise to complex self-excited
wave processes in the two-layer medium.

2. Analysis of the Upper Elastic Layer of
the Two-Layer System

As mentioned above, the upper layer is described by equa-
tions of the elasticity theory. Vertically uniform horizontal
forces directed along the positive direction of the x axis are
applied at the lateral boundaries. The upper boundary is
free and tangential stresses resulting from the interaction
with the lower layer are applied at the lower boundary. I
assume that the wave moves in the negative direction of the
x axis. All parameters of a stationary wave depend solely on
the argument y = x + vt. In the moving coordinate system,
the definition region of length L is bounded by the verti-
cal boundaries y1 < y < y3, L = y3 − y1 (Figure 5). The
lower and upper layers of thicknesses H1 and H2 are defined
by the respective intervals −H1 < z < 0 and 0 < z < H2.
Since the hydrostatic component of the solution in the upper
layer plays no role in the solving process, I subtract it from
the initial equations. For definiteness, I address the plane
strain state, implying that lateral displacements are absent
but lateral stresses are present. Then,

∂σij

∂xj
= 0, σij = 2µεij + λθδij ,

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, θ ≡ ∂uj

∂xi
(x1 ≡ y, x2 ≡ z) .

(2.1)

Here, σij and εij are the stress and strain tensors, θ is the
isotropic part of the strain tensor, ~u is the displacement vec-
tor, and λ and µ are the Lame coefficients reduced to the
plane case (K = λ + µ is the reduced bulk modulus). Thus,
the boundary problem for the upper layer reduces to the
problem for a weightless elastic layer with certain forces ap-
plied to its boundary. Stresses vanish at the upper boundary
of the layer, whereas stresses and displacements ui are con-
tinuous at its lower boundary. The displacements vanish at
the lower boundary of the waveguide:

σijnj = 0 at z = H2,[
ui

]∣∣+
−

= 0,
[
σijnj

]∣∣+
−

= 0, at z = 0,

ui = 0 at z = −H1 ,

(2.2)

where the symbol
[
σij

]∣∣+
−

means a jump in the quantity σij

at a given boundary, nj is the normal unit length vector.
The wave process implies certain periodicity conditions

that are authentically valid in the lower layer. In the up-
per layer all quantities include both periodic and aperiodic
components. In other words, the horizontal stress σxx and
displacements ux are represented as

σxx = σv
xx − 2

y

L
σ∗ − σ∗∗, σ∗ > 0,

ux = uv
x −

σ∗

LE
y2 − σ∗∗

E
y, E ≡ 4µ(µ + λ)

(2µ + λ)
.
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Here, E is the plane analog of the Young modulus, and σv
xx

and uv
x are wave components of the horizontal stresses and

displacements, which meet the periodicity condition

σv
xx(y1) = σv

xx(y3), uv
x(y1) = uv

x(y3) . (2.3)

The values σ∗ and σ∗∗ characterize forces applied at in-
finity, which set the system in motion. More specifically, σ∗

determines the stress increase rate and σ∗∗ is related to the
choice of the reference point. The minus sign at these values
indicates that the forces are compressive. Strictly speaking,
constant σ∗∗, as well as stresses σxx, tends to infinity as the
length of layers increases. However, they can be subtracted
from these infinite stresses. In other words, the finite quanti-
ties σ̃xx = σxx+σ∗∗ and ũx = ux+2σ∗∗y/LE are introduced
instead of σxx and ux; below the previous notation of these
values is preserved (the tilde sign is omitted) because infinite
stresses and displacements are meaningless and are no longer
used. As a result, the boundary value problem considered
in the interval y1 < y < y3 includes solely finite stresses and
displacements which can be represented as

σxx = σv
xx − 2

y

L
σ∗, ux = uv

x −
σ∗

LE
y2 . (2.4)

However, one should keep in mind that in this case the
values σxx and ux are no more than incremental stresses and
displacements measured from a certain mean level (which is,
generally speaking, infinite). By definition, we have

