


Editorial Note

This book is the EPUB3 
version of the scientific article (doi:10.2205/2020ES000738) published in the 
Russian Journal of Earth Sciences 
(http://rjes.wdcb.ru/). The 
mentioned article's PDF version of 
record was compiled from LaTEX source file.  The same 
source file was then converted to EPUB3 using ELXfinal software 
package.
 
The result of conversion  was successfully tested using iBooks2 application of iPad2 tablet and iPhone, Gyan ePub Reader 
(http://www.handster.com/gyan_epub_reader.html) and Readium(http://readium.org/), recommended by IDPF(http://idpf.org/) as a basic software for EPUB Reading Systems,
as well as on two emulators of EPUB Reading Systems, namely AZARDI (http://www.infogridpacific.com/igp/AZARDI/) and EPUBReader: Add-on for 
Firefox (https://addons.mozilla.org/en-US/firefox/addon/epubreader/).  



Any comments and criticism will be highly appreciated.


Vitaly Nechitailenko

vitaly@wdcb.ru,  vnechita@gmail.com




RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 21, ES1004, doi:10.2205/2020ES000738, 2021


Cloudiness over the oceans at subarctic latitudes as a visible part of atmospheric moisture transport
 
M. Aleksandrova

Abstract

The article analyzes the climatology and interannual variability of fractional total and low cloud cover in the subarctic and subpolar regions of the North Atlantic and the North Pacific. We used surface visual observations of cloudiness from voluntary observing ships (VOS) for the period from 1950 to 2017. It is shown that in the North Atlantic and the North Pacific seasonal variations of the mean cloud cover demonstrate contrasting character. For a better identification of regional features, the probability distributions of the fractional cloud cover were analyzed. Analysis of interannual variability shows that in many areas of the North Atlantic and the North Pacific, significant linear trends in both total and low cloud cover are observed. Moreover, in the North Pacific, linear trends in the total cloudiness have pronounced seasonality. 

Received 1 September 2020; accepted 7 September 2020; published 1 February 2021.




[image: RJES]        [image: Powered by MathJax]


 
Citation: Aleksandrova M. (2021), Cloudiness over the oceans at subarctic latitudes as a visible part of atmospheric moisture transport, Russ. J. Earth Sci., 21, ES1004, doi:10.2205/2020ES000738.
 

Copyright 2020 by the Geophysical Center RAS.


Generated from LaTeX source by ELXfinal, v.2.0 software package.
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 21, ES1004, doi:10.2205/2020ES000738, 2021


 Cloudiness over the oceans at subarctic latitudes as a visible part of atmospheric moisture transport

M. Aleksandrova

Shirshov Institute of Oceanology RAS, Moscow, Russia

 Abstract

The article analyzes the climatology and interannual variability of fractional total and low cloud cover in the subarctic and subpolar regions of the North Atlantic and the North Pacific. We used surface visual observations of cloudiness from voluntary observing ships (VOS) for the period from 1950 to 2017. It is shown that in the North Atlantic and the North Pacific seasonal variations of the mean cloud cover demonstrate contrasting character. For a better identification of regional features, the probability distributions of the fractional cloud cover were analyzed. Analysis of interannual variability shows that in many areas of the North Atlantic and the North Pacific, significant linear trends in both total and low cloud cover are observed. Moreover, in the North Pacific, linear trends in the total cloudiness have pronounced seasonality. 

 Introduction

Cloud cover over the oceans plays an important role in the Earth's climate system. Clouds affect the fluxes of short-wave [Aleksandrova et al., 2007; Dobson and Smith, 1988] and long-wave [Josey, 2003] radiation, implying serious consequences for atmospheric moisture transport and influencing meridional transports in the ocean [Ushakov and Ibrayev, 2018] and in the atmosphere [Dufour et al., 2016]. As one of the elements of the climate system, cloudiness has an indirect effect on regional changes in various oceanographic characteristics of the global ocean including Arctic [Pisareva, 2018; Travkin and Belonenko, 2019; Vlasova et al., 2019]. Also, cloud cover can serve as an indicator of global and regional climate change, including both intrinsic and forced variability [Chernokulsky et al., 2017]. In the recent decade, the fastest rate of global warming has been observed in the Arctic [Bekryaev et al., 2010; Serreze and Barry, 2011]. Thus, the analysis of the Arctic cloud cover is very relevant for understanding the mechanisms of changes.

Climate changes in the Arctic are particularly characterized by declining sea ice extent potentially closely related to variations in cloudiness through the mechanisms of atmospheric moisture content affecting warming [Dufour et al., 2016] and impact on incoming shortwave radiation. For example, Wille et al. [2019] show that atmospheric rivers providing anomalous moisture transports, are associated with the massive frontal cloud systems. Moreover, cloud cover is engaged in a number of Arctic climate feedbacks also playing important role in the Arctic climate change. Kay and Gettelman [2009] demonstrate that sea ice extent can control the amount of low cloud cover with increasing low level clouds over open water.

The variability of cloud cover in the Arctic is sensitive to different atmospheric circulation indices. Chernokulsky and Esau [2019] show that the strongest correlations were found in the Barents and Kara Seas, and the correlations with low cloud cover are stronger than with total cloud cover. These correlations are most pronounced in autumn and winter.

 Data and Method

Information about cloud cover can be obtained from various sources, including satellite data, reanalysis and direct measurements at weather stations and ships. Satellite data are quite accurate and relatively homogeneous in terms of sampling, but their records limited by 1984 [Frey et al., 2008; Foster and Heidinger, 2013; Karlsson et al., 2013; Rossow and Schiffer, 1991, 1999; Stubenrauch et al., 2013]. Cloud cover information from reanalysis becomes more accurate with increasing product resolution and parameterizations. However, reanalysis cloud cover still demonstrates biases compared to observations and require further validation [Bedacht et al., 2007; Chernokulsky and Mokhov, 2012]. In the Arctic, cloudiness in different reanalysis demonstrate significant uncertainties in the monthly means, especially in the winter season [Liu and Key, 2016]. Chernokulsky and Mokhov [2012] show significant biases in the average cloudiness from reanalysis in the Arctic compared to surface observations and satellite data.

