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Abstract. The paper presents the structure
of a new original FDPS (Functional Discrete
Perfect Sets) algorithm used to filter and
arrange the layers of the geospatial data into
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homogenous condensations. The latter may be
related to the deep zones of dynamic instability
in the upper part of the Earth’s crust. Synthetic
and real examples of this algorithm’s usage are
presented, demonstrating its capabilities as part
of the system analysis of the geological
environment stability in the area of construction
of a deep disposal site for high-level radioactive
waste. Testing the algorithm allowed us to
identify the most stable blocks, thereby
demonstrating its usage value. This shows the
necessity of further development and use of the
FDPS algorithm.
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Introduction

At present, an underground research laboratory (URL)
is being created in the granite-gneiss rocks of the Nizne-
Kansk Massif (Krasnoyarsk Territory) to assess and
substantiate the geoecological safety of disposal of high-
level radioactive waste (HLRW). In international and
Russian documents regulating safety of HLRW man-
agement, the main message is the idea that the main
barrier in the way of spreading of radionuclides is the
geological environment. The engineering barriers for
HLRW with the half-life of more than 10 thousand years
are secondary.

The selection of the part of the Earth’s crust suit-
able for HLRW disposal is based on the analysis of
properties, phenomena and processes affecting preser-
vation of the insulating properties of the rocks of the
structural tectonic block (STB) containing HLRW. The
complexity of solving this multidisciplinary problem is
related to the extreme heterogeneity of the upper part
of the Earth’s crust caused by a structural-tectonic
disturbance (lineaments, fractures, large cracks, etc.)
and tectonic movements of various hierarchical levels
(differentiated movements along the fracture, tectonic
creep, seismicity, etc.).



The Nizne-Kansk Massif is located in the aureole
of the largest regional tectonic structures – the folded
structure of the Yenisei Ridge, the epi-Hercynian West
Siberian platform, the ancient Siberian platform and
the young Altay-Sayan earthquake-prone region. The
force interaction of these structures specifies the cur-
rent stress-strain state of the region.

The southern part of the Yenisei Ridge (Figure 1)
since the end of the Pleiocene (1.5 ± 0.5 mln years)
has been experiencing a slow uplift, the total amplitude
of which is estimated at 400-500 m, and the average
velocity according to the geological data makes 0.2-0.3
mm/year [Anderson et al., 2011; Belov et al., 2007;
Lobatskaya, 2005].

As applied to the problem of the HLRW disposal
in geological formations, an important term was in-
troduced – “stability of the structural-tectonic block”
[Tatarinov et al., 2014a; Gvishiani et al., 2019a]. It is
understood as the capacity of the block to maintain or
change its properties and state under the natural and
anthropogenic influences within the range that will not
lead to the loss of insulating properties of the rock mass
and release of radionuclides outside the sanitary zone.
This is defined by the time interval equal to the period
of the HLRW radiobiological hazard.



Figure 1. Geological map of the Nizne-Kansk massif. 1 - boundaries:
established (a), assumed (b), unconformity (c), dropping (d); 2 - reverse faults:
major (a), minor (b), faults (c); 3 - breaking faults: unidentified (a), alleged (b),
activated (c); 4 - mylonites (a), blastomylonites (c); 5 - tectonic terrain ledges; 6
- amphibolites (a), shales (b); 7 - migmatites (a), granitoids (b); 8 - diaftorites;
9 - outcrops; 10 - places of permafrost; 11 - holes; 12 - wells in area HLRW;
13 - thickness of the Quaternary layer; 14 - the relationship of layers: consonant
(a), unconformable (b), angular unconformity (c), tectonic (d), intrusive (e); 15
- boundaries of areas for HLRW.



