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 Abstract

The paper presents the structure of a new original FDPS (Functional Discrete Perfect Sets) algorithm used to filter and arrange the layers of the geospatial data into the homogenous groups and identify dense homogenous condensations. The latter may be related to the deep zones of dynamic instability in the upper part of the Earth's crust. Synthetic and real examples of this algorithm's usage are presented, demonstrating its capabilities as part of the system analysis of the geological environment stability in the area of construction of a deep disposal site for high-level radioactive waste. Testing the algorithm allowed us to identify the most stable blocks, thereby demonstrating its usage value. This shows the necessity of further development and use of the FDPS algorithm. 

 Introduction

At present, an underground research laboratory (URL) is being created in the granite-gneiss rocks of the Nizne-Kansk Massif (Krasnoyarsk Territory) to assess and substantiate the geoecological safety of disposal of high-level radioactive waste (HLRW). In international and Russian documents regulating safety of HLRW management, the main message is the idea that the main barrier in the way of spreading of radionuclides is the geological environment. The engineering barriers for HLRW with the half-life of more than 10 thousand years are secondary.

The selection of the part of the Earth's crust suitable for HLRW disposal is based on the analysis of properties, phenomena and processes affecting preservation of the insulating properties of the rocks of the structural tectonic block (STB) containing HLRW. The complexity of solving this multidisciplinary problem is related to the extreme heterogeneity of the upper part of the Earth's crust caused by a structural-tectonic disturbance (lineaments, fractures, large cracks, etc.) and tectonic movements of various hierarchical levels (differentiated movements along the fracture, tectonic creep, seismicity, etc.).

The Nizne-Kansk Massif is located in the aureole of the largest regional tectonic structures – the folded structure of the Yenisei Ridge, the epi-Hercynian West Siberian platform, the ancient Siberian platform and the young Altay-Sayan earthquake-prone region. The force interaction of these structures specifies the current stress-strain state of the region.
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	Figure 1

  The southern part of the Yenisei Ridge (Figure 1) since the end of the Pleiocene ( 1.5±0.5 mln years) has been experiencing a slow uplift, the total amplitude of which is estimated at 400-500 m, and the average velocity according to the geological data makes 0.2-0.3 mm/year [Anderson et al., 2011; Belov et al., 2007; Lobatskaya, 2005].

As applied to the problem of the HLRW disposal in geological formations, an important term was introduced – "stability of the structural-tectonic block" [Tatarinov et al., 2014a; Gvishiani et al., 2019a]. It is understood as the capacity of the block to maintain or change its properties and state under the natural and anthropogenic influences within the range that will not lead to the loss of insulating properties of the rock mass and release of radionuclides outside the sanitary zone. This is defined by the time interval equal to the period of the HLRW radiobiological hazard.

The structural tectonic block is the system with distributed parameters depending on the time and coordinates of observation points. Their anomalous values (potentially dangerous for preservation of insulating properties of the rocks) are represented in the features (morphology) of distribution of the geological, geophysical, geochemical and other characteristics and the Earth's surface relief, most often in the form of linearly elongated areas, the so-called geodynamic zones. It is believed that geodynamic zones are responsible for: 

	 formation of local zones of concentration of stress fields, initiating the process of rock destruction in the form of fast seismic processes or tectonic creep; 	
	 modern vertical and horizontal movements of the Earth's crust; 	
	 destruction of the rock mass and an increase in its permeability and porosity for the groundwaters. 


Their identification is the most significant task of geodynamic zoning [Morozov et al., 2008; Petukhov et al., 1999; Tatarinov et al., 2014b].

In most cases, it is almost impossible to visually identify unstable zones in the maps, especially based on the set of features. It is characteristic for low-level platform areas (in fact, to which the Nizne-Kansk Massif belongs) or regions with a thick sedimentary cover. For such cases, based on the methods and algorithms of discrete mathematical analysis (DMA) [Agayan et al., 2018; Gvishiani et al., 2019b] within the framework of the Russian Science Foundation project no. 18-17-00241, a measure of geodynamic safety was constructed considering interaction of the geodynamics and morphological features of distribution of geological and geophysical parameters (including a digital terrain model, results of GNSS-observations, geophysical fields, etc.) [Gvishiani et al., 2019a; Gvishiani et al., 2020]. In accordance with the values of this measure, the studied area is ranked into relatively unstable (conditionally dangerous) and stable (conditionally safe) structural blocks. It is required to create an algorithm of adequate system analysis to identify them. An original algorithm FDPS (Functional Discrete Perfect Sets) is developed and applied in the paper for this purpose. The first results of its use in the considered region are stated in this paper.

 1 Construction FDPS Algorithm

The search for anomalies in the fields of geophysical data [Mikhailov et al., 2003; Zlotnicki et al., 2005; Soloviev et al., 2012], identification of the places of possible occurrence of significant earthquakes [Gvishiani et al., 2016; Gvishiani et al., 2017] and other tasks related to the problems of natural risk bring a researcher (an expert) to the need to assess  ν(x)∈[0,1] the nodes  x of the finite grid  X based on the measurements carried out in them. The assessment  ν is required to rank the nodes in  X and select the subsets  B(X,ν) of the best nodes among them.