Direct surface visual observations of fractional cloud cover over the oceans remain a unique source of long-term information about cloudiness. Over the oceans, the most complete collection of historical visual observations is provided by voluntary observing ships (VOS) and available from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) [Freeman et al., 2017; Woodruff et al., 2011].

Visual VOS observations of cloud cover provide the longest record, starting in the mid-nineteenth century. However, this data set is characterized by spatial and temporal heterogeneity of sampling [Gulev et al., 2007a, 2007b] with most observations being concentrated along the main ship routes in the North Atlantic and the North Pacific. In these regions the seasonal number of available reports typically closely matches or exceeds 300 reports per  2° grid cell with more than 500 reports in some gird cells [Aleksandrova et al., 2018]. Over the central North Pacific and the North Atlantic between 50° N and 65° N the seasonal number of total cloud cover reports is about 200 reports per  2° grid cell. At high latitudes, this number decreases significantly due to smaller number of merchant ships and sea ice impact on navigating conditions especially in winter. Over most of the Arctic Ocean the mean seasonal number of reports per  2° grid cell does not exceed 10–15 reports, making it is possible to consider climatology of cloud cover and its variability only in the Barents Sea and in the southeastern part of the Greenland Sea, where the amount of observations varies within 50–150 reports per season per  2° grid cell.

Also, visual observations from ICOADS are characterized by temporal sampling inhomogeneity. The last part of the 19th century and the first half of the 20th century are characterized by relatively small amount of data. In the second half of the 20th century, the number of reports containing information about cloud cover is increasing significantly. Most observations were carried out from the late 1960s to the late 1980s with the period after 1990s being characterized by declining trend in the number of observations resulting in twice as small number of data in the last years compared to the period before 1990s. All calculations were performed for individual seasons (January–March (JFM), April–June (AMJ), July–September (JAS), October–December (OND)). This approach accounts for strong temporal changes in observational density.

In addition to the ICOADS quality control checks, we excluded from the analysis all reports indicating unrealistic values confirmed by the analysis of alternative parameters, for example when low cloud cover is higher than the total cloud cover, or the reports indicating precipitation under a clear sky. In ICOADS, cloud cover is presented in octas (eighths) ranging from 0 to 8, according to the WMO manual [WMO, 1974]. There is also an additional code "9", which means "sky obscure, cloud cover cannot be observed". To include in the analysis as much data as possible, cases, when precipitation was reported under cloud code "9", all reports with "9" were consolidated with 8 octa category. This resetting resulted in an increased number of reports with overcast approximately 2%.

We consider here climatology and variability of cloud cover in the North Atlantic and the North Pacific north to 40° N for the period 1950–2017, thus focusing on the regions closely related to the high latitude climate variability and impacting circumpolar latitudes. Also, the North Atlantic is a key region for the formation of low-frequency climatic variability; however, many features of this region, including cloudiness, are not analyzed sufficiently [Bekryaev, 2019].

 Climatology of High Latitude Cloud Cover
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	Figure 1

  We start with the climatology of fractional cloud cover for the period from 1950 to 2017. Climatological grids of fractional cloud cover based on VOS data were computed with  2° spatial resolution. For fully unsampled boxes the gaps were filled by the Akima objective interpolation method. Figure 1 shows climatologies of the mean total (a, b) and low (c, d) cloud cover for JFM (a, c) and JAS, (b, d).

Figure 1 shows that the subpolar North Atlantic and the North Pacific are characterized by a considerable amount of cloud cover, which in most cases exceeds 6 octas for total cloud cover and 5 octas for the low cloud cover. In JFM for both, the North Atlantic and the North Pacific, total cloud cover is characterized by seasonal means of 6–7 octa. In summer, total cloud cover in the subpolar North Atlantic decreases in mid latitudes and increases over high latitudes (region of the Norwegian and Barents seas). In most regions of the North Pacific in JAS the total cloud cover is greater than in JFM by 0.5–1 octa. The cloud pattern in the Sea of Japan shows the maximum cloud cover in the summer with the values for JAS not exceeding 5 octas and being less then 4 octas in JFM.

Seasonal march of the low cloud cover follows the seasonal variation of total cloud cover. In the mid-latitude North Atlantic the maximum cloud cover (5.5–6.5 octas) is observed in winter. In summer, the amount of low clouds here decreases to 4–5.5 octas. In high latitudes (the Norwegian Sea and the eastern Greenland Sea), maximum low cloud cover values (6–7 octas) are observed, on the contrary, in summer. In winter, the amount of low cloud cover in this region is about 6 octas. Over the most North Pacific, there are more low level clouds in the summer than in the winter. In JAS the local maximum of low cloud cover of 7 octas is observed in the central North Pacific. In winter, over most of the North Pacific, the mean low cloud cover is ranging from 5.5 to 6.5 octas. In the Sea of Japan, there is a regional minimum of low cloud cover over the area. In JFM, the mean low cloud cover in the Sea of Japan does not exceed 2.5–3.5 octas with the summer values increasing to 4–4.5 octas.

 Analysis of Probability Mass Functions
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	Figure 2

  The mean cloud cover provides incomplete information about the cloud regime. For a better understanding of the structure of the cloud cover, we analyzed the distribution of fractional cloud cover by octas [Aleksandrova et al., 2018] for the selected  10° squares. Figure 2 shows that in different regions of the North Atlantic and the North Pacific the histograms of cloud cover are characterized by the increase of probability from small cloud amounts to overcast conditions (8 octas). In the North Atlantic (Figure 2b–Figure 2e), changes in the shape of distribution from winter to summer are not significant. Only in the western part of the North Atlantic south of Newfoundland (Figure 2a) in summer (JAS) the frequency of overcast conditions decreases noticeably, which is consistent with the decrease in the mean total cloud cover from winter to summer in this region (Figure 1). 

