A. F. Grachev
Schmidt United Institute of Physics of the Earth, Russian Academy of Sciences, Moscow
M. M. Arakelyantz, and V. A. Lebedev
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences (IGEM RAS), Moscow
E. E Musatov, and N. M. Stolbov
All-Russian Research Institute of Oceanology, St. Petersburg
A key to the geological history of the Arctic Basin is provided by the timing of magmatism on islands adjacent to the Eurasian and Amerasian basins of the Arctic Ocean. In this context, a central role is played by the Franz Josef Land (FJL) archipelago, which has long been a focus of study [Geology of the USSR, 1970]. Thus far, there has been much controversy concerning the dating of the flood basalts, dikes that cut through sedimentary rocks, and sills occurring in the Mesozoic sedimentary cover and more ancient Carboniferous and Vendian strata. The latest review on the timing of magmatism on Franz Josef Land, compiled by V. D. Dibner with co-workers [Dibner, 1998], points to a wide scatter of radiometric (K-Ar) determinations ranging from 200 to 60 Ma (see also the list of references for other publications). Biostratigraphic data constrain the main igneous phase to the Middle to Late Jurassic, and its cessation is timed, rather tentatively, as post-Cenomanian based on a basaltic dike reportedly cutting through Cenomanian deposits on Hoffman I. [Dibner, 1998].
We studied 14 basalt samples collected at various depths from
three drillholes on
Alexandra Land (Nagurskaya 1 Hole), Hays I. (Hays 1 Hole), and Graham Bell I.
(Severnaya 1 Hole) and eight samples from exposures on other six islands
(Figure 1).
This collection characterizes the entire spectrum of volcanic
facies: extrusive (lava flows), subvolcanic (sills), and feeder (dikes), and it
is thus fairly representative.
The rocks we sampled are quartz-normative (Table 1) and display a tholeiitic
differentiation trend, features typical of plume basalts
[Grachev, 1987, 2000].
A peculiarity of the major-element composition of Franz Josef Land basalts is
their high TiO2 (up to 4.37%) and FeO
(ave. 13.74%) contents
combined with low K2O abundances. Another remarkable feature of the FJL
basalt chemistry is that the rocks are virtually undifferentiated, as
illustrated not solely by our own data (including the REE spectra), but also
by previous studies
[Lupanova, 1953;
Ntaflos and Richter, 1998;
Vlodavets, 1934].
Taken together, these features classify FJL basalts with the Fe-Ti basalts
of mantle plume affinity
[Grachev, 1987, 2000].
For all the basalt samples that we studied, K-Ar radiometric ages were obtained.
Radiogenic Ar abundances were measured on a specialized mass spectrometric unit at
IGEM RAS using isotopic dilution with
10-10 yr.-1,
lb
=4.962
10-10 yr.-1,
40K=0.01167 (at.%).
The results obtained are reported in Table 2.
These data show magmatic rocks from five islands (Alexandra Land, Graham Bell I.,
Jackson I., and Wiener Neustadt I.) to fall in a rather narrow age interval,
116
5 Ma, which is within analytical uncertainty.
Measurements from two
samples collected from lava sheets on George Land yield a somewhat younger age
of 95 Ma, but the potassium content of these samples is so low that these
figures must be treated with caution. As for the dating of the one basalt
sample from Greeley I. (96
5 Ma), further studies are required to prove
that this age is meaningful.
It thus follows that, despite the facies diversity of the volcanites ranging from
flow units
of the extrusive lava-flow facies to dikes and sills of the subvolcanic (vent) facies,
age
determinations from all the samples fall in a narrow time interval of 116
5 Ma.
Such a feature of the development of flood basalts is known to be characteristic
of
mantle plumes
[Grachev, 2000].
Implications of the above results suggest themselves. Phanerozoic manifestations
of
mantle plume magmatism (Siberian craton, Deccan Plateau, Parana River, etc. flood
volcanics) are known to fit in extremely narrow time intervals (based on precision
measurements, no longer than 2 or 3 m.y. and, in many cases, less than 1 m.y.)
