RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 21, ES1003, doi:10.2205/2020ES000723, 2021


Table 4. Methane Content in Sediments and Near-Bottom Water, Diffusion Flux at the Sediment-Water Interface in the Sevastopol Bay of the Black Sea
Point Horizon, cm Methane concentration$^*$Methane diffusion flux mmol m$^2$/day Point Horizon, cm Methane concentration$^*$Methane diffusion flux mmol m$^2$/day
10 near-bottom water 0.09 9 near-bottom water 0.38
1 1.87 0.012 1 19.43 0.132
3 2.41 3 92.63
5 1.67 5 452.99
7 0.85 7 400.24
9 0.93 9 558.33
13 0.84 13 807.02
17 0.75 17 1856.22
23 0.58 23 1216.33
27 1.25
16 near-bottom water 0.24 3 near-bottom water 0.22
1 0.93 0.005 1 2.25 0.014
3 0.84 3 1.53
5 0.72 5 1.82
7 0.9 7 1.56
9 0.96 9 2.25
13 1.89 13 12.75
17 4.02 17 17.61
2 near-bottom water 0.16 21 near-bottom water 0.22
1 0.76 0.004 1 1.68 0.01
3 1.51 3 1.51
5 2.15 5 1.45
7 2.48 9 1.94
9 2.39 14 1.7
13 2.69 19 1.07
17 2.87 12 near-bottom water 0.05
23 3.38 1 0.95 0.006
27 7.13 3 0.96
33 7.33 5 3.63
37 8.07 7 0.58
45 8.77 9 1.78
11 1.18
Note: Methane concentration was measured by phase-equilibrium degassing using a Crystal 2000 gas chromatograph (for samples of the Vistula Lagoon) and an HP 5890 chromatograph (for samples of the Sevastopol Bay). The diffusion flux was calculated from methane concentrations in pore waters according to Fick's first law.
* $\mu$mol/l for water and mmol/dm$^3$ for sediments.

      Powered by MathJax


Citation: Ulyanova M., T. Malakhova, D. Evtushenko, Yu. Artemov, V. Egorov (2021), Comparison of methane distribution in bottom sediments of shallow lagoons of the Baltic and Black Seas, Russ. J. Earth Sci., 21, ES1003, doi:10.2205/2020ES000723.


Generated from LaTeX source by ELXfinal, v.2.0 software package.