σxx ≡
1

H2

H2∫
0

σxxdz, ux ≡
1

H2

y3∫
y1

uxdy,

σi = σxx, ui = ux at y = yi ,

where σxx and ux are laterally averaged horizontal stresses
and displacements. The values σi and ui are to be deter-
mined from the solution. By definition the wave components
meet the conditions

y3∫
y1

σ v
xxdy = 0,

y3∫
y1

u v
xdy = 0 . (2.5)

Averaging (2.4) over the vertical profile and taking (2.5)
into account yield additional relations for the average hori-
zontal stresses and displacements:

y3∫
y1

σxxdy = 0,

y3∫
y1

uxdy = −σ∗L2

12E
. (2.6)

Stretching the vertical coordinate z = εζ in 2-D elastic
equations (2.1), I obtain

∂σxx

∂y
+

1

ε

∂σxz

∂ζ
= 0,

∂σxx

∂y
+

1

ε

∂σzz

∂ζ
= 0 .

Expanding the quantities in these equations into series
σij = σ

(0)
ij + εσ

(1)
ij + . . . etc., simple argumentation leads to

the relations

σ
(0)
zz = (2µ + λ)

∂u
(1)
z

∂ζ
+ λ

∂u
(0)
x

∂y
= 0,

σ
(0)
xx = E

∂u
(0)
x

∂y
, σ(0)

xz = 0,

σ
(1)
zz = 0,

∂u
(0)
x

∂ζ
= 0,

∂σ
(0)
xx

∂y
+

∂σ
(1)
xz

∂ζ
= 0 .

(2.7)

Equations (2.7) imply that the horizontal displacement

u
(0)
x and the normal stress σ

(0)
xx are independent of the lateral

coordinate ζ : u
(0)
x ≡ u(x) and σ

(0)
xx ≡ σ(x). Integrating the

last of equations (2.7) over the vertical profile and taking
into account boundary conditions (2.2) yield

H2
∂σ

∂y
− τ = 0 , (2.8)

where τ is the tangential stress at the lower boundary.
Shearing forces are transmitted from the upper layer into

the lower one, where they produce movements. Both pos-
sible states characterized by the diagram in Figure 6 can
be realized as two phases: dilatancy (loosening the mate-
rial) and compaction (or viscous consolidation, decreasing
the porosity). Equations of motion and relevant boundary
conditions are written out for each of these phases. The re-
sulting solutions are adjusted to make them continuous at
the boundary with the upper elastic layer and at the phase
interface. In particular, the continuity condition imposed on
the displacements and stresses at the phase interface in the
upper layer is[

u
]∣∣+
−
≡ u2

+ − u2
− = 0,

[
σ
]∣∣+
−

= 0 at y = y2 , (2.9)

where u2
+ and u2

− are the u values at the inner boundary
when approached from the right and from the left, respec-
tively.

Substituting the second expression from (2.7) into the first
relation in (2.6) and taking (2.9) into account provide the
periodicity condition for the displacement increment (2.3).
Therefore, the first condition in (2.6) is not independent.
Expanding the second relation in (2.6) into a series, I obtain

y3∫
y1

udy = −σ∗L2

12E
. (2.10)

Note that equation (2.10) contains the parameter σ∗ rep-
resenting the increase rate of static stresses at infinity. It is
actually a controlling parameter that describes the driving
mechanism of the system.

3. Dilatancy Phase

As shown above, the lower layer is always under the shear
conditions. Displacements in both dilatancy and compaction
phases are measured from the stationary component which is
not present in the constitutive equations of the phases. Both
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deviatoric and isotropic components of stresses and strains
are assumed to be nonzero in both phases under shear load-
ing conditions. In this case their interrelation is essential and
includes the Coulomb condition and relationship between in-
crements in shear γp ≡ εp

xz and volume strain θp:

dθp = βdγp ,

where β is the dilatancy coefficient. The volume enlarge-
ment phenomenon associated with shear was experimentally
established by Reynolds in 1885 and was called by him the
dilatancy. The tensor dilatancy equations consistent with
the conditions of Reynolds’ experiment were formulated for
the first time by Nikolaevskii [1967, 1971]. Afterward similar
equations and their partial cases were examined by Rudnicki
and Rice [Rice, 1980] and other authors (Rudnicki and Rice
studied the problem of bifurcation in the solutions of these
equations).