[Grachev, 2000].
The fact that Franz Josef Land basalts, which display the entire set of geochemical
fingerprints of mantle plume magmatism, formed over a brief interval of 115
10 Ma
and not from 200 to 60 Ma, as was believed earlier
[Dibner, 1998],
suggests conclusions that are pivotal to paleogeodynamic reconstructions in the Arctic.
Cretaceous magmatic rocks have been reported from many areas across the Arctic region.
On the New Siberian Is. (Kotelnyi and Stolbovoi islands), dolerite dikes as thick
as tens
of meters have been reported. Their age is determined tentatively as Late Cretaceous
[Dorofeev et al., 1999].
On Bennett I., Lower to Upper Cretaceous (?) basalts make up two sequences as
thick as 360 m. Tuffaceous mudstones occurring at the base of the
upper basaltic sequence host a palinologic assemblage based on which the basalts
have been dated to the Lower Cretaceous (Aptian?)
[Geology of the USSR, 1970].
According to Drachev [1999],
K-Ar measurements on two samples yielded 112-115
5 Ma, values
virtually identical with the Franz Josef Land basalt age. Cretaceous basalts
are also reported from the Canadian Arctic Archipelago
[Christie, 1980;
Donovan, 1964;
Tozer, 1964; et al.].
Even this plainly incomplete evidence demonstrates that basaltic magmatism in the Arctic region at the Early/Late Cretaceous boundary was probably much more widespread than had been believed. Importantly, this temporal boundary coincides with the most significant angular unconformity observed throughout the Arctic region [Embry, 1998]. Paleotectonic reconstructions drawing on magnetic lineations in the Arctic Basin suggest that, at that time, Franz Josef Land along with the Canadian Arctic Islands and Svalbard were located closely together [Rowley and Lottes, 1989]. Within that framework, the area of basaltic magmatism was near the locus of the Icelandic hot spot for the same interval of time [Drachev, 1999; Lawver and Muller, 1994].
Because mantle plume activity is known to precede continental breakup and inception
of
oceanic basins, it follows that mantle plume magmatism at 116
5 Ma on Franz Josef
Land was a direct precursor of the onset of seafloor spreading in the Canada Basin.
This
conclusion agrees with the latest results from the analysis of magnetic lineations
in this
basin [Grantz et al., 1998].
Chernyshev, I. V., et al., K-Ar isotope systematics and age of the recent volcanism of the Kazbek volcanic area, Greater Caucasus, Dokl. Ross. Akad. Nauk, 367, 810-814, 1999 (in Russian).
Christie, R. L., The Arctic Archipelago, in: Encyclopedia of World Regional Geology, Dowden, Hutchison and Ross, Stroudsbury, 1975.
Dibner, V. D., Ed., Geology of Franz Josef Land, Norsk Polarinstitutt, 190 pp., Meddelelser, 146, Oslo, 1998.
Donovan, D. T., The Cretaceous Deposits of Eastern Greenland, in: Geology of the Arctic, Toronto University Press, 1964.
Dorofeev, V. K., M. G. Blagoveshchensky, A. N. Smirnov, and V. I. Ushakov, The New Siberian Islands: Geological Structure and Metallogeny, 130 pp., VNIIOkeanologiya, St. Petersburg, 1999 (in Russian).
Drachev, S. S., Tectonics of the rifted continental margin of northeastern Eurasia in the Arctic (the Laptev and East Siberian seas), Ph. D. thesis, 40 pp., Moscow, 1999 (in Russian).
Embry, A. F., Tectonic Implications of Large-scale Jurassic-Cretaceous Sequence Boundaries in the Circum-Arctic, III Inter. Conference on Arctic Margins, 54-55, 1998.
Geology of the USSR, vol. XXVI, The Islands of the Soviet Arctic: A Geological Description, Nedra, Moscow, 1970 (in Russian).