Over the North Pacific, the distribution of fractional total cloud cover also has a shape similar to that in the North Atlantic with the occurrences peaked at 8 octa (Figure 2g–Figure 2k). However, in contrast to the North Atlantic in the western and central North Pacific in JAS the frequency of complete overcast (8 octas) is significantly higher than in JFM. In the eastern Pacific, near the North American coast the seasonal march in the distribution shape is less pronounced with the exception of the northwestern United States in the summer when seasonal changes in the occurrence of clear skies are noticeable. The shape of cloud cover distribution is however completely different in the Sea of Japan. Here it takes a U-shape form (Figure 2f), with a higher occurrence of clear sky conditions in winter and of overcast conditions in summer.
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	Figure 3

  Distribution of the fractional low cloud cover is more variable from region to region. In the central North Atlantic low cloud cover primarily ranges from 5 to 7 octa (Figure 3b–Figure 3c) and seasonal variations are not pronounced. In the western North Atlantic (Figure 3a), south of Newfoundland the frequency of low cloud cover peaks at 5–7 octas in JFM. In summer the frequency of the clear sky conditions increases. In the eastern North Atlantic near the coast of Norway low cloud cover occurrence has a maximum in the range from 5 to 8 octas (Figure 3d). At the same time small low cover amounts (0–2 octas) are more frequently observed than in the central North Atlantic.

Over most of the North Pacific, histograms of the low cloud cover remain those observed in the central Atlantic, with the distribution peaked at 5–7 octa. In the central North Pacific (Figure 3g–Figure 3i), the seasonal variations in the shape of distribution are more pronounced than in the North Atlantic. Also, small low cloud cover (0–2 octas) is more frequently observed in JFM than in JAS. In the eastern North Pacific, near the coast of North America, the maximum frequency of low cloud cover ranges from 4 to 7 octas (Figure 3j–Figure 3k), however, this region is also characterized by a second peak at 0–2 octas, that is especially pronounced in the JAS (Figure 3k). 

As for the total cloud cover, the Sea of Japan is characterized by very different from the other regions shape of distribution of the low cloud cover with the high occurrence of small amounts of low cloud cover which is somewhat higher in JFM compared to JAS. Also, in this region one can observed a second peak at 5–6 octas which is more pronounced in summer.

 Interannual Variability
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	Figure 4

  To analyze the interannual variability of cloud cover in the North Atlantic and the North Pacific, we computed linear trends and their statistical significance. Figure 4 shows the linear trends in total and low cloud cover, which are significant at a 90% significance level according to a Student's t-test. In the North Atlantic in JFM linear trends in the total cloud cover (Figure 4a) are positive in the eastern part of the region and negative in the Labrador Sea and near Iceland. During JAS (Figure 4b) positive linear trends in the total cloud cover are observed over most of the mid- and subpolar latitudes of the North Atlantic with the negative trends being observed over the Labrador Sea. Thus, over most of the North Atlantic in recent years, there has been an increase of total cloud cover by  ∼0.1 octas per decade with locally high trends in the Norwegian Sea ( ∼0.2 octas per decade). The western North Atlantic, the Labrador Sea region and the area near Newfoundland are characterized by a downward trends in total cloud cover (of about  −(0.1...−0.2) octas per decade).

In the North Pacific, linear trends in the total cloud cover are characterized by pronounced seasonality. During JFM (Figure 4a) over most of the North Pacific linear trends in the total cloud cover are positive (0.1–0.2 octas per decade) and during JAS (Figure 4b) linear trends here are primarily negative with the same magnitude. Quite a different trend pattern is observed in the Sea of Okhotsk. Here, both winter and summer trends in the total cloud cover are negative, reaching in JFM  −0.3 octas per decade in the western part of the Sea of Okhotsk and being marginally significant in JAS.

Linear trends in low cloud cover in JFM (Figure 4c) are positive in the eastern North Atlantic, over the Norwegian Sea and the Greenland Sea (0.1–0.2 octas per decade). Negative winter trends in low cloud cover are observed over the Labrador Sea and south of Newfoundland amounting to  −0.2 octas per decade. In JAS, the trend pattern of low cloud cover in the North Atlantic (Figure 4d) is characterized by positive trends (0.1–0.2 octas per decade) between 40° N and 45–48° N as well as in the region around Iceland and in the Norwegian Sea, where trends amount to 0.15–0.25 octas per decade. Negative trends in low cloud cover in JAS are noticed between 45° N and 60° N (0.1–0.2 octas per decade) and over the Labrador Sea (0.2–0.3 octas per 10 years).

In the North Pacific in winter (Figure 4c) the linear trends in both total and low cloud cover are positive with the most pronounced trend pattern being observed in the central and eastern parts of the North Pacific, where trend magnitudes amount to 0.1–0.25 octas per decade. In most regions of the western North Pacific winter linear trends in the low cloud cover in JFM are not statistically significant. Also, positive linear trends are noted in the Sea of Japan (0.1–0.2 octas per decade). In JAS, the interannual variability of low cloud cover in the North Pacific is less pronounced than in JFM (Figure 4d). In the central part of the North Pacific, locally negative trends (not exceeding  −0.1 octas per decade) should be considered with caution due to poor sampling in this region. Positive trends are also observed in JAS in the eastern North Pacific near the coast of North America, where they amount to 0.1–0.2 octas per decade.

 Summary and Discussion

We analyzed climatology and interannual variability of the cloud cover in the subpolar North Atlantic and the North Pacific using visual cloud cover observations from ICOADS. It is shown that the seasonal variations of cloud cover have different patterns in the North Atlantic and in the North Pacific. In the Atlantic, an annual maximum of mean total cloud cover observed in JAS only in high latitudes. In the 40°–50° N belt, the total cloud cover in the summer is smaller than in the winter. In the North Pacific in JAS the total cloud cover is higher than in JFM. The same patterns are observed when considering the seasonal variations in low cloud cover.

Analysis of the probability distributions of fractional cloud cover shows that over most of the North Atlantic and the North Pacific the occurrence of cloud fraction increases from small to high cloud amounts being peaked at 8 octas. Over most of the North Pacific, except for the east of the region, the frequency of 8 octas of total cloud cover is higher in JAS than in JFM. This is in contrast to the North Atlantic where this seasonal dependence is not pronounced. The Sea of Japan is characterized by U-shape form of distribution which is not observed in the open ocean regions.