In general, the assessment  ν inherits stochasticity of the measurements underlying it. That's why, the selection according to the level  α as to  ν 

 B(X,ν)={x∈X:ν(x)≥α}
 is unstable: a "good node"  x ( ν(x)≥α) may be surrounded with "bad nodes"  x ( ν(x)<α), and that's why it is not considered further. And vice versa, a "bad node" may be surrounded with "good nodes" and will be used in further work.

The aim of this work is to form a selection  B(X,ν) in presence of the metric structure on  X using the Discrete Perfect Sets topological filtering algorithm developed in the frames of discrete mathematical analysis (DMA) and its application to the HLRW disposal problem.

This selection will represent a set of regions connected in  X, in which the majority of nodes are "good".

 1.1 Discrete Perfect Sets

Let  X be the finite set, and  A,  B, . . . and  x,  y, . . . – its subsets and points, respectively.

 Definition 1 Let's call a mapping of  2X×X to the fragment  [0,1], increasing by the first argument, the density  P on the set  X: 	

 P(A,x)=PA(x)∀x∈X:A⊆B⇒PA(x)≤PB(x).
 	  PA(x) is the density of the subset  A in the point  x. 

For the density  P given on  X, the subset  A and the level  α∈[0,1], let's construct a sequence of  α- n-hulls of the subset  A in the set  X according to the density  P: 

 A1=x∈X:PA(x)≥α,...An=x∈X:PA∪An−1(x)≥α,...
Induction by  n using the increasing monotonicity  P specifies

 Statement 1  A1⊆⋯⊆An⊆….

Because of finiteness of the set  X, in the non-decreasing and bounded sequence of  α- n-hulls, starting from some number  n∗, stabilization occurs:

 Definition 2 Let's call the set  An∗  α- ∞-hull of the subset  A and designate through  A∞. 

The set  A∞ is semi-variant: its first density hull  (A∞)1 does not fall beyond the set  A∞.

 Statement 2  A∞ contains its  α-hull by the density: 	

 (A∞)1⊆A∞.
  P r o o f
by contradiction. Let us use the finite representation  A∞:  A∞=An∗. If  PAn∗(x)≥α and  x∉An∗, then  PA∪An∗(x)≥PAn∗(x)≥α⇒  x∈A(n∗+1) and therefore  An∗⊂A(n∗+1). However, based on the condition  An∗=A(n∗+1). The obtained contradiction proves the statement.

Form this it immediately follows that for a set the series of its  α- n-hulls is constant.

 Consequence

 A∞)n=(A∞)1∀n≥2.
 

  P r o o f.
It is stated above that  (A∞)1⊆A∞ therefore, 

 (A∞)2={x∈X:PA∞∪(A∞)1(x)==PA∞(x)≥α}=(A∞)1
 and so on.

Let's designate  α- ∞-hull for  A∞ through  A2∞. We have: 

 A2∞=(A∞)∞=(A∞)1⊆A∞.
Sequentially constructing the  α- ∞-hulls based on the density  P, we obtain the following scheme: 

 A→A1⊆⋯⊆A∞A∞⊇(A∞)1=A2∞…Am∞⊇(Am∞)1=A(m+1)∞…
Because of  X finiteness in a non-increasing sequence 

 A∞⊇⋯⊇Am∞⊇…,
 starting with some number  m∗, stabilization occurs: 

 A∞⊃⋯⊃Am∗∞=A(m∗+1)∞=….
 Definition 3 Let's designate the set  Am∗∞ through  A(α).

The process of constructing  A(α) has a stage of increasing from  A1 to  A∞ and a stage of decreasing from  A∞ to  A(α): 

(1) A→A1⊂⋯⊂An∗=
 =A∞⊇⋯⊇Am∗∞=A(α).
 Statement 3  A(α) coincides with its  α-hull.

 

  P r o o f.
It follows from the following results: 

 A(α)=An∗∞=A(n∗+1)∞=(An∗∞)1=(A(α))1.
Informally, this statement means that the set  A(α) consists exactly of those points where its density is more than  α or equal to it: 

 A(α)={x∈X:PA(α)(x)≥α}.
In all complement points, the density  PA(α) is less than  α: 

 A(α)¯={x∈X:PA(α)(x)<α}.
It follows particularly from here that the process of transition from  A(α) to  A(α)(α) is constant and therefore  A(α)=A(α)(α).

  Informal interpretation of  A(α).
Let's interpret the density  PA(x) as a measure of limit of the point  x for the set  A. The point  x with a sufficiently high density 

 PA(x)≥α
 are considered to be limit for  A. The set  A∞ includes all its  α-limit points from  X is closed in this respect. The set  A(α), included into  A∞, coincides with the set of its  α-limit points from  X and is perfect in this respect.