Grachev, A. F., Rift Zones of the Earth, 2-nd edition, supplemented and revised, Nedra, Moscow, 1987 (in Russian).
Grachev, A. F., Mantle plumes and the problems of Geodynamics, Physics Solid Earth, 36, (4), 263, 2000.
Grantz, A., D. L. Clark, R. L. Phillips, S. P. Srivastava, et al., Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean, Geol. Soc. Am. Bull., 110, 801-820, 1998.
Jackson, H. R., A. Grantz, I. Reid, S. D. May, and P. E. Hart, Observations of anomalous oceanic crust in the Canada Basin, Arctic Ocean, Earth Planet. Sci. Lett., 134, 99-106, 1995.
Komarnitsky, V. M., and E. V. Shipilov, New geological data on the magmatism of the Barents Sea, Dokl. Akad. Nauk SSSR, 320, 1203-1206, 1991 (in Russian).
Komarova, A. E., and L. P. Pirozhkov, Basalt sheets on Champ and Wiener Neustadt islands, Franz Josef Land, Dokl. Akad. Nauk SSSR, 131, (2), 409-411, 1960 (in Russian).
Lawver, L. A., and R. D. Muller, Iceland hotspot track, Geology, 22, 311-314, 1994.
Lupanova, N. P., On the Petrography of Franz Josef Land, Tr. Nauch.-Issl. Inst. Geol. Arktiki, LVII, 73 pp., 1953 (in Russian).
Masurenkov, Yu. P., and G. B. Flerov, Basalts of the Bennett Island, the Soviet Arctic, Vulkanol. Seismol., (1), 36-53, 1989 (in Russian).
Northwind Ridge, Magnetic Anomalies in the Canada Basin and the Geometry and Timing of Rifting in the Amerasia Basin, Arctic Ocean, Geol. Soc. Am. Bull., 110, 801-820, 1998.
Ntaflos, Th., and W. Richter, Continental flood basalts from Franz Josef Land, Arctic Russia: Evidence for bimodal magmatism, III Inter. Conference on Arctic Margins, 131-132, 1998.
Rowley, D. B., and A. L. Lottes, Plate-kinematic Reconstructions of the North Atlantic and Arctic: Late Jurassic to Present, in: Mesozoic and Cenozoic Plate Reconstructions, edited by Scotese, C. R., and W. W. Sager, 73-120, Elsevier, Amsterdam, 1989.
Solheim, A., E. Musatov, and N. Heintz, Eds., Geological aspects of Franz Josef Land and the northernmost Barents Sea, Norsk Polarinstitutt, Meddelelser, 151, Oslo, 1998.
Tarakhovsky, A. N., I. V. Shkola, and V. L. Andreichev, Age of flood basalts from Franz Josef Land, Dokl. Akad. Nauk SSSR, 965-969, 1983 (in Russian).
Tarnugo, J. A., The high Arctic large igneous province, III Inter. Conference on Arctic Margins, 184, 1998.
Test, B. I., On the Materials on Basalts from Franz Josef Land, Tr. Arktich. Inst., 76, 1937 (in Russian).
The Northern Land: Geological Structure and Metallogeny, 187 pp., VNIIOkeanologiya, St. Petersburg, 2000 (in Russian).
Tozer, E. T., A Stratigraphic Summary of Mesozoic and Tertiary Deposits of the Canadian Arctic Archipelago, in: Geology of the Arctic, Toronto University Press, 1964.
Vlodavets, V. I., On the petrography of the Hooker Island, Tr. Arktich. Inst., XIII, 87-113, 1934 (In Russian).
Vogt, P., P. Taylor, L. Kovacs, and G. L. Johnson, Detailed aeromagnetic investigation of the Arctic Basin, J. Geophys. Res., 84, 1071-1089, 1979.
Vogt, P., C. Bernero, L. Kovacs, and P. Taylor, Structure and plate tectonic evolution of the marine Arctic as revealed by aeromagnetics, Oceanol. Acta, SP, 25-40, 1981.