Following Rice [1980], I introduce the plasticity moduli
µp, λp and Kp similar to elastic moduli. To simplify the
plastic strain case, I restrict myself to the shear strain

τ̇ = µpγ̇ where γ̇ ≡ ∂γ

∂t
. (3.1)

The plasticity moduli depend on the drainage conditions.
I assume that, in any dynamic processes, changes in the
pore volume are small compared to its average. Then,
the dilatancy-phase drainage conditions affect only the fluid
regime in the upper layer and have no effect on the plastic
deformation mode in the waveguide itself. This means that
relation (3.1) includes an undrained shear modulus at any
(loading or unloading) deformations. Another assumption
is that the elastic strain component is neglected. Then the
total strain coincides with the plastic component, and the
dilatancy volume variation is only controlled by the porosity
variation dθ = df :

∂f

∂t
= βγ̇ . (3.2)

The third assumption is the consequence of the first two
and implies that the plasticity moduli µp, λp and Kp are
small compared to their elastic analogs µ, λ and K. The
physical meaning of these assumptions reduces to the state-
ment that the fractured medium in the lower layer is in a sub-
critical state. This is the reason why the plasticity moduli
and porosity variations are small, and plastic shear strains
are very large.

The fourth assumption relates to the structure of the lay-
ers. I assume that the waveguide top is a low-permeability
cap ensuring the conditions of weak drainage of the waveg-
uide. It is due to this cap that, during a change in the
state of the medium, the weight of the upper elastic layer is
transferred at a critical point of the skeleton fracture from
the skeleton to fluid, as is required for the regime of viscous
consolidation in a medium with a fractured skeleton. If the
cap mentioned above is absent, the waveguide is unloaded
under conditions of elastic deformation. Such conditions are
likely to exist in crystalline shields such as the Canadian
and Fennoscandian shields. Ductile sedimentary rocks suit-
able for an impermeable cap are absent there. Therefore,

the oscillatory process in such a waveguide does not include
the compaction phase.

Substituting (3.1) into (3.2), I obtain

∂f

∂t
=

β

µp

∂τ

∂t
. (3.3)

Let the strain in the lower layer be measured from the
state with a minimum porosity and a zero strain. The hori-
zontal displacement at the top of the waveguide u is equal to
the horizontal, vertically uniform displacement of the elastic
upper layer. In each phase this horizontal displacement will
be measured from an initial point at which a given phase
starts developing. The initial point in the dilatancy phase is
y1 and the initial displacement is u1. The respective val-
ues in the compaction phase are y2 and u2. These val-
ues are evidently connected through the kinematic relation
u − u1 = H1γ, which allows easy integration of equations
(3.2) and (3.3):

f − fmin =
β

Gp
(τ − τmin) =

β(u− u1)

H1
, (3.4)

i.e. as shear strain increases in the waveguide zone, poros-
ity f and shear stress τ increase from their minimum values
fmin and τmin to critical levels fmax and τmax triggering the
fracture of the skeleton and the transition into the viscous
phase in accordance with the criterion illustrated in the dia-
gram of Figure 6 and based on the Terzaghi principle. If the
critical porosities fmin and fmax are known from the diagram
in Figure 6, τmin and τmax are values found in the process of
solution. Equation (3.4) leads to the relation

fmax − fmin =
β

µp
(τmax − τmin) (3.5)

relating τmax and τmin .

The aforesaid implies the validity of the following relations
at the boundaries between dilatancy and compaction zones:

f = fmin, τ = τmin (y = y1 or y = y3);

f = fmax, τ = τmax (y = y2) .
(3.6)

The porosity f = fmax is the initial value of this param-
eter in the compaction phase. The shear in the lower layer
is connected with the displacement of its upper boundary
through the relation

u =
H1(f − fmin)

β
+ u1 ,

u2
− =

H1(fmax − fmin)

β
+ u1 ,

(3.7)

where u2
± denotes values assumed by u2 when the phase in-

terface is approached from the right and from the left, re-
spectively.