The structural tectonic block is the system with dis-
tributed parameters depending on the time and coor-
dinates of observation points. Their anomalous val-
ues (potentially dangerous for preservation of insulat-
ing properties of the rocks) are represented in the fea-
tures (morphology) of distribution of the geological,
geophysical, geochemical and other characteristics and
the Earth’s surface relief, most often in the form of lin-
early elongated areas, the so-called geodynamic zones.
It is believed that geodynamic zones are responsible for:

• formation of local zones of concentration of stress
fields, initiating the process of rock destruction in
the form of fast seismic processes or tectonic creep;

• modern vertical and horizontal movements of the
Earth’s crust;

• destruction of the rock mass and an increase in its
permeability and porosity for the groundwaters.

Their identification is the most significant task of
geodynamic zoning [Morozov et al., 2008; Petukhov et
al., 1999; Tatarinov et al., 2014b].

In most cases, it is almost impossible to visually
identify unstable zones in the maps, especially based
on the set of features. It is characteristic for low-
level platform areas (in fact, to which the Nizne-Kansk



Massif belongs) or regions with a thick sedimentary
cover. For such cases, based on the methods and
algorithms of discrete mathematical analysis (DMA)
[Agayan et al., 2018; Gvishiani et al., 2019b] within the
framework of the Russian Science Foundation project
no. 18-17-00241, a measure of geodynamic safety was
constructed considering interaction of the geodynam-
ics and morphological features of distribution of geo-
logical and geophysical parameters (including a digital
terrain model, results of GNSS-observations, geophys-
ical fields, etc.) [Gvishiani et al., 2019a; Gvishiani et
al., 2020]. In accordance with the values of this mea-
sure, the studied area is ranked into relatively unsta-
ble (conditionally dangerous) and stable (conditionally
safe) structural blocks. It is required to create an al-
gorithm of adequate system analysis to identify them.
An original algorithm FDPS (Functional Discrete Per-
fect Sets) is developed and applied in the paper for this
purpose. The first results of its use in the considered
region are stated in this paper.

1 Construction FDPS Algorithm

The search for anomalies in the fields of geophysical
data [Mikhailov et al., 2003; Zlotnicki et al., 2005;



Soloviev et al., 2012], identification of the places of
possible occurrence of significant earthquakes [Gvishi-
ani et al., 2016; Gvishiani et al., 2017] and other tasks
related to the problems of natural risk bring a researcher
(an expert) to the need to assess ν(x) ∈ [0, 1] the
nodes x of the finite grid X based on the measurements
carried out in them. The assessment ν is required to
rank the nodes in X and select the subsets B(X , ν) of
the best nodes among them.

In general, the assessment ν inherits stochasticity
of the measurements underlying it. That’s why, the
selection according to the level α as to ν

B(X , ν) = {x ∈ X : ν(x) ≥ α}

is unstable: a “good node” x (ν(x) ≥ α) may be
surrounded with “bad nodes” x (ν(x) < α), and that’s
why it is not considered further. And vice versa, a “bad
node” may be surrounded with “good nodes” and will
be used in further work.

The aim of this work is to form a selection B(X , ν) in
presence of the metric structure on X using the Discrete
Perfect Sets topological filtering algorithm developed
in the frames of discrete mathematical analysis (DMA)
and its application to the HLRW disposal problem.

This selection will represent a set of regions con-



nected in X , in which the majority of nodes are “good”.

1.1 Discrete Perfect Sets

Let X be the finite set, and A, B , . . . and x , y , . . .
– its subsets and points, respectively.

Definition 1 Let’s call a mapping of 2X × X to the
fragment [0, 1], increasing by the first argument, the
density P on the set X :

P(A, x) = PA(x)
∀x ∈ X : A ⊆ B ⇒ PA(x) ≤ PB(x).

PA(x) is the density of the subset A in the point x.

For the density P given on X , the subset A and the
level α ∈ [0, 1], let’s construct a sequence of α-n-hulls
of the subset A in the set X according to the density
P :

A1 = x ∈ X : PA(x) ≥ α,

...

An = x ∈ X : PA∪An−1(x) ≥ α,

...

Induction by n using the increasing monotonicity P
specifies



Statement 1 A1 ⊆ · · · ⊆ An ⊆ ... .