 1.2 Complete Discrete Perfect Sets Algorithm

 Definition 4 The construction process for the set  A in the universe  X based on the density  P is called, complete Discrete Perfect Sets algorithm and is designated through  DPS:

 DPS(⋅)=DPS(⋅|X,P,α):2X→2X.
It is specified above that the algorithm  DPS is idempotent  (DPS2=DPS). The subsets which are fixed in respect to it are called  α-perfect sets of ( α- DPS-sets) in  X: 

  

	
  A=α-DPS-sets in X⇔DPS(⋅|X,P,α)=A⇔A={x∈X:PA(α)(x)≥α}
	(2)	


In general, as it is stated above (1), the  DPS algorithm has two stages: increasing 

 An↑A∞⇔A→A1⊆⋯=A∞
 and decreasing 

 Am∞↓A∞⇔A∞⊇A2∞⊇…A(α).
There are situations when the algorithm  DPS "works faster" and has no more than one stage. A trivial case is examined in (3):  DPS is fixed at  A≡ zero algorithm stages  DPS at  A –  α-perfect. Let's study  DPS with one stage.

  Increasing  DPS.
There is only an increasing stage  An↑A∞ available, therefore, the set  A is  α-perfect.

 Statement 4 Sufficient condition of increasing  DPS:  A⊆A1≡ any point in  A is  α-limit for it.

 

  P r o o f.
In this case  A⊆An∀n≥1 and therefore 

 An+1={x∈X:PA∪An(x)≥α}={x∈X:PAn(x)≥α}=(An)1.
If  A∞=An∗, then A∞=An∗+1=(An∗)1=(A∞)1 which means  α-perfection of  A∞ (3).

  Decreasing  DPS.
There is only a decreasing stage  Am∞↓A(α) available. There is no increasing stage, therefore,  A1=A∞. Let's give a simple and effective criterion of this situation:

 Statement 5  A1=A∞⇔A1=A2.

  P r o o f.
The necessity  A1=A∞⇒A1=A2 follows from inclusions  A1⊆A2⊆A∞.

 Sufficiency  A1=A2⇒A1=A∞. In this case, 

 A3={x∈X:PA∪A2(x)≥α}={x∈X:PA∪A1(x)≥α}=A2.
 Similarly,  A4=A3,…,An+1=An and so on, that's why,  A1=A∞.

 Example Assume that  A1⊆A, then 

 A2={x∈X:PA∪A1(x)≥α}={x∈X:PA(x)≥α}=A1
The condition  X1⊆X is evidently fulfilled, that's why throughout the total space  X the algorithm  DPS is always decreasing. Let's present it in full because of its great practical importance: 

 X(α)=∩Xn(α),Xn(α)={x∈X:PX(α)n−1(x)≥α},n≥1,X0(α)=X.
The  DPS algorithm constructs for each subset of the original space its "perfect shell", which we consider to be a cluster. Thus,  DPS answers for each subset the question about the closest and naturally related cluster. The complete  DPS is needed to accurately scrutinize the effect of an original subset on its surrounding complement.

In a sense, a simple  DPS is the opposite of a complete one, building a perfect envelope for all space. This is the largest perfect set. If there is a metric in the original space,  DPS splits it into connected pieces that are of interest to us and which we consider to be clusters.

 1.3 Simple Discrete Perfect Sets Algorithm

The first part of the simple Discrete Perfect Sets algorithm ( DPS) consists in the transition  X→X(α), i.e., in cutting out from the whole set  X of its  α-perfect part  X(α) with respect to the densities requiring the presence of the metric  d on  X. Let's describe two structures of such density. The first of them is called "Number of points" and the set-theoretic algorithm SDPS is related to it. The second is called "Average weight" and the functional algorithm FDPS is related to it.

  Number of points.
The density depends on the proximity radius  r and the parameter  q≥0. A ball with the center at  x of radius  r is considered for each point  x from the set  X: 

 D(x,r)={y∈X:d(x,y)≤r}.
The sum of points of the set  X in it is calculated for each ball taking into account the distance from the point to the ball center: 

 NX(x,r)=∑y∈D(x,r)(1−d(x,y)r)q.
Let's designate the maximum of such sums by all point  x∈X through  N(X,r): 

 N(x,r)=maxx∈XNX(x,r).
Also, the sum of points is calculated for each ball considering their distance from the ball points only based on the points of the subset  A⊆X: 

 NX(X,r)=∑y∈DA(x,r)(1−d(x,y)r)q.
Here,  DA(x,r) is the intersection of the ball  D(x,r) and the subset  A: 

 DA(x,r)=D(x,r)∩A.
The density of the subset  A⊆X in the point  x∈X is determined as the ratio of the sum of points of the ball in  A considering their distance from the center  x to the maximum sum of the balls in  X: 

  

	
  PA(x)=NA(x,r)N(X,r)
	(3)	


  Average Weight.
The functional variant of the simple algorithm  DPS is related to a special density  P(ν,r) based on the weight function  ν:X→[0,1] and localization of the radius  r: 

  

	
  PA(x)=∑ν(x¯):x¯∈DA(x,r)|D(x,r)|.
	(4)	


The value  ν(x) may be assumed as the weight of the element  x.