Combining the second relation in (2.7), (2.8) and (3.4)
yields the equation

d2f

dy2
= α2(f − fmin), where α2 =

εp

H1H2E
. (3.8)
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Solving (3.8) under condition (3.6) gives

f − fmin = (fmax − fmin)
shα(y − y1)

shα(y2 − y1)
. (3.9)

Note that α(y2 − y1) ∼ 1. Since E � µp, the extent of
the dilatancy phase y2 − y1 is much greater than the layer
thicknesses H1 and H2. Using (3.9), (3.7) and the second
relation in (2.7), expressions for displacement and stresses
can be derived:

u =
H1(fmax − fmin)

β

shα(y − y1)

shα(y2 − y1)
+ u1 , a)

σ =
αEH1

β
(fmax − fmin)

chα(y − y1)

shα(y2 − y1)
. b)

(3.10)

These expressions give the boundary values

u2
− =

H1(fmax − fmin)

β
+ u1 , a)

σ1 =
αEH1(fmax − fmin)

βshα(y2 − y1)
,

σ2
− =

αEH1(fmax − fmin)chα(y2 − y1)

βshα(y2 − y1)
. b)

(3.11)

Relations (3.11) connect the dilatancy phase length with
amplitudes of stresses at the initial wave point.

4. Compaction Phase

According to [Karakin, 1990b, 1999], the compaction
equations admit the superposition principle, so that shear
and volume strain can be treated independently of one an-
other. First I address shear motions in the compaction zone
that can be matched to shear motions in the dilatancy zone.
The calculations performed for the elastic layer are all valid
for the compaction zone. However, they are different in the
lower layer experiencing viscous deformations. In particular,
(3.3) is replaced by a similar equation for viscous deforma-
tions:

τ = η1γ̇ .

Combining this equation with (2.8) and the second equa-
tion in (2.7) yields the parabolic equation for a two-layer
system derived by Elsasser [1971]

∂2τ

∂y2
= κ

∂τ

∂t
, where κ =

η1

EH1H2
.

The substitution of the wave argument in these two relations
yields the equations

τ = vη1
∂γ

∂y
=

vη1

H1

∂u

∂y
,

∂2τ

∂y2
= a

∂τ

∂y
, where a = vκ . (4.1)

The latter of these equations is readily solved with boundary
condition (3.6):

τ =
(τmax − τmin)[1− exp a(y − y3)]

1− exp a(y2 − y3)
+ τmin . (4.2)

As expected, the tangential stress in the compaction zone

changes from its maximum to minimum values. Using (2.8),

(4.1) and (4.2), I obtain expressions for the normal stress

and its boundary value at the inner boundary:

σ = E
∂u

∂y
=

EH1

vη1

{
(τmax − τmin) ×

× [1− exp a(y − y3)]

[1− exp a (y2 − y3)]
+ τmin

}
, a)

σ+
2 =

EH1τmax

vη1
. b)

(4.3)

Integrating (4.3a) and taking into account the periodicity

condition for displacements (2.12) yield

u =
H1

(
τmax − τmin

)
vη1

[
1− exp a

(
y2 − y3

)] ×
×

{(
y − y3

)
−1

a

[
exp a

(
y − y3

)
−1

]}
+

+
H1τmin

vη1

(
y − y3

)
+u1 .

(4.4)

Displacement continuity condition (2.9) at the inner

boundary, with (4.4) and (3.7) taken into account, leads

to the equation(
τmax − τmin

)
vη1

1

a
−

(
y3 − y2

)[
1− exp a

(
y2 − y3

)]
 −

− τmin

vη1

(
y3 − y2

)
=

1

β

(
fmax − fmin

)
.

(4.5)

Taking account of (3.10) and (4.3b), a similar relation

follows from the normal stress continuity condition (2.9):

α
(
fmax − fmin

)
chα

(
y2 − y1

)
βshα

(
y2 − y1

) =
τmax

vη1
. (4.6)

Hence v > 0, i.e. the wave (as expected) travels in the

direction opposite to the direction of the tectonic force ap-

plied. Eliminating the indefinite values τmin and τmax in

(3.5), (4.5) and (4.6), I obtain the relation connecting the

lengths of the compaction and dilatancy phases

G

vη1

1

a
−

(
y3 − y2

)
exp a

(
y2 − y3

)[
1− exp a

(
y2 − y3

)]
 =

= 1 + α
(
y3 − y2

)
cot hα

(
y2 − y1

)
.