Because of finiteness of the set X , in the non-decreasing
and bounded sequence of α-n-hulls, starting from some
number n∗, stabilization occurs:

Definition 2 Let’s call the set An∗ α-∞-hull of the
subset A and designate through A∞.

The set A∞ is semi-variant: its first density hull
(A∞)1 does not fall beyond the set A∞.

Statement 2 A∞ contains its α-hull by the density:

(A∞)1 ⊆ A∞.

P r o o f

by contradiction. Let us use the finite representation
A∞: A∞ = An∗. If PAn∗(x) ≥ α and x /∈ An∗, then
PA∪An∗(x) ≥ PAn∗(x) ≥ α ⇒ x ∈ A(n∗+1) and there-
fore An∗ ⊂ A(n∗+1). However, based on the condition
An∗ = A(n∗+1). The obtained contradiction proves the
statement.

Form this it immediately follows that for a set the
series of its α-n-hulls is constant.

Consequence



A∞)n = (A∞)1 ∀ n ≥ 2.

P r o o f.

It is stated above that (A∞)1 ⊆ A∞ therefore,

(A∞)2 =
{

x ∈ X : PA∞∪(A∞)1(x) =

= PA∞(x) ≥ α} = (A∞)1

and so on.
Let’s designate α-∞-hull for A∞ through A2∞. We

have:
A2∞ = (A∞)∞ = (A∞)1 ⊆ A∞.

Sequentially constructing the α-∞-hulls based on
the density P , we obtain the following scheme:

A→ A1 ⊆ · · · ⊆ A∞

A∞ ⊇ (A∞)1 = A2∞

...

Am∞ ⊇ (Am∞)1 = A(m+1)∞

...

Because of X finiteness in a non-increasing sequence

A∞ ⊇ · · · ⊇ Am∞ ⊇ ... ,



starting with some number m∗, stabilization occurs:

A∞ ⊃ · · · ⊃ Am∗∞ = A(m∗+1)∞ = ... .

Definition 3 Let’s designate the set Am∗∞ through
A(α).

The process of constructing A(α) has a stage of in-
creasing from A1 to A∞ and a stage of decreasing from
A∞ to A(α):

A → A1 ⊂ · · · ⊂ An∗ = (1)

= A∞ ⊇ · · · ⊇ Am∗∞ = A(α).

Statement 3 A(α) coincides with its α-hull.

P r o o f.

It follows from the following results:

A(α) = An∗∞ = A(n∗+1)∞ = (An∗∞)1 = (A(α))1.

Informally, this statement means that the set A(α)
consists exactly of those points where its density is more
than α or equal to it:

A(α) =
{

x ∈ X : PA(α)(x) ≥ α
}

.



In all complement points, the density PA(α) is less
than α:

A(α) =
{

x ∈ X : PA(α)(x) < α
}

.

It follows particularly from here that the process of
transition from A(α) to A(α)(α) is constant and there-
fore A(α) = A(α)(α).

Informal interpretation of A(α).

Let’s interpret the density PA(x) as a measure of limit
of the point x for the set A. The point x with a suffi-
ciently high density

PA(x) ≥ α

are considered to be limit for A. The set A∞ includes
all its α-limit points from X is closed in this respect.
The set A(α), included into A∞, coincides with the
set of its α-limit points from X and is perfect in this
respect.

1.2 Complete Discrete Perfect Sets Algorithm

Definition 4 The construction process for the set A in
the universe X based on the density P is called, com-



plete Discrete Perfect Sets algorithm and is designated
through DPS:

DPS(·) = DPS(·|X , P ,α) : 2X → 2X .

It is specified above that the algorithm DPS is idem-
potent (DPS2 = DPS). The subsets which are fixed in
respect to it are called α-perfect sets of (α-DPS-sets)
in X :

A = α-DPS-sets in X
⇔ DPS(·|X , P ,α) = A
⇔ A =

{
x ∈ X : PA(α)(x) ≥ α

} (2)

In general, as it is stated above (1), the DPS algo-
rithm has two stages: increasing

An ↑ A∞ ⇔ A→ A1 ⊆ · · · = A∞

and decreasing

Am∞ ↓ A∞ ⇔ A∞ ⊇ A2∞ ⊇ ... A(α).