The histograms of the low cloud cover are most frequently peaked at 5–7 octas in both Pacific and Atlantic. Seasonal variations in the probability distributions are mostly pronounced south of Newfoundland, where the frequency of low clouds in the range 0–2 octas is noticeably higher in JAS and the frequency of moderate cloudiness is higher in JFM. In the open ocean regions of the North Pacific, on the contrary, the frequency of moderate cloudiness is higher in the summer.

Analysis of linear trends shows an increase in the total cloud cover observed over most of the North Atlantic since the mid-20th century in both winter and summer. Locally negative trends are observed in the eastern North Atlantic regions close to Newfoundland. In the North Pacific positive trends are observed in winter while summer season is characterized by a decrease in the total cloud cover.

Analyzed dynamics of cloud cover is critically important for the further analysis of atmospheric moisture transport [Dufour et al., 2016] and its association with cyclone activity in both mid and high latitudes [Tilinina et al., 2018]. Cloud cover dynamics over western boundary currents provides insights for the further analysis of radiative fluxes which form together with turbulent fluxes the heat budget at the ocean surface [Cronin et al., 2019]. For a more detailed analysis of cloud cover in the subarctic latitudes of the North Atlantic and the North Pacific, it is useful to apply a theoretical three-parameter mixed gamma distribution for fractional cloud cover [Aleksandrova et al., 2018]. Application of this distribution will help to better identify the features of cloud regimes. Also, for a more detailed understanding of the features of different regions of the Arctic, it is necessary to analyze the types of clouds. For example, Chernokulsky and Esau [2019] show that, unlike the rest of the Arctic, where correlations with atmospheric circulation indices and regional moisture transport in spring and summer are insignificant, a strong correlation in these seasons was found between moisture transport between the Barents and Kara seas and cloudiness. Such a relationship may indicate that moisture transport in spring and summer noticeably affects the higher clouds of the West and Central Eurasian Arctic.
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Figure 1. Climatology of the total (a, b) and low (c, d) cloud cover for JFM (a, c) and JAS (b, d) for the period 1950–2017.
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Figure 2. Empirical histograms of the fractional total cloud cover (octas) for selected regions (shown on the map (l)).
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Figure 3. Empirical histograms of the fractional low cloud cover (octas) for selected regions (shown on the map (l)).
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Figure 4. Linear trends in the total (a, b) and low (c, d) cloud cover for JFM (a, c) and JAS (b, d) for the period 1950–2017.
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\abstract{Problem of area's zoning is very important and is one of the main problems of modern geographical science. Our point is to from a modern approach, based on the machine learning methods to provide zoning of any area. Key ideas of this methodology, that any distribution of factors that form any geographical system grouped around some clusters -- unique zones that represents specific nature conditions. Formed methodology based on several stages -- selection of data and objects for analysis, data normalization, assessment of predisposition of data for clustering, choosing the optimal number of clusters, clustering and validation of results. As an example, we tried to zone a surface layer of the Black Sea. We find that optimal number of unique zones is~3. Also, we find that the key driver of zone forming is a location of the rivers. Thus, we can say, that applying a machine learning approach in area's zoning tasks helps us increasing the quality of nature using and decision-making processes.}



\section{1. Introduction}



The problem of zoning has always been and will be the main problem of geographical science. In this context, region or zone is the main territorial system, which is always part of larger regional units. Based on this, zoning is the process of identifying and studying the objectively existing territorial structure, organization, and hierarchical subordination of physical and geographical complexes.

Zoning of any area includes several important goals

 [\itc{Vinokurov et al.,} \reflink{Vinokurov05}{2005};

\itc{Zaika} \reflink{Zaika14}{2014}]:



\begin{enumerate}

\item

Finding an existing physiography complexes;

\item

	mapping of physiography maps;

\item

	deep understanding of the complex composition;

\item

	research of processes and factors, that are forming complexes;

\item

	complex classification;

\item

Finding of any interactions between factors or complexes;

\item

	developing of physiography zoning methods.

\end{enumerate}



Thus, the main goal of this paper was to form a modern mathematical methodology, based on machine learning methods to provide zoning of any area.



In the last years problem of area's zoning and its methodology was tried to solve by several authors.



For example % G. N. Skrebets and S. M. Pavlova

\itc{Skrebets and Pavlova} [\reflink{Skrebets19}{2019}]

conducted a physical and geographical zoning of the Black Sea using correlation analysis. They used a mapping based on relationship between phytoplankton and natural factors, that limiting its distribution. Using this approach, they identified 5 regions that differ from each other in quantitative way, as well as in combination of relationships.



From a biological point of view, this problem was considered by

%V.~E.~Zaika

\itc{Zaika} [\reflink{Zaika14}{2014}].

He carried out biological zonation of the Black Sea and also described the main problems of its implementation. The principle of distinguishing different regions was based on quantitative analysis of the dominant species in different regions of the Black Sea.



The widespread use of physiographic zonation received in landscape ecology. %Yu.~I.~Vinokurov, Yu.~M.~Tsimbaleya and B.~A.~Krasnoyarova

\itc{Vinokurov et al.} [\reflink{Vinokurov05}{2005}]

proposed a methodology and implemented the physical and geographical zoning of Siberia. Based on various natural features, they identified more than 100 different regions with unique physical and geographical conditions.



%A. Tamaychuk

\itc{Tamaychuk} [\reflink{Tamaychuk17}{2017}]

in his paper tried analytical approach to zoning Black Sea area, based on main factors of spatial differentiation, distribution features of environmentally significant characteristics and modern ideas about the theory and methods of physiographic zoning. He divided area of the Black Sea into 3 water-provinces -- North-West moderate, North-East moderate and subtropical.



Mathematical approach was shown in %E. Sovga

\itc{Sovga et al.} [\reflink{Sovga05}{2005}]

work. They used depth, mean values of temperature and salinity, differences and features in flora and fauna as a factor. They divided area of the North-West part of the Black Sea into 4 groups -- West, Karkinitsky, Central and Kalamitsky.



V. Agostini

[\itc{Agostini et al.,} \reflink{Agostini15}{2015}]

in her paper tried to make a zoning of marine environment in St.~Kitts and Nevis. For her analysis, she used 37 spatial layers, that represent different factors and fully described functionality of the research area, that was divided into 3 major groups -- ``habitat'', ``species'' and ``human use''. As the result, she distinguished 4 major zones -- ``conservation'', ``transportation'', ``touristic'' and ``fishing''.