(4.7)

The periodicity condition for the normal stresses gives

τmin

vη1
=

α
(
fmax − fmin

)
βshα

(
y2 − y1

) . (4.8)

The substitution of (4.4) and (3.10a) into (2.10) yields the
expression determining u1:
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u1L +

H1

(
τmax − τmin

)[
2
(
y3 − y2

)(
ay3 − 1

)
−a

(
y2
3 − y2

2

)]
2avη1

−

− H1τmin

vη1

(
y3 − y2

)2
+

+
H1

(
fmax − fmin

)(
chα

(
y2 − y1

)
−1

)
αβshα

(
y2 − y1

) = −σ∗L2

12E
.

(4.9)

Let Tc be the time of compaction obtained below from
the solution of the boundary value problem of compaction.
It is connected with the wave velocity through the relation

v =

(
y3 − y2

)
Tc

, (4.10)

which allows one to determine the compaction phase length
(y3− y2). The solution of equations (3.5), (4.5), (4.6), (4.8),
(4.9) and (4.10) determines the six sought-for quantities
u1, τmin, τmax, (y2 − y1), (y3 − y2) and v, expressed through
Tc. This reduces the final solution of the problem to the de-
termination of the compaction time Tc, which is found from
the solution of the 1-D compaction problem.

In this connection, I consider a 1-D compaction problem
in the finite region −H1 < z1 < z < 0 with a moving
boundary of the trailing edge type described by the func-
tion z1 = −H(x, t), where H(x, t) is the thickness of the
compaction layer. Following [Karakin, 1999], equations of
1-D low-porosity compaction have the form

∂

∂x

(
ζ +

4

3
η
)

∂S

∂x
= δS −∆ρg,

∂f

∂t
+

∂S

∂x3
= 0 ,

pa = −
(
ζ +

4

3
η
)

∂S

∂x
,

t > 0, −H(x, t) < z < 0, 0 ≤ H(x, t) ≤ H1 ,

(4.11)

where S is the filtration flow, f is porosity, δ is the hydraulic
resistance coefficient, and ζ and η are coefficients of bulk and
shear viscosity. The layer thickness is variable and depends
on the horizontal coordinate x as a parameter. The lower
boundary of the viscous consolidation zone Γ1 can be either
movable or fixed, depending on the viscosity value. Various
motion regimes are possible in the nonstationary case. In
particular, it is fixed at f > fmin and then the following
condition is valid at this boundary:

Γ1 : S = 0,
dz1

dt
= 0 . (4.12)

When the porosity at this boundary attains the value
fmin, the boundary starts to move upward until it encoun-
ters the upper boundary Γ2. The movement of the stationary
wave is only consistent with the trailing edge condition at
the lower boundary:

Γ1 : S = 0, f = fmin . (4.13)

The upper boundary of the waveguide Γ2 is fixed. It is
overlain by a porous layer with an elastic skeleton. The
boundary value problem of elastic consolidation (the diffu-

sion equation) should be solved, and the resulting solution
should be joined to the solution in the waveguide. However,
for the purpose of qualitative analysis, the joining condition
can be replaced by a simpler constraint:

Γ2 : pa − p∞ = bS , (4.14)

where p∞ is the pore pressure in the upper layer far from its
boundary (“at infinity”). This condition has the following
meaning. The characteristic time of the elastic consolidation
(estimated from the diffusion equation) is much shorter than
the viscous consolidation time. Consequently, this condition
does not contain the time derivative and is similar to the
heat transfer relation for the heat conduction equation. The
constant b is expressed through geometrical and filtration
characteristics of the region with elastic skeleton overlying
the waveguide. The filtration flow direction changes its sign
at p < p∞ and therefore vanishes at this point. Then, condi-
tion (4.14) provides qualitatively correct, albeit gross, con-
straints on interaction of the two media at the boundary Γ2.
The system of boundary conditions also includes the initial
condition for porosity. As mentioned above, this condition is
determined by the porosity at the dilatancy-to-compaction
transition moment and has therefore the form

f − fmin = fmax − fmin at t = 0 . (4.15)