There are situations when the algorithm DPS “works
faster” and has no more than one stage. A trivial case
is examined in (3): DPS is fixed at A ≡ zero algorithm
stages DPS at A – α-perfect. Let’s study DPS with
one stage.



Increasing DPS.

There is only an increasing stage An ↑ A∞ available,
therefore, the set A is α-perfect.

Statement 4 Sufficient condition of increasing
DPS: A ⊆ A1 ≡ any point in A is α-limit for it.

P r o o f.

In this case A ⊆ An ∀ n ≥ 1 and therefore

An+1 = {x ∈ X : PA∪An(x) ≥ α} =

{x ∈ X : PAn(x) ≥ α} = (An)1.

If A∞ = An∗, thenA∞ = An∗+1 = (An∗)1 = (A∞)1

which means α-perfection of A∞ (3).

Decreasing DPS.

There is only a decreasing stage Am∞ ↓ A(α) available.
There is no increasing stage, therefore, A1 = A∞. Let’s
give a simple and effective criterion of this situation:

Statement 5 A1 = A∞ ⇔ A1 = A2.



P r o o f.

The necessity A1 = A∞ ⇒ A1 = A2 follows from
inclusions A1 ⊆ A2 ⊆ A∞.
Sufficiency A1 = A2 ⇒ A1 = A∞. In this case,

A3 = {x ∈ X : PA∪A2(x) ≥ α} =

{x ∈ X : PA∪A1(x) ≥ α} = A2.

Similarly, A4 = A3, ... , An+1 = An and so on, that’s
why, A1 = A∞.

Example Assume that A1 ⊆ A, then

A2 = {x ∈ X : PA∪A1(x) ≥ α} =

{x ∈ X : PA(x) ≥ α} = A1

The condition X 1 ⊆ X is evidently fulfilled, that’s
why throughout the total space X the algorithm DPS
is always decreasing. Let’s present it in full because of
its great practical importance:

X (α) = ∩ X n(α), X n(α) ={
x ∈ X : PX n−1

(α)
(x) ≥ α

}
,

n ≥ 1, X 0(α) = X .

The DPS algorithm constructs for each subset of the
original space its “perfect shell”, which we consider to



be a cluster. Thus, DPS answers for each subset the
question about the closest and naturally related cluster.
The complete DPS is needed to accurately scrutinize
the effect of an original subset on its surrounding com-
plement.

In a sense, a simple DPS is the opposite of a com-
plete one, building a perfect envelope for all space. This
is the largest perfect set. If there is a metric in the orig-
inal space, DPS splits it into connected pieces that are
of interest to us and which we consider to be clusters.

1.3 Simple Discrete Perfect Sets Algorithm

The first part of the simple Discrete Perfect Sets algo-
rithm (DPS) consists in the transition X → X (α), i.e.,
in cutting out from the whole set X of its α-perfect
part X (α) with respect to the densities requiring the
presence of the metric d on X . Let’s describe two struc-
tures of such density. The first of them is called “Num-
ber of points” and the set-theoretic algorithm SDPS is
related to it. The second is called “Average weight”
and the functional algorithm FDPS is related to it.



Number of points.

The density depends on the proximity radius r and the
parameter q ≥ 0. A ball with the center at x of radius
r is considered for each point x from the set X :

D(x , r) = {y ∈ X : d(x , y) ≤ r} .

The sum of points of the set X in it is calculated
for each ball taking into account the distance from the
point to the ball center:

NX (x , r) =
∑

y∈D(x ,r)

(
1− d(x , y)

r

)q

.

Let’s designate the maximum of such sums by all
point x ∈ X through N(X , r):

N(x , r) = max
x∈X

NX (x , r).

Also, the sum of points is calculated for each ball
considering their distance from the ball points only
based on the points of the subset A ⊆ X :

NX (X , r) =
∑

y∈DA(x ,r)

(
1− d(x , y)

r

)q

.