  Topological Deviation.
It will be recalled that two points  x and  y in  A⊆X are called  r-connected, if there is a chain of  r-close points  x0,…,xn in  A with the beginning  x0=x and the end  xn=y. The  r-connectivity ratio is an equivalence and breaks  A into  r-connectivity components  CA(1),…,CA(k∗),  k∗=k∗(A): 

 A=CA(1)∨⋯∨CA(k∗).
 Statement 6 If  PA(x) of densities is (5) or (6), the components of  r-connectivity  CX(α)(1),…,  CX(α)(k∗) are  α-perfect. 

 

  P r o o f.
Such densities have an  r-local action: if  d(x,A)>r, then  PA(x)=0. Therefore, for any component of the  r-connectivity  CX(α)(k), the following equality is valid 

 PCX(α)(k)(x)=PX(α)(x)∀x∈CX(α)(k).
The  α-perfection  CX(α)(k) follows from here and the  α-perfection of  X(α).
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	Figure 2

  Informally, this statement means consistency of  α-perfection and connectivity, which is the theoretical justification for the second clustering part of the  DPS. The algorithm flow diagram is given in Figure 2

Let's summarize the above said giving the following.



 Definition 5

	 The process of construction for the finite metric space  (X,d) based on the  r-local density  P of the  α-hull  X(α) with its subsequent partition into  r-connected components is called a simple  DPS algorithm: 


 DPS=DPS(P,α,r):X→22XDPS(X)=CX(α)(1),…,CX(α)(k∗);
	 If the density  P has the form (5), the  DPS is called set-theoretic (SDPS); 
	 If the density  P has the form (6), the  DPS is called functional (FDPS). 


In conclusion, let's turn out attention to the relations of the SDPS algorithm and cluster analysis. For this purpose, let's present a heuristic definition of clusters given by Everitt: "Clusters are `continuous' areas of a (certain) space in related to a higher density of points, separated from other similar areas by the areas with a relatively low density of points" [Everitt, 1980].

Implementation of this definition is more than a traditional cluster analysis [Tou and Gonzalez, 1974], because it involves not only partition of the initial space into clusters, but also its preliminary reduction (filtering) prior to their union.

The SDPS algorithm makes it and, that's why, it represents an algorithm of a new post-clustering stage in the cluster analysis.

 1.4 Synthetic examples of use of the SDPS and FDPS algorithms

The "Number of points" density (5) shows the degree of concentration of the space  X around each of its nodes  x. Therefore, the set-theoretic SDPS is focused on the search for condensations and works well in non-homogeneous spaces (irregular grids)  X.
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	Figure 3

  Figure 3 shows the work of the SDPS algorithm on an irregular grid with different parameters ( r,  α). By varying them, one can get a fairly complete idea of the concentrations in the original space. The given examples illustrate the general property of the dependence of the  DPS algorithm on parameters: the smaller the proximity radius and the higher the density level, the stricter the  DPS algorithm, and the denser and finer its results.

FDPS algorithm (6) it is focused on the search for the subsets in  X with the  r-locally high exponent of weights  ν. It is also capable of working on regular grids, and therefore it successfully complements the SDPS algorithm.
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	Figure 4

  Figure 4a shows the work of the FDPS algorithm: the space  X in this case is a regular grid on the horizontal axis, the weight  ν of each point  x∈X is plotted vertically. The results of the FDPS algorithm are two red segments on the horizontal axis, which serve as the bases of the two most significant stochastic heights on  X. As you can see from the figure, the FDPS algorithm is stable and does not pay attention to insignificant drops below a given level. This property explains the massiveness of the heights allocated to him. For comparison, Figure 4b shows a classic selection on a grid relative to a given level. This approach, in our opinion, gives numerous weak results located outside the limits of the massive segments distinguished by the algorithms FDPS (Figure 4a).

 2 Results of Application of the FDPS Algorithm to the Fata of the Nizne-Kansk Massif

The work of the SDPS algorithm for recognizing places of possible occurrence of strong earthquakes has shown its stability. Epicenters of strong earthquakes stably fall into clusters obtained by SDPS in the set of epicenters of all earthquakes. These clusters are in good agreement with the zones allocated by the well-known EPA algorithm [Gvishiani et al., 2016; Gvishiani et al., 2017].

It will be shown below that the FDPS algorithm has the same property in the problem of assessment the stability of structural tectonic blocks of the earth's crust.

In this case, the weight function  ν for it was an integral measure of stability, calculated in the area of the Nizne-Kansk Massif (Krasnoyarsk Territory) and ranking for the safety of nuclear waste disposal: the more the measure is, the safer the object under study is.

Construction of  ν requires combining heterogeneous information from the geological and geophysical parameters and therefore represents a problem of the system analysis. It is solved within the frames of the program for studying the systems of real-valued functions on two-dimensional grids using the fuzzy sets [Gvishiani et al., 2019b] created by the authors.

Its final stage – selection of the connected massif areas that are relatively stably-high – is solved by the FDPS algorithm and in our case represents zones suitable for safe disposal in the Nizne-Kansk Massif.