\itc{Petrov and Bobkov} [\reflink{Petrov17}{2017}]

tried to form the concept of hierarchical structure of large marine ecosystems in the Arctic shelf of Russia. Based on environmental variables, they distinguished 7 eco-regions of the Barents Sea -- South-Western, Pechora Sea, Central basin south, Central basin north, Novaya Zemlya shore, Svalbard Archipelago and Franz Josef Land Archipelago.



%Fyhr F., Nilsson A. and Sandman N. [

\itc{Fyhr et al.} [\reflink{Fyhr13}{2013}]

tried to review all of the modern concepts and tools for Ocean zoning. Based on their work, the most actual and commonly used tools are Atlantis, Cumulative Impacts Assessment Tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Marine Protected Areas Decision Support Tool (Marine Map), Marxan and Marxan with Zones, NatureServe Vista and Zonation.





\section{2. Clustering as Physiographic Zoning Method}



\enlargethispage{-1pc}



Clustering is a task of dividing the entire dataset into separate groups of homogenous objects, that are similar to each other, but have distinct difference between this separate groups

[\itc{Aleshin and Malygin,} \reflink{Aleshin19}{2019}].

Clustering algorithms are divided in two groups -- hierarchical and iterative.



I. Hierarchical -- consistently build clusters from already found clusters.

\begin{enumerate}

\item

Agglomerative (unifying) -- start with individual elements, and then combine them;

\item

separation -- start with one cluster, and then -- divide them;

\end{enumerate}



 II. Non-hierarchical -- optimize a certain objective function.

\begin{enumerate}

\item

Graph theory algorithms;

\item

EM algorithm;

\item

 $K$-means algorithm ($k$-means clustering);

\item

fuzzy algorithms.

\end{enumerate}



Any clustering algorithm can be considered effective if the compactness hypothesis is satisfied

[\itc{Shi and Horvath,} \reflink{Shi06}{2006}].



Physiographic zoning using clustering method is carried out in several stages:

\begin{enumerate}

\item

Selection of data and objects for analysis;

\item

data normalization;

\item

assessment of predisposition of data for clustering;

\item

choosing the optimal number of clusters;

\item

clustering and validation of results.

\end{enumerate}



Formally, almost all clustering tasks come down to this form. Let  $X$ be the set of objects, $Y$ is the set of numbers (names, labels) of clusters. The distance function between objects is specified as

$\rho(x,x\prime)$

[\itc{Collins et al.,} \reflink{Collins02}{2002}].

There is a finite training set of objects $X^m={x_1,...,x_n}\in X$. So, the main goal of clustering is to divide dataset into several disjoint subsets. These subsets called clusters and consist from objects, that are closed to the

$\rho$-metric. Objects from different clusters were significantly different. For every object $x_i\in X^m$ assigned the number of cluster $y_i$

[\itc{Marron et al.,} \reflink{Marron14}{2014}].



\subsection{2.1. Data Normalization}



Data normalization is one of the feature transformation operations that is performed during their generation at the data preparation stage. In case of machine learning, normalization is a procedure for preprocessing input information (training, test and validation samples, as well as real data), in which the values of the attributes in the input vector are reduced to a certain specified range of values, for example: $[0...1]$ or $[-1...1]$.



The importance of data normalization comes from the nature of algorithms and models in machine learning. The values of raw data can vary in a very wide range and differ from each other by several orders

[\itc{Rybkina et al.,} \reflink{Rybkina18}{2018}].

The work of such machine learning models like neural networks or Kohonen self-organizing maps with not normalized data will be incorrect -- difference between attribute's values can cause instability of the model, that will lead to worth learning results and slowing the modelling process. Also, some parametric machine learning models require symmetric and unimodal data distribution. After normalization, all the numerical values of the input attributes will be reduced to the same amount -- a certain narrow range

[\itc{Criminisi et al.,} \reflink{Criminisi12}{2012}]. %%% ??? +



There are many ways to normalize feature values in order to scale them to a single range and use them in various machine learning models. Depending on the function used, they can be divided into two large groups: linear and non-linear

[\itc{Tealab et al.,} \reflink{Tealab17}{2017}].

With nonlinear normalization, the calculated ratios use the functions of the logistic sigmoid or hyperbolic tangent. In linear normalization, the change of variables is carried out proportionally, according to a linear law.



The most common methods for data normalization are:



Minimax -- linear data transformation in the range $[0..1]$, where the minimum and maximum scalable values correspond to 0 and 1, respectively:



\begin{eqnarray*}    % \begin{equation}\label{1}

X_{\mathrm{norm}}=\frac{X-X_{\min}}{X_{\max}-X_{\min}}

\end{eqnarray*}

$Z$-scaling based on the mean and standard deviation: dividing the difference between the variable and the it means by the standard deviation:



 \begin{eqnarray*}      % \begin{equation}\label{2}

 z=\frac{x-\mu}{\sigma}

\end{eqnarray*}

Decimal scaling -- performed by removing the decimal separator of the variable value

[\itc{Seber and Lee,} \reflink{Seber03}{2003}].



In practice, minimax and $Z$-scaling have similar areas of applicability and are often interchangeable. However, in calculating the distances between points or vectors in most cases, $Z$-scaling is used, while minimax is useful for visualization.



\subsection{2.2. Assessment of Predisposition of Data for Clustering}



One of the most common problem of unsupervised machine learning is that clustering will form groups, even if the analyzed dataset is a completely random structure. That's why the first validation task that should be applied even before clustering is to assess the overall predisposition of the available data to cluster tendency

[\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



There are two common indicators, that can show us cluster tendency -- Hopkins statistics and Visual Assessment of cluster Tendency or ``VAT diagram''.