Here, DA(x , r) is the intersection of the ball D(x , r)
and the subset A:

DA(x , r) = D(x , r) ∩ A.

The density of the subset A ⊆ X in the point x ∈ X
is determined as the ratio of the sum of points of the
ball in A considering their distance from the center x
to the maximum sum of the balls in X :

PA(x) =
NA(x , r)

N(X , r)
(3)

Average Weight.

The functional variant of the simple algorithm DPS is
related to a special density P(ν, r) based on the weight
function ν : X → [0, 1] and localization of the radius
r :

PA(x) =

∑
ν(x̄) : x̄ ∈ DA(x , r)

|D(x , r)|
. (4)

The value ν(x) may be assumed as the weight of the
element x .

Topological Deviation.

It will be recalled that two points x and y in A ⊆ X
are called r -connected, if there is a chain of r -close



points x0, ... , xn in A with the beginning x0 = x and
the end xn = y . The r -connectivity ratio is an equiv-
alence and breaks A into r -connectivity components
CA(1), ... , CA(k∗), k∗ = k∗(A):

A = CA(1) ∨ · · · ∨ CA(k∗).

Statement 6 If PA(x) of densities is (5) or (6), the
components of r -connectivity CX (α)(1), ... , CX (α)(k∗)
are α-perfect.

P r o o f.

Such densities have an r -local action: if d(x , A) > r ,
then PA(x) = 0. Therefore, for any component of the
r -connectivity CX (α)(k), the following equality is valid

PCX (α)(k)(x) = PX (α)(x) ∀ x ∈ CX (α)(k).

The α-perfection CX (α)(k) follows from here and
the α-perfection of X (α).

Informally, this statement means consistency of α-
perfection and connectivity, which is the theoretical
justification for the second clustering part of the DPS .
The algorithm flow diagram is given in Figure 2

Let’s summarize the above said giving the following.
ction.1



F
ig

u
re

2
.

F
lo

w
di

ag
ra

m
of

th
e

si
m

pl
e

D
is

cr
et

e
P

er
fe

ct
S

et
s

al
go

ri
th

m
.



Definition 5

1. The process of construction for the finite metric
space (X , d) based on the r -local density P of the
α-hull X (α) with its subsequent partition into r -
connected components is called a simple DPS al-
gorithm:

DPS = DPS(P ,α, r) : X → 22X

DPS(X ) = CX (α)(1), ... , CX (α)(k∗);

1. If the density P has the form (5), the DPS is called
set-theoretic (SDPS);

2. If the density P has the form (6), the DPS is called
functional (FDPS).

In conclusion, let’s turn out attention to the relations
of the SDPS algorithm and cluster analysis. For this
purpose, let’s present a heuristic definition of clusters
given by Everitt: “Clusters are ‘continuous’ areas of a
(certain) space in related to a higher density of points,
separated from other similar areas by the areas with a
relatively low density of points” [Everitt, 1980].

Implementation of this definition is more than a tra-
ditional cluster analysis [Tou and Gonzalez, 1974], be-
cause it involves not only partition of the initial space



into clusters, but also its preliminary reduction (filter-
ing) prior to their union.

The SDPS algorithm makes it and, that’s why, it
represents an algorithm of a new post-clustering stage
in the cluster analysis.

1.4 Synthetic examples of use of the SDPS and
FDPS algorithms

The “Number of points” density (5) shows the degree
of concentration of the space X around each of its
nodes x . Therefore, the set-theoretic SDPS is focused
on the search for condensations and works well in non-
homogeneous spaces (irregular grids) X .

Figure 3 shows the work of the SDPS algorithm on
an irregular grid with different parameters (r , α). By
varying them, one can get a fairly complete idea of the
concentrations in the original space. The given exam-
ples illustrate the general property of the dependence
of the DPS algorithm on parameters: the smaller the
proximity radius and the higher the density level, the
stricter the DPS algorithm, and the denser and finer
its results.