 2.1 Integral Stability Measure

The integral measure of stability  ν is calculated based on the complex of the geological-geophysical parameters. Some of them have a natural character and are related to the relief of the Nizne-Kansk Massif and its system of fractures. The other part represents modeling of the stress-strain state of the Nizne-Kansk massif based on its GNSS observations.
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  As noted above, the theoretical foundations of the approach are represented in the paper [Gvishiani et al., 2019b]. The calculation diagram includes the following stages (Figure 5): 

	 "Dynamic indicator" – a primary analysis of the initial geological, geophysical and geomorphological data. Each dynamic indicator is interpreted as a quantitative assessment of one or another property of the initial data. 	
	 "The measure of activity of the dynamic indicator" – this measure shows the degree of activity of the studied property of the geological environment in the scale  [0,1]. 	
	 "The measure of safety of the dynamic index" is an fuzzy negation [Zadeh, 1996] of its measure of activity and characterizes weakness of appearance of the property of this dynamic indicator. Transition to the safety measure means translation of the initial data into the language of fuzzy logic. The safety measures of dynamic indicators are fuzzy structures and, therefore, they can be united in any compositions and quantities using fuzzy logic operations. 	
	 "Integral safety measure" is an integral combination of safety measures of the dynamic indicators and represents the measure of geodynamic safety of the studied area. 


 	[image: Fig 6]
	Figure 6

  The  W node grid with dimensions ( 250×150) was chosen to implement the methodology in the area of the Nizne-Kansk Massif. Let's call the node  w∈W internal, if it is surrounded with eight adjacent nodes of the grid (Figure 6).

Four indicators were calculated in each internal node of the grid characterizing the features of the relief  LRe1,  LRe2,  ∇Re and the proximity to active fractures –  ρ(π,Pk). The first two indicators ( LRe1,  LRe2) characterize the geomorphological variability, and the third one ( |∇Re|) – the relief gradient.

The first two indicators characterize the performance of the relief  Re in the node  w (Figure 6, respectively, along the length centered in  w and along the angles centered in  w: 

  

	
  LRe1(w)=∑j=2,4,6,8|Re(w)nj−Re(w)|4
	(5)	


  

	
  LRe2(w)=2+cosθh(w)+cosθv(w)2
	(6)	


 where 

 cosθh(w)=−1+(Re(w4)−Re(w))(Re(w6)−Re(w))1+(Re(w4)−Re(w))21+(Re(w6)−Re(w))2
 cosθv(w)=−1+(Re(w8)−Re(w))(Re(w2)−Re(w))1+(Re(w8)−Re(w))21+(Re(w2)−Re(w))2
The third indicator of the relief drop is the gradient module  ∇Re, which is calculated using the Sobel operator [Trofimov et al., 1994]: 

  

	
  ∇Re(w)=|∇Reh(w)|+|∇Rev(w)|
	(7)	


 ∇Reh(w)=(Re(w7)+2Re(w8)+Re(w9))−(Re(w1)+2Re(w2)+Re(w3))
 ∇Rev(w)=(Re(w3)+2Re(w6)+Re(w9))−(Re(w1)+2Re(w4)+Re(w7))
The measure of activity of the dynamic indicators for  LRe1 (7),  LRe2 (8),  ∇Re (9) are calculated as:

 μLRe1(w)=LRe1(w)LRe1(w)+LRe1¯μLRe2(w)=LRe2(w)LRe2(w)+LRe2¯μ∇Re(w)=∇Re(w)∇Re(w)+∇Re¯,
 where  LRe1¯,  LRe2¯,  ∇Re¯ – average values of the indicators  LRe1(w),  LRe2(w),  ∇Re(w).

The integral measure of activity  μRe of the relief according to the system of indicators  LRe1,  LRe2,  ∇Re is given by: 

 μRe(w)=μLRe1(w)+μLRe2(w)+μ∇Re(w)3.
And the measure of geodynamic safety corresponding to the relief: 

  

	
  νRe(w)=1−μRe(w).
	(8)	


The fourth indicator  dP(w) characterizes the proximity of the point  w to the system of tectonic fractures  P={Pk} (22 fractures in the region of the Nizne-Kansk Massif). The values  dP(w) are calculated using the Kolmogorov mean with the negative exponent: 

 dP(w)={0,if w∈PMq(d(w,Pk)|1N),if w∉P
 where  q<0 and 

 Mq(d(w,Pk)|1N)=(∑k=1nd(w,Pk)qN)1/q.
The measure  μdP(w) corresponding to the indicator  dP(w) is specified using the formula: 

 μdP(w)=dP¯dP(w)+dP¯,
  dP¯ – the average value of the indicator  dP(w).

Final safety measure related to fractures 

  

	
  νP(w)=1−μP(w).
	(9)	


The final safety measure related to relief and fractures is averaging of the measures (8) and (9): 

  

	
  ν(w)=νRe(w)+νP(w)2.
	(10)	
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  The integral measure of geodynamic safety  ν(w) (10) according to four specified features is shown in Figure 7a.