The initial time moment coincides with the onset time
of the compaction phase for each oscillation cycle. Be-
cause the equations of shear and volume strain split into two
groups, the time enters each of these groups independently.
The boundary value problem (4.11)–(4.15) was numerically
solved, and the procedure and results of the solution are
presented in [Karakin and Levitan, 1993]. The time during
which the length of the compaction region decreases to zero
is shown to be finite and is the compaction period Tc. This
concludes the solution of the problem.

Boundary condition (4.14) determines the across-waveg-
uide difference of pressure, which is greater than or on the
order of ∆fK, where ∆f is the total change of the porosity
over the entire cycle of oscillation in the waveguide and K
is the elastic bulk modulus of the upper layer. Since the
dilatancy bulk modulus Kp is much smaller than K, the pore
pressure varies in the dilatancy phase much weaker than in
the compaction phase. For this reason, the dilatancy phase
trajectories of the diagram in Figure 6 and phase interfaces
are vertical.

5. Conclusion: Vertical Migration of Fluids
in the Upper Crust

Thus, a self excited wave regime of motion can arise in a
two- layer system subjected to the action of a force. This
regime is related to periodic processes of fluid expulsion from
and suction into the waveguide layer. The compaction phase
is much longer than the phase of dilatancy expansion. The
interaction between these phases maintains the state of dy-
namic equilibrium in the waveguide.



288 karakin: a mathematical model of the crustal waveguide

Figure 7. A crustal block with a waveguide. The dilatancy phase is shown in violet, and the compaction
phase, in yellow. The blue arrows show the fluid motion into and from the waveguide. The rising fluids
entering traps form oil and gas deposits.

The functioning of the self-excited wave mechanism of
the fluid motion in the waveguide and overlying layers is
schematically illustrated in Figure 7. In the dilatancy phase,
downgoing fluid flows entraining hydrocarbons In the dila-
tancy phase, downgoing fluid flows entraining hydrocarbons

Figure 8. A crustal block with a waveguide similar to that shown in Figure 7. Traps dissected by faults
give rise to mud volcanoes.

enter the waveguide through listric faults extending into it.
The solubility of hydrocarbons in water being very low (less
than 1%), they are transported in the emulsion form in the
upper crust where the porosity in listric faults is rather high.
Thermodynamic conditions at waveguide depths are such
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Figure 9. Crustal waveguide in the subduction zone. The waveguide functions in the same way as is
shown in Figures 7 and 8. Serpentinites, rather than clayey mud mass, are erupted at mud volcanoes.

that their solubility (particularly, of their gaseous phase) in-
creases. This is beneficial to the accumulation and concen-
tration of hydrocarbons in the waveguide zone. Although
the relative amount of hydrocarbons transported over the
individual wave cycle is small, the amount of hydrocarbons
entrapped in the waveguide on the geological time scales and
over large areas is very large.

As is known, the theory of organic origin of oil encoun-
ters basic difficulties. In terms of this theory, hydrocarbons
derive under suitable thermodynamic conditions from or-
ganic matter uniformly dispersed throughout the sedimen-
tary cover and concentrate to form accumulations relatively
small in volume. This is a paradoxical fact. At first glance,
it contradicts thermodynamics, according to which all sub-
stances in the dispersed phase tend to spread rather than
concentrate. The problem of resolving this paradox arises.
This problem, albeit in a less explicit form, also exists in
the theory on inorganic origin of oil. Similar to the first
case, ascending hydrocarbons of the endogenic origin should
uniformly disperse throughout the crust.

Another paradox is that advocates of both organic and
inorganic origin of hydrocarbons present equally convincing
arguments in favor of their hypotheses. Thus, both hypothe-
ses seem equally acceptable, and no unbiased criterion for
the choice of them exists.