FDPS algorithm (6) it is focused on the search for
the subsets in X with the r -locally high exponent of
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weights ν. It is also capable of working on regular grids,
and therefore it successfully complements the SDPS
algorithm.

Figure 4a shows the work of the FDPS algorithm:
the space X in this case is a regular grid on the hori-
zontal axis, the weight ν of each point x ∈ X is plotted
vertically. The results of the FDPS algorithm are two
red segments on the horizontal axis, which serve as the
bases of the two most significant stochastic heights on
X . As you can see from the figure, the FDPS algo-
rithm is stable and does not pay attention to insignifi-
cant drops below a given level. This property explains
the massiveness of the heights allocated to him. For
comparison, Figure 4b shows a classic selection on a
grid relative to a given level. This approach, in our
opinion, gives numerous weak results located outside
the limits of the massive segments distinguished by the
algorithms FDPS (Figure 4a).
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2 Results of Application of the FDPS Al-

gorithm to the Fata of the Nizne-Kansk

Massif

The work of the SDPS algorithm for recognizing places
of possible occurrence of strong earthquakes has shown
its stability. Epicenters of strong earthquakes stably fall
into clusters obtained by SDPS in the set of epicenters
of all earthquakes. These clusters are in good agree-
ment with the zones allocated by the well-known EPA
algorithm [Gvishiani et al., 2016; Gvishiani et al., 2017].

It will be shown below that the FDPS algorithm has
the same property in the problem of assessment the sta-
bility of structural tectonic blocks of the earth’s crust.

In this case, the weight function ν for it was an inte-
gral measure of stability, calculated in the area of the
Nizne-Kansk Massif (Krasnoyarsk Territory) and rank-
ing for the safety of nuclear waste disposal: the more
the measure is, the safer the object under study is.

Construction of ν requires combining heterogeneous
information from the geological and geophysical param-
eters and therefore represents a problem of the system
analysis. It is solved within the frames of the program
for studying the systems of real-valued functions on



two-dimensional grids using the fuzzy sets [Gvishiani et
al., 2019b] created by the authors.

Its final stage – selection of the connected massif
areas that are relatively stably-high – is solved by the
FDPS algorithm and in our case represents zones suit-
able for safe disposal in the Nizne-Kansk Massif.

2.1 Integral Stability Measure

The integral measure of stability ν is calculated based
on the complex of the geological-geophysical parame-
ters. Some of them have a natural character and are
related to the relief of the Nizne-Kansk Massif and its
system of fractures. The other part represents model-
ing of the stress-strain state of the Nizne-Kansk massif
based on its GNSS observations.

As noted above, the theoretical foundations of the
approach are represented in the paper [Gvishiani et al.,
2019b]. The calculation diagram includes the following
stages (Figure 5):

1. “Dynamic indicator” – a primary analysis of the
initial geological, geophysical and geomorphologi-
cal data. Each dynamic indicator is interpreted as a
quantitative assessment of one or another property
of the initial data.
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2. “The measure of activity of the dynamic indica-
tor” – this measure shows the degree of activity of
the studied property of the geological environment
in the scale [0, 1].

3. “The measure of safety of the dynamic index” is
an fuzzy negation [Zadeh, 1996] of its measure of
activity and characterizes weakness of appearance
of the property of this dynamic indicator. Transi-
tion to the safety measure means translation of the
initial data into the language of fuzzy logic. The
safety measures of dynamic indicators are fuzzy
structures and, therefore, they can be united in
any compositions and quantities using fuzzy logic
operations.

4. “Integral safety measure” is an integral combina-
tion of safety measures of the dynamic indicators
and represents the measure of geodynamic safety
of the studied area.

The W node grid with dimensions (250× 150) was
chosen to implement the methodology in the area of
the Nizne-Kansk Massif. Let’s call the node w ∈ W
internal, if it is surrounded with eight adjacent nodes
of the grid (Figure 6).

Four indicators were calculated in each internal node



Figure 6. Layout of the nodes.

of the grid characterizing the features of the relief L1
Re ,

L2
Re ,∇Re and the proximity to active fractures – ρ(π, Pk).