 2.2 Functional Clustering of the Integral Measure of Geodynamic Safety

The final measure of geodynamic safety  ν (10) inherits to a certain extent stochasticity of the relief and fractures underlying it (Figure 7a). That's why, choosing a certain level  α, for example,  α=0.45, we see (Figure 7b) that the set of  α-stable nodes has a complex topology. This is related with the extreme heterogeneity of the geological environment. It is known that the most dangerous from the tectonic point of view are related areas often with a linearly elongated shape. Therefore, simplification is required, i.e. recognition of only massive areas with possible corrections of insignificant internal losses of  α-stability for final assessment of geodynamic safety. Simplification of the integral measure of geodynamic safety allows an expert to see visually and evaluate the main patterns in its distribution through the area, omitting insignificant details serving as background noises.

Use of traditional methods (ordinary averaging (Figure 7c), convolution with the Gauss core (Figure 7d) [Shapiro et al., 2001; Nixon et al., 2019], pyramidal smoothing (Figure 7e) [Smith, 1999]) for this purpose does not solve the problem. The required simplification is achieved using the FDPS algorithm. Figure 7f shows the result of using the FDPS algorithm with the selected density level for the measure given in Figure 7a. Figure 7f clearly demonstrates that the zone with a higher value  ν intersects the underground research laboratory mine take in the direction from the southeast to the northwest.

 Conclusion

As a result of construction of the integral measure of geodynamic safety, it became possible to use the system analysis methods when assessing stability of structural and tectonic blocks of the Earth's crust for the urgent geoecological problem - ensuring safety of disposal of the high-level radioactive waste in geological formations. It should be noted that the results of using the algorithm as applied to the real-valued data of the Nizne-Kansk Massif are preliminary. The method requires to use a wider set of layers of analyzed data and needs to be improved.

In theoretical terms, continuation of researches related to the FDPS algorithm is seen by the authors: 

	 in automating selection of its parameters through optimization of the external quality functional simultaneously monitoring the massiveness of the obtained clusters and the "good" nodes of the required  ν-quality contained in them; 	
	 in possible further clustering (uniting) of the  r-connected components of its result, which will make it possible to distinguish more qualitatively the bases of the elevation on  X for the weight function  ν and form the selection  B(X,ν). 


As to our problem, this will allow to identify the most stable structural blocks according to the values of the measure  ν.

Testing of the developed method and DMA algorithms based on several data layers for the northern part of the Nizne-Kansk Massif, where construction of the underground research laboratory is started at present to substantiate safety of deep HLRW disposal, and calculation of the geodynamic safety measure for the Yenisei area has shown their practical value and necessity of their further development, including for solving the geodynamic zoning problems [Gvishiani et al., 2019a].

An evident practical value of the method consists in the system step-by-step holistic analysis of diverse, multi-scale and multi-format layers of geological and geophysical information about the state of the structural-tectonic block, and, first of all, geomorphological, kinematic (determined based on the geodetic observations) and geophysical characteristics. A concept - a measure of activity of the dynamic indicator based on expert assessments of the behavior of geological and geophysical parameters in the vicinity of the grid nodes dividing the area into clusters is introduced for a formalized assessment of stability using the DMA methods. The cluster component of the DMA, based on the concept of density, allows to define strictly the concepts of condensation (dense subset), cluster (isolated condensations), and traces (linear condensations) for the multidimensional array. The FDPS algorithm was used to filter and arrange layers of geospatial data into homogeneous groups and separate dense homogeneous clusters that may be related to the deep zones of dynamic instability in the Earth's upper crust.

The preliminary data of the algorithm testing showed that the structural tectonic block, in which construction of a deep HLRW disposal site is planned, is located in a relatively stable zone. The FDPS algorithm can also be useful in planning comprehensive geophysical studies in the area of the underground research laboratory within the Nizne-Kansk Massif, as well as in solving other related problems in the sphere of geodynamics, geoecology and mining [Gvishiani et al., 2020].
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Figure 1. Geological map of the Nizne-Kansk massif. 1 - boundaries: established (a), assumed (b), unconformity (c), dropping (d); 2 - reverse faults: major (a), minor (b), faults (c); 3 - breaking faults: unidentified (a), alleged (b), activated (c); 4 - mylonites (a), blastomylonites (c); 5 - tectonic terrain ledges; 6 - amphibolites (a), shales (b); 7 - migmatites (a), granitoids (b); 8 - diaftorites; 9 - outcrops; 10 - places of permafrost; 11 - holes; 12 - wells in area HLRW; 13 - thickness of the Quaternary layer; 14 - the relationship of layers: consonant (a), unconformable (b), angular unconformity (c), tectonic (d), intrusive (e); 15 - boundaries of areas for HLRW.
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Figure 2. Flow diagram of the simple Discrete Perfect Sets algorithm.
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Figure 3. The result of SDPS work on a synthetic example with different parameters. a)  r=28.92,  α=0.2; b)  r=28.92,  α=0.3. Blue points are the original data, red are concentrations identified by the SDPS algorithm.
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Figure 4. a) anomalies identified by the FDPS algorithm with  r=23.26 (6); b) anomalies identified by level. Dotted line is set level  α=0.3.
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Figure 5. Diagram of calculation of the integral safety measure for the Nizne-Kansk Massif.
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Figure 6. Layout of the nodes.