To calculate Hopkins statistics, we need to create B pseudo-datasets, randomly generated based on the distribution with the same standard deviation as the original dataset. For each observation $i$ from $n$, the average distance to $k$ nearest neighbors is calculated as follows:

$w_i$ between real observations and $q_i$ between generated observations and their closest real neighbors

[\itc{Keller et al.,} \reflink{Keller85}{1985};

\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

Then the Hopkins statistics calculates as follows:



 \begin{eqnarray*}

H_{\mathrm{ind}} = H_{\mathrm{ind}}=\frac{\sum_{n}w_i}{\sum_{n}q_i+\sum_{n}w_i}

\end{eqnarray*}

If $H_{\mathrm{ind}}>0.5$,  then it will correspond to the null hypothesis that $q_i$ and $w_i$ are similar and values are distributed randomly and uniformly. If  $H_{\mathrm{ind}} < 0.25$ this indicates that a dataset has a tendency to data grouping.



For visual assessment of clustering tendency, the best way is to using VAT diagram. VAT algorithm consists of:



\begin{enumerate}

\item

Compute the dissimilarity matrix between the objects in the data set using the Euclidean distance measure;

\item

reorder the dissimilarity matrix so that similar objects are close to one another. This process creates an ordered dissimilarity matrix;

\item

the ordered dissimilarity matrix is displayed as an ordered dissimilarity image, which is the visual output of VAT.

\end{enumerate}



The VAT detects the clustering tendency in a visual form by counting the number of square shaped dark blocks along the diagonal in a VAT image [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



\subsection{2.3. Choosing the Optimal Number of Clusters}



At this moment there's two main ways to choose an optimal number of clusters -- ``elbow'' method and using of gap statistics

[\itc{Chapelle et al.,} \reflink{Chapelle06}{2006}].



The ``elbow'' method -- considered the pattern of variation in the dispersion of $W_{\mathrm{total}}$  with increasing in number of groups  $k$

[\itc{Tomar et al.,} \reflink{Tomar18}{2018}].

Combining all of the founded  observations in one group, we'll have the biggest intraclass dispersion, that will decrease to 0 when $k\rightarrow n$.

The point, when this decreasing of dispersion will be slowing down, called ``elbow''

[\itc{Seber and Lee,} \reflink{Seber03}{2003};

\itc{Thiery et al.,} \reflink{Thiery06}{2006}].



An alternative to the ``elbow'' method is using gap statistics, which are generated based on resampling and Monte-Carlo simulation processes. For example, let $E_n^\ast{\log(W_k^\ast)}$ denotes the valuation of average dispersion $W_k^\ast$, obtained by bootstrap method, when $k$ clusters are formed by several random objects $f$ from the original dataset of $n$ size. Then gap statistics will be calculated as follows:



 \begin{eqnarray*}          % \begin{equation}\label{4}

\mathrm{Gap}_n(k)=E_n^\ast{\log(W_k^\ast)}-\log(W_k)

\end{eqnarray*}

 $\mathrm{Gap}_n(k)$ determines the deviation of the observed dispersion $W_n$ from its expected value, if the original data formed only one cluster.



\subsection{2.4. Validation of Clustering Results}



Currently, there are several ways to validate the results of clustering:



\begin{enumerate}

\item

 External validation -- comparing the results of cluster analysis with already known validation dataset;

\item

relative validation -- evaluating the structure of formed clusters by changing the algorithm parameters;

\item

internal validation -- obtaining internal information of clustering process;

\item

assessment of the clustering stability using resampling.

\end{enumerate}



The most widespread indexes are silhouette index and Calinski-Harabasz index [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



One of the approaches to validate the results of clustering is the Calinski-Harabasz index.



Let ${\overline{d}}^2$  is the mean square distance between elements in clustering variety and ${\overline{d}}_{c_i}^2$ -- mean square distance between elements in cluster $c_i$. Then the distance inside groups will be:



 \begin{eqnarray*}   % \begin{equation}\label{5}

\mathrm{WGSS} = \frac{1}{2}\sum_{i=1}^{c}(n_{c_i}-1){\overline{d}}_{c_i}^2

\end{eqnarray*}

and the distance between groups will be:



\begin{eqnarray*} % \begin{equation}\label{6}

\mathrm{BGSS} = \frac{1}{2}\left(\left(c-1\right)

{\overline{d}}^2+\left(N-c\right)A_c\right)

\end{eqnarray*}

where $a_c = A_c/\overline{d}^2$ -- is weighted mean difference of distances between cluster centers and a mutual variety center. Then the Calinski-Harabasz index will be:



\begin{eqnarray*}

\mathrm{VRC} = \frac{\mathrm{BGSS}/(c-1)}{\mathrm{WGSS}/(N-c)} =

\end{eqnarray*}

 \begin{eqnarray*}

 \frac{{\overline{d}}^2+ [(N-c)/(c-1)]A_c}{{\overline{d}}^2-A_c} =

\end{eqnarray*}

 \begin{eqnarray*}  %  \begin{equation}\label{7}

 \frac{1+[(N-c)/(c-1)]a_c}{1-a_c}

\end{eqnarray*}

where $a_c=A_c/\overline{d}^2$. We can see, that if the all distances between points are similar, then

$a_c=0$ and $\mathrm{VRC} = 1$. $a_c=1$

  characterize the prefect clustering. The maximum value of  corresponds to optimal cluster's structure.



Another approach to validate the clustering results is using the silhouette index. Its values shows the degree of similarity between object and cluster that he belongs to, compared to another clusters

[\itc{Shi and Horvath,} \reflink{Shi06}{2006};

\itc{Soliman et al.,} \reflink{Soliman17}{2017}].



Silhouette of every cluster estimates as follows: let object $x_j$ corresponds to cluster $c_p$. Denote the mean distance from this object to other objects from this cluster  $c_p$ as $a_{pj}$  and the mean distance from this object $x_j$ to objects from another cluster as

$c_q,q\ \neq\ p $ as $d_{q,j}$.