The first two indicators (L1
Re , L2

Re) characterize the ge-
omorphological variability, and the third one (|∇Re |) –
the relief gradient.

The first two indicators characterize the performance
of the relief Re in the node w (Figure 6, respectively,
along the length centered in w and along the angles



centered in w :

L1
Re(w) =

∑
j=2,4,6,8 |Re(w)nj − Re(w)|

4
(5)

L2
Re(w) =

2 + cos θh(w) + cos θv (w)

2
(6)

where

cos θh(w) =
−1 + (Re(w4)− Re(w))(Re(w6)− Re(w))√

1+(Re(w4)−Re(w))2
√

1+(Re(w6)−Re(w))2

cos θv (w) =
−1 + (Re(w8)− Re(w))(Re(w2)− Re(w))√

1+(Re(w8)−Re(w))2
√

1+(Re(w2)−Re(w))2

The third indicator of the relief drop is the gradi-
ent module ∇Re , which is calculated using the Sobel
operator [Trofimov et al., 1994]:

∇Re(w) = |∇h
Re(w)|+ |∇v

Re(w)| (7)

∇h
Re(w) = (Re(w7) + 2Re(w8) + Re(w9))

−(Re(w1) + 2Re(w2) + Re(w3))

∇v
Re(w) = (Re(w3) + 2Re(w6) + Re(w9))

−(Re(w1) + 2Re(w4) + Re(w7))



The measure of activity of the dynamic indicators for
L1
Re (7), L2

Re (8), ∇Re (9) are calculated as:

µL1
Re(w) =

L1
Re(w)

L1
Re(w) + L1

Re

µL2
Re(w) =

L2
Re(w)

L2
Re(w) + L2

Re

µ∇Re(w) =
∇Re(w)

∇Re(w) +∇Re

,

where L1
Re , L2

Re , ∇Re – average values of the indicators

L1
Re(w), L2

Re(w), ∇Re(w).
The integral measure of activity µRe of the relief

according to the system of indicators L1
Re , L2

Re , ∇Re is
given by:

µRe(w) =
µL1

Re(w) + µL2
Re(w) + µ∇Re(w)

3
.

And the measure of geodynamic safety correspond-
ing to the relief:

νRe(w) = 1− µRe(w). (8)

The fourth indicator dP(w) characterizes the prox-
imity of the point w to the system of tectonic fractures



P = {Pk} (22 fractures in the region of the Nizne-
Kansk Massif). The values dP(w) are calculated using
the Kolmogorov mean with the negative exponent:

dP(w) =
{

0, if w ∈ P .Mq(d(w , Pk)|N1 ), if w /∈ P
where q < 0 and

Mq(d(w , Pk)|N1 ) =

(∑n
k=1 d(w , Pk)q

N

)1/q

.

The measure µdP(w) corresponding to the indicator
dP(w) is specified using the formula:

µdP(w) =
dP

dP(w) + dP
,

dP – the average value of the indicator dP(w).
Final safety measure related to fractures

νP(w) = 1− µP(w). (9)

The final safety measure related to relief and frac-
tures is averaging of the measures (8) and (9):

ν(w) =
νRe(w) + νP(w)

2
. (10)

The integral measure of geodynamic safety ν(w)
(10) according to four specified features is shown in
Figure 7a.



2.2 Functional Clustering of the Integral Mea-
sure of Geodynamic Safety

The final measure of geodynamic safety ν (10) inherits
to a certain extent stochasticity of the relief and frac-
tures underlying it (Figure 7a). That’s why, choosing
a certain level α, for example, α = 0.45, we see (Fig-
ure 7b) that the set of α-stable nodes has a complex
topology. This is related with the extreme heterogene-
ity of the geological environment. It is known that
the most dangerous from the tectonic point of view
are related areas often with a linearly elongated shape.
Therefore, simplification is required, i.e. recognition of
only massive areas with possible corrections of insignifi-
cant internal losses of α-stability for final assessment of
geodynamic safety. Simplification of the integral mea-
sure of geodynamic safety allows an expert to see visu-
ally and evaluate the main patterns in its distribution
through the area, omitting insignificant details serving
as background noises.