[image: RJES]        [image: Powered by MathJax]


 
Citation: Agayan S. M., V. N. Tatarinov, A. D. Gvishiani, Sh. R. Bogoutdinov, I. O. Belov (2020), FDPS algorithm in stability assessment of the Earth's crust structural tectonic blocks, Russ. J. Earth Sci., 20, ES6014, doi:10.2205/2020ES000752.
 

Copyright 2020 by the Geophysical Center RAS.


Generated from LaTeX source by ELXfinal, v.2.0 software package.



	
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 20, ES6014, doi:10.2205/2020ES000752, 2020


 

Figure 7. Results of identifying safety zones by different algorithms. a) an integral measure of geodynamic safety  ν; b) selection by level  α; c) ordinary averaging; d) convolution with the Gauss core; e) pyramidal smoothing; f) FDPS algorithm. The dotted line shows the boundaries of the construction site of the HLRW disposal facility.
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\abstract{Problem of area's zoning is very important and is one of the main problems of modern geographical science. Our point is to from a modern approach, based on the machine learning methods to provide zoning of any area. Key ideas of this methodology, that any distribution of factors that form any geographical system grouped around some clusters -- unique zones that represents specific nature conditions. Formed methodology based on several stages -- selection of data and objects for analysis, data normalization, assessment of predisposition of data for clustering, choosing the optimal number of clusters, clustering and validation of results. As an example, we tried to zone a surface layer of the Black Sea. We find that optimal number of unique zones is~3. Also, we find that the key driver of zone forming is a location of the rivers. Thus, we can say, that applying a machine learning approach in area's zoning tasks helps us increasing the quality of nature using and decision-making processes.}

\section{1. Introduction}

The problem of zoning has always been and will be the main problem of geographical science. In this context, region or zone is the main territorial system, which is always part of larger regional units. Based on this, zoning is the process of identifying and studying the objectively existing territorial structure, organization, and hierarchical subordination of physical and geographical complexes.
Zoning of any area includes several important goals
 [\itc{Vinokurov et al.,} \reflink{Vinokurov05}{2005};
\itc{Zaika} \reflink{Zaika14}{2014}]:

\begin{enumerate}
\item
Finding an existing physiography complexes;
\item
	mapping of physiography maps;
\item
	deep understanding of the complex composition;
\item
	research of processes and factors, that are forming complexes;
\item
	complex classification;
\item
Finding of any interactions between factors or complexes;
\item
	developing of physiography zoning methods.
\end{enumerate}

Thus, the main goal of this paper was to form a modern mathematical methodology, based on machine learning methods to provide zoning of any area.

In the last years problem of area's zoning and its methodology was tried to solve by several authors.

For example % G. N. Skrebets and S. M. Pavlova
\itc{Skrebets and Pavlova} [\reflink{Skrebets19}{2019}]
conducted a physical and geographical zoning of the Black Sea using correlation analysis. They used a mapping based on relationship between phytoplankton and natural factors, that limiting its distribution. Using this approach, they identified 5 regions that differ from each other in quantitative way, as well as in combination of relationships.

From a biological point of view, this problem was considered by
%V.~E.~Zaika
\itc{Zaika} [\reflink{Zaika14}{2014}].
He carried out biological zonation of the Black Sea and also described the main problems of its implementation. The principle of distinguishing different regions was based on quantitative analysis of the dominant species in different regions of the Black Sea.

The widespread use of physiographic zonation received in landscape ecology. %Yu.~I.~Vinokurov, Yu.~M.~Tsimbaleya and B.~A.~Krasnoyarova
\itc{Vinokurov et al.} [\reflink{Vinokurov05}{2005}]
proposed a methodology and implemented the physical and geographical zoning of Siberia. Based on various natural features, they identified more than 100 different regions with unique physical and geographical conditions.

%A. Tamaychuk
\itc{Tamaychuk} [\reflink{Tamaychuk17}{2017}]
in his paper tried analytical approach to zoning Black Sea area, based on main factors of spatial differentiation, distribution features of environmentally significant characteristics and modern ideas about the theory and methods of physiographic zoning. He divided area of the Black Sea into 3 water-provinces -- North-West moderate, North-East moderate and subtropical.

Mathematical approach was shown in %E. Sovga
\itc{Sovga et al.} [\reflink{Sovga05}{2005}]
work. They used depth, mean values of temperature and salinity, differences and features in flora and fauna as a factor. They divided area of the North-West part of the Black Sea into 4 groups -- West, Karkinitsky, Central and Kalamitsky.