These contradictions and paradoxes can be resolved if one
supposes that fluids in the crust are involved in oscillatory
movements and repeat many times their trajectories, both
vertically and horizontally. In this case the origin of hydro-
carbons is no longer the problem of basic importance and is
unrelated to the mechanism of their concentration.

Fluids in the compaction phase are expelled upward from

a waveguide. Their motion can be obstructed by imperme-
able anticlinal structures (traps), thereby developing abnor-
mal formation pressure. Traps are usually formed by anti-
clinal folds of impermeable rocks. If ascending fluid flows
strike concentrated hydrocarbons, conditions for their accu-
mulation arise. If the crest of an anticlinal structure is cut by
faults (Figure 8), fluids rush upward through the fault zones
and are ejected on the Earth surface, forming gas outbursts
and mud volcanoes. According to the hypothesis proposed
in this work, real oil and gas fields and mud volcanoes have
a common origin. The only distinction of mud volcanoes is
that their traps are fractured. This accounts for the fact
that mud volcanoes gravitate toward faults and shelf flexure
zones, where impermeable beds are most prone to fracturing.

The concept proposed explains many facts, in particular,
the position of mud volcanoes in rapidly subsiding basins at
anticlinal crests cut by faults. Fluid flows breaking through
anticlinal trap roofs can entrain hydrocarbons and mud-
volcanic breccia. They form mud volcano vents distinguished
by weak seismic contrast.

Using this concept, the motion of a two-phase gas-liquid
mix was numerically modeled for the upper crust of the
Varandei-Adzvinskaya oil-and-gas province [Dmitrievski et
al., 2000]. In particular, a numerical model was developed
for the formation process of gas fields in this region. A dis-
tinctive feature of the geological structure and geodynamic
development of this region is the fact that it a former sub-
duction zone that developed as a result of the closure of
an ancient ocean. Huge masses of sedimentary rocks were
pulled into interiors in the plate collision process at passive
margins. These masses contained large amounts of organic
matter and are presently oil source rocks, which have a large
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Figure 10. Functioning of waveguides in a former collision zone of lithospheric plates. An ordered
across-strike pattern of hydrocarbon deposits is observed. Gas deposits are located in the frontal part,
and heavy oil and bitumen deposits develop in the back part. 1 – continental crust, 2 – mantle part
of lithosphere, 3 – crust waveguide, 4 – sedimentary rocks, 5 – hydrocarbon deposits, 6 – gas, 7 – oil,
8 – water.

potential for the formation of hydrocarbon deposits. How-
ever, its realization requires a driving mechanism. Such a
mechanism is represented by the self-excited wave regime of
motions in the crustal waveguide. Figure 9 schematically il-
lustrates how the material of passive margins is pulled down
in a subduction zone at a passive margin. Crustal waveg-
uides that cross subducting lithospheric plates in the hori-
zontal direction form even during the subduction process.

Hydrocarbon deposits of the Sakhalin shelf type can also
develop in terms of this model. As in the case of conti-
nental deposits, traps cut by faults give rise to mud volca-
noes rather than hydrocarbon deposits (Figure 9). However,
as distinct from continental volcanoes, liquefied serpentinite
rather than a sand–clay mix is erupted in deep-sea trenches
of subduction zones.

Some time after the subduction stops, an ex-collisional
structure similar to the Varandei-Adzvinskaya oil-and-gas
province develops in the former subduction zone (Fig-
ure 10). A distinctive feature of subduction and particularly
excursion-collision zones is their typical across-strike differ-
entiation illustrated in Figure 10. Gas deposits are located
in the frontal part of the zone, corresponding to the sinking
slab. Heavy oils and bitumen occur in the back zone, and
oils of intermediate composition accumulate in the middle
part of the zone. This composition-type differentiation hy-
drocarbon deposits is completely consistent with the driving
mechanism of fluid motion in the crustal waveguide. In the

frontal part, fluids enter the waveguide from below at high
temperatures and pressures. This is beneficial to the segre-
gation of large amounts of gas fraction from oil source rocks.
In the back part, oil source rocks overlying the waveguide are
flushed at low temperatures and pressures, which naturally
leads to the formation of heavy oils and bitumen.
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