Use of traditional methods (ordinary averaging (Fig-
ure 7c), convolution with the Gauss core (Figure 7d)
[Shapiro et al., 2001; Nixon et al., 2019], pyramidal
smoothing (Figure 7e) [Smith, 1999]) for this purpose
does not solve the problem. The required simplification



Figure 7. Results of identifying safety zones by
different algorithms. a) an integral measure of geo-
dynamic safety ν; b) selection by level α; c) ordinary
averaging; d) convolution with the Gauss core; e)
pyramidal smoothing; f) FDPS algorithm. The dot-
ted line shows the boundaries of the construction site
of the HLRW disposal facility.



is achieved using the FDPS algorithm. Figure 7f shows
the result of using the FDPS algorithm with the se-
lected density level for the measure given in Figure 7a.
Figure 7f clearly demonstrates that the zone with a
higher value ν intersects the underground research lab-
oratory mine take in the direction from the southeast
to the northwest.

Conclusion

As a result of construction of the integral measure of
geodynamic safety, it became possible to use the sys-
tem analysis methods when assessing stability of struc-
tural and tectonic blocks of the Earth’s crust for the
urgent geoecological problem - ensuring safety of dis-
posal of the high-level radioactive waste in geological
formations. It should be noted that the results of us-
ing the algorithm as applied to the real-valued data of
the Nizne-Kansk Massif are preliminary. The method
requires to use a wider set of layers of analyzed data
and needs to be improved.

In theoretical terms, continuation of researches re-
lated to the FDPS algorithm is seen by the authors:

• in automating selection of its parameters through



optimization of the external quality functional si-
multaneously monitoring the massiveness of the
obtained clusters and the “good” nodes of the re-
quired ν-quality contained in them;

• in possible further clustering (uniting) of the r -
connected components of its result, which will make
it possible to distinguish more qualitatively the bases
of the elevation on X for the weight function ν and
form the selection B(X , ν).

As to our problem, this will allow to identify the most
stable structural blocks according to the values of the
measure ν.

Testing of the developed method and DMA algo-
rithms based on several data layers for the northern part
of the Nizne-Kansk Massif, where construction of the
underground research laboratory is started at present to
substantiate safety of deep HLRW disposal, and calcu-
lation of the geodynamic safety measure for the Yeni-
sei area has shown their practical value and necessity
of their further development, including for solving the
geodynamic zoning problems [Gvishiani et al., 2019a].

An evident practical value of the method consists
in the system step-by-step holistic analysis of diverse,
multi-scale and multi-format layers of geological and



geophysical information about the state of the structural-
tectonic block, and, first of all, geomorphological, kine-
matic (determined based on the geodetic observations)
and geophysical characteristics. A concept - a measure
of activity of the dynamic indicator based on expert as-
sessments of the behavior of geological and geophysical
parameters in the vicinity of the grid nodes dividing the
area into clusters is introduced for a formalized assess-
ment of stability using the DMA methods. The cluster
component of the DMA, based on the concept of den-
sity, allows to define strictly the concepts of conden-
sation (dense subset), cluster (isolated condensations),
and traces (linear condensations) for the multidimen-
sional array. The FDPS algorithm was used to filter
and arrange layers of geospatial data into homogeneous
groups and separate dense homogeneous clusters that
may be related to the deep zones of dynamic instability
in the Earth’s upper crust.

The preliminary data of the algorithm testing showed
that the structural tectonic block, in which construc-
tion of a deep HLRW disposal site is planned, is located
in a relatively stable zone. The FDPS algorithm can
also be useful in planning comprehensive geophysical
studies in the area of the underground research labora-
tory within the Nizne-Kansk Massif, as well as in solving



other related problems in the sphere of geodynamics,
geoecology and mining [Gvishiani et al., 2020].
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