Let $b_{pj} = \min_{q\neq p}d_{qj}$. This value means the measure of dissimilarity of single object with objects from nearest cluster. Thus, the silhouette of every single element of cluster calculates as:



 \begin{eqnarray*}   % \begin{equation}\label{8}

S_{x_j}=\frac{b_{pj}-a_{pj}}{\max(a_{pj},b_{pj})}

\end{eqnarray*}

The highest values of $S_{x_j}$ corresponds to better affiliation of element  $x_j$

to cluster $p$.  The evaluation of all cluster structure provided by averaging the value by elements:



 \begin{eqnarray*}   %  \begin{equation}\label{9}

\mathrm{SWC} = \frac{1}{N}\sum_{j=1}^{N}S_{x_j}

\end{eqnarray*}

Better clustering characterized by bigger values of , that achieved when the distance inside cluster $a_{pj}$ is small and the distance between objects from neighboring clusters $b_{pj}$ is big.



\section{3. Black Sea Surface Physiographic Zoning}

\subsection{3.1. Research Area}



The Black Sea is an inland sea, that belongs to the basin of the Atlantic Ocean. Its maximum depth reaches the mark of 2258 meters

(\figref{1})

[\itc{Barratt,} \reflink{Barratt93}{1993}].

The total area of the Black Sea is 420,325~km$^2$, and with the Sea of Azov -- 462,000~km$^2$

[\itc{Murray,} \reflink{Murray05}{2005}].



The average seasonal cycle of geostrophic circulation of the Black Sea [\itc{Ivanov and Belokopytov,} \reflink{Ivanov11}{2011}]:



\begin{itemize}

\item

	From January to March -- a single cyclonic rotation with a center in the eastern part of the sea, the western circulation is weakly expressed;

\item

from April to May -- a single cyclonic rotation with a center in the western part of the sea, the eastern cycle is weakly expressed;

\item

from June to July -- two cycles, the western more intense;

\item

from August to September -- two cycles, the eastern one is more intense;

\item

from October to December -- two cycles of equal intensity.

\end{itemize}



About 80\%

of the river flow is concentrated in the northwestern part of the Black Sea. The Caucasian rivers contribute about 13\%

of the water balance, while the runoff from Turkeys rivers is about 7\%

[\itc{Ghervas} \reflink{Ghervas17}{2017}].  % Ghervas.

The contribution of the Crimean rivers a is insignificant

[\itc{Belokopytov and Shokurova,} \reflink{Belokopytov05}{2005}].



The biggest river, that flows into the Black Sea is Danube. The Danube usually brings about 203~km$^3$ of freshwater into North-Western part of the Black Sea, decreasing the level of salinity there. Another big river, that flows into Black Sea is Dnieper from Ukrainian part and Rioni from Georgian

[\itc{Ozsoy and Unluata,} \reflink{Ozsoy97}{1997}].



\begin{figure*}[t]                        %  Fig  1

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f01}

\shortcaption{Bathymetric map of the Black Sea.}

\end{figure*}



\subsection{3.2. Data}



We used the monthly averaged data from Copernicus Marine Environmental Monitoring Service (CMEMS) -- Black Sea Reanalysis, which are based on 5 components:



\def\bottomfraction{.8}

\def\textfraction{.15}



\begin{table}[b]                                   % Table 1

\tablewidth{20pc}

\caption{Estimated Data Accuracy Results for Temperature and

Salinity. From Left Side in Each Row -- for 1995--2015 Data.

From Right -- for 2005--2015} \vspace{5pt}

\begin{tabular}

{@{}l@{\hspace{9pt}}

c@{\hspace{18pt}}

c@{}}

\hline

\\ [-7pt]

Feature & BIAS v4 & DMS v4 \\

 [7pt]  \hline   \\ [-4pt]

SST (\deg C)          & $-0.07/-0.07$ & 0.58/0.59 \\

T (\deg C) 0--100 m   & $-0.02/0.025$ & 0.87/0.74 \\

T (\deg C) 100--300 m & $-0.03/-0.003$ & 0.15/0.09 \\

T (\deg C) 300--800 m & $-0.02/-0.02$ & 0.11/0.05 \\

S (psu) 0--100 m      & $-0.014/0.002$ & 0.33/0.26 \\

S (psu) 100--300 m    & $-0.006/0.009$ & 0.19/0.15 \\

S (psu) 300--800 m    & $-0.005/-0.002$ & 0.05/0.03\\  [7pt]

\hline

\end{tabular}

\end{table}



\begin{enumerate}

\item

	Ocean model -- Hydrodynamic model, which is a part of the NEMO (Nucleus for European Modelling of the Ocean) project;

\item

	scheme of data assimilation (OceanVar) for temperature and salinity profiles, satellite data for sea surface temperature, sea level anomalies etc.;

\item

	assimilated data -- in-situ data for environmental variables;

\item

	recovery scheme for environmental variables;

\item

basic large-scale adjustments.

\end{enumerate}





Data from this model have a high level of correlation with in-situ data, that increasing with depth. For example, the accuracy of temperatures spatial distribution in the Black Sea at depth of 30~m

about $\pm{1.5}$\deg C, at the depth of 70~m it decreases to

$\pm{0.3}$\deg C and at the depth of 1100~m is about

$\pm{0.04}$\deg C

(\tabref{1}).    %Table 1).



The quality of the model data, as well as the model itself, improve with increasing of in-situ observations numbers.



For Black Sea surface physiographic zoning we used 6 environmental parameters -- sea surface temperature, sea surface salinity, dissolved oxygen level, PO$_4$ and NO$_3$ content and primary production level.



\subsection{3.3. Results}



To understand, does dataset has a tendency to form clusters, we calculated a Hopkins index using the R-package ``clustertend''. It was equal to 0.0194, that means that this dataset can form clusters.



To estimate an optimal number of clusters, we used the R-package ``factoextra''. Results shown in

\figref{2}.    % figure 2.



\begin{figure}[t]                        %   Fig  2

\figurewidth{20pc}

\setimage{}{}{20pc}{}{2020es000707-f02}

\caption{Determining an optimal number of $k$ by elbow-method.}

\end{figure}



As we can see at the

\figref{2},

the elbow of our curve is located at 3, thus we can distinguish 3 completely different zones in the surface waters of the Black Sea

(\figref{3}, \figref{4}).

Allocation of this zones due equally to all of analyzed factors, except dissolved oxygen.



\begin{figure*}[t]                        %   Fig  3

\figurewidth{35pc}

\setimage{}{}{41pc}{}{2020es000707-f03}

\caption{Seasonal zoning of the Black Sea.%

{\bf A} -- Winter, {\bf B} -- Spring, {\bf C} -- Summer, {\bf D} -- Autumn.}

\end{figure*}



Based on statistical analysis all of these factors divided in two groups. First -- phosphates concentration, primary production and chlorophyll-$\alpha$, which are derivatives from each other -- the amount of phosphates impacts on amount of primary production and amount of primary production impacts on amount of produced chlorophyll-$\alpha$. Second are temperature, salinity and nitrates concentration.



Studying water objects, it's important to know a seasonal variability of zones, because of its very high change capability in time. Comparing with land, water systems aren't stable for long period of time and spatial distribution of factors can vary from season to season.



Generally, as we can see in figure, main reasons of zoning pattern forming are quantitative and qualitative characteristics on flows.



In winter season, there is a clear divide of the Black Sea from west to east. A significant role in this process is played by the interaction of the Black Sea with the Sea of Marmara, river flows in the northwest of the Black Sea and in the Caucasus and, in some cases, areas near the Southern coast of Crimea and the Kerch Peninsula due to the activity of currents from the Sea of Azov.



In spring season, the divide of the Black Sea occurs from north to south. In this case, a significant impact on this process is exerted by the significant flow of such rivers as the Dniester, Danube and Dnieper in the north-west of the Black Sea and the influx of water from the Sea of Marmara. Due to the interaction between two water masses radically different in their characteristics, it forms an intermediate zone between them, covering an area from the Kerch Strait to the Danube Delta.



In the summer, due to the nature of the internal currents in the Black Sea and changes in the volume of river flow, more saline water from the Sea of Marmara reaches the Danube. In spatial terms, the pattern of zones distribution in the Black Sea is similar to the winter one, in which they are located from east to west. The formation of the intermediate second zone is most likely due to the interaction with more fresh and cold water coming from the Sea of Azov.



In autumn, the formation of more fresh and colder waters off the coast of Turkey is observed, which is due to the significant flow of the rivers of the Turkish coast. The distribution pattern is more similar to the spring one, with significantly increased in size zone~1.



Annual zoning of the Black Sea is presented on  figref{4}.



\subsubsection{Zone 1.}

 Located in the North-West part of the Black Sea. Flows from Danube, Dniester, Dnieper and Southern Bug completely equal of 3/4 of a total flow into the Black Sea. Dominated northern and north-western winds helps in spreading of matters, endured by rivers. The main feature of this part of the sea is an active interaction of fresh water from rivers with salty water from south of the Black Sea. Near the shore water salinity reaches values about $7-8 \pm$. Temperature of water surface, as a salinity, increasing from shore to open sea. Temperature differences reaches

 1.5--2.0\deg C. Bioproductivity of this zone is quite high, mainly cause of active flowing rivers matter and\linebreak

fresh water. But local hydrophysical and hydrochemical

conditions condition high variability of bioproductivity with

fishkills.



\subsubsection{Zone 2.}

 Basically, forming of this zone determined by interactions between 1-st and 3-rd zones, where as a results of Black Sea

 currents and flows from big rivers, cold fresh water from the coastal areas mixed up with more cold and salty water from

 central part of the Black Sea. Located in the north-west part of the Black Sea, near the Crimean-Caucasus shore of Russia,

 Georgian and Turkey coasts. Biggest rivers here are Rioni, Tuapse, Kizilirmak, Yesilirmak and Inguri. Like the zone~1, location

 of the zone 2 is due to the flows from rivers. But cause of lower levels of flow amount, compared with the zone 1, their

 impact  on water of the Black Sea is quite lower, but noticeable. Values of salinity here doesn't differ from the central part

 ($1-2 \pm$ fresher), same as a temperature.



\begin{figure*}[t]                          %  Fig  4

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f04}

\shortcaption{Physiography zoning of the Black Sea.}

\end{figure*}



\subsubsection{Zone 3.}

 Natural conditions of this zone are a common to the Black Sea. The area of this zone is the biggest. Located in the south and central part of the Black Sea and near the Kerch Strait. Salinity here is a quite high -- $19-20 \pm $, and reaches $24 \pm $ near the Bosporus Strait. The impact of the Sea of Azov is quite low, due to specificity of Azov currents. Amount of phosphates and nitrates is low due to lack of any big rivers, which are the main sources of their presence in the sea water. As a result, concentrations of chlorophyll-$\alpha$ is quite low too.



\section{4. Conclusions}



Thus, the methodological approach, showed in this paper, helps us to use it fully in zoning tasks to provide distinguishing from them completely different areas, that aren't similar. As we can see, the main advantages of this approach are lack of subjectivity that is inherent to humans, high level of analysis accuracy, possibility of constant model's modification by adding new {\itshape in-situ} data or by modifying the algorithm itself. Also, it should be noted, that the indisputable advantage of this approach is the ability to use it in any kind of territory, both in size and in properties.



As we talk about disadvantages of this approach, we should note a strong dependency from input data quality and data normalization, which in some cases can lead to significant distortion in the analysis results. The same we can say about data size. With significant amount of data, it may be difficult to conduct the research, which leads to completely change the used algorithm or to significant reduction in data size and, as a result, to simplification of the model and distortion of the real results. Generally, we should note, that using of this approach is justified in most cases, but the need of improvement and further optimization of it doesn't disappear.



Obtained results helps us to understand that applying of this

approach can helps us to go away from analytical and empirical

zoning approaches to have a math basis, uniformity of

calculations and process automatization. Conducted as an

example of this approach application, Black Sea physiographic

zoning generally is quite similar with previous works. It was

determined, that the most optimal number of the dissimilar

groups, based on analyzed factors is 3. Generally, their

spatial location based on places where rivers flows into the

Black Sea, and as a result more comfortable for different flora

and fauna. For example, the conditions, that formed in the

second area is quite comfortable for spawning of many

commercial fishes, Like {\itshape Liza haematocheilus},

{\itshape Engraulis encragicolus}, {\itshape Liza aurata},

 {\itshape Mugil cephalus}, etc. Thus, applying a machine learning approach in area's zoning tasks helps us to increase the quality of nature using and decision-making process.
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