V. Agostini
[\itc{Agostini et al.,} \reflink{Agostini15}{2015}]
in her paper tried to make a zoning of marine environment in St.~Kitts and Nevis. For her analysis, she used 37 spatial layers, that represent different factors and fully described functionality of the research area, that was divided into 3 major groups -- ``habitat'', ``species'' and ``human use''. As the result, she distinguished 4 major zones -- ``conservation'', ``transportation'', ``touristic'' and ``fishing''.

\itc{Petrov and Bobkov} [\reflink{Petrov17}{2017}]
tried to form the concept of hierarchical structure of large marine ecosystems in the Arctic shelf of Russia. Based on environmental variables, they distinguished 7 eco-regions of the Barents Sea -- South-Western, Pechora Sea, Central basin south, Central basin north, Novaya Zemlya shore, Svalbard Archipelago and Franz Josef Land Archipelago.

%Fyhr F., Nilsson A. and Sandman N. [
\itc{Fyhr et al.} [\reflink{Fyhr13}{2013}]
tried to review all of the modern concepts and tools for Ocean zoning. Based on their work, the most actual and commonly used tools are Atlantis, Cumulative Impacts Assessment Tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Marine Protected Areas Decision Support Tool (Marine Map), Marxan and Marxan with Zones, NatureServe Vista and Zonation.


\section{2. Clustering as Physiographic Zoning Method}

\enlargethispage{-1pc}

Clustering is a task of dividing the entire dataset into separate groups of homogenous objects, that are similar to each other, but have distinct difference between this separate groups
[\itc{Aleshin and Malygin,} \reflink{Aleshin19}{2019}].
Clustering algorithms are divided in two groups -- hierarchical and iterative.

I. Hierarchical -- consistently build clusters from already found clusters.
\begin{enumerate}
\item
Agglomerative (unifying) -- start with individual elements, and then combine them;
\item
separation -- start with one cluster, and then -- divide them;
\end{enumerate}

 II. Non-hierarchical -- optimize a certain objective function.
\begin{enumerate}
\item
Graph theory algorithms;
\item
EM algorithm;
\item
 $K$-means algorithm ($k$-means clustering);
\item
fuzzy algorithms.
\end{enumerate}

Any clustering algorithm can be considered effective if the compactness hypothesis is satisfied
[\itc{Shi and Horvath,} \reflink{Shi06}{2006}].

Physiographic zoning using clustering method is carried out in several stages:
\begin{enumerate}
\item
Selection of data and objects for analysis;
\item
data normalization;
\item
assessment of predisposition of data for clustering;
\item
choosing the optimal number of clusters;
\item
clustering and validation of results.
\end{enumerate}

Formally, almost all clustering tasks come down to this form. Let  $X$ be the set of objects, $Y$ is the set of numbers (names, labels) of clusters. The distance function between objects is specified as
$\rho(x,x\prime)$
[\itc{Collins et al.,} \reflink{Collins02}{2002}].
There is a finite training set of objects $X^m={x_1,...,x_n}\in X$. So, the main goal of clustering is to divide dataset into several disjoint subsets. These subsets called clusters and consist from objects, that are closed to the
$\rho$-metric. Objects from different clusters were significantly different. For every object $x_i\in X^m$ assigned the number of cluster $y_i$
[\itc{Marron et al.,} \reflink{Marron14}{2014}].

\subsection{2.1. Data Normalization}

Data normalization is one of the feature transformation operations that is performed during their generation at the data preparation stage. In case of machine learning, normalization is a procedure for preprocessing input information (training, test and validation samples, as well as real data), in which the values of the attributes in the input vector are reduced to a certain specified range of values, for example: $[0...1]$ or $[-1...1]$.

The importance of data normalization comes from the nature of algorithms and models in machine learning. The values of raw data can vary in a very wide range and differ from each other by several orders
[\itc{Rybkina et al.,} \reflink{Rybkina18}{2018}].
The work of such machine learning models like neural networks or Kohonen self-organizing maps with not normalized data will be incorrect -- difference between attribute's values can cause instability of the model, that will lead to worth learning results and slowing the modelling process. Also, some parametric machine learning models require symmetric and unimodal data distribution. After normalization, all the numerical values of the input attributes will be reduced to the same amount -- a certain narrow range
[\itc{Criminisi et al.,} \reflink{Criminisi12}{2012}]. %%% ??? +

There are many ways to normalize feature values in order to scale them to a single range and use them in various machine learning models. Depending on the function used, they can be divided into two large groups: linear and non-linear
[\itc{Tealab et al.,} \reflink{Tealab17}{2017}].
With nonlinear normalization, the calculated ratios use the functions of the logistic sigmoid or hyperbolic tangent. In linear normalization, the change of variables is carried out proportionally, according to a linear law.

The most common methods for data normalization are:

Minimax -- linear data transformation in the range $[0..1]$, where the minimum and maximum scalable values correspond to 0 and 1, respectively:

\begin{eqnarray*}    % \begin{equation}\label{1}
X_{\mathrm{norm}}=\frac{X-X_{\min}}{X_{\max}-X_{\min}}
\end{eqnarray*}
$Z$-scaling based on the mean and standard deviation: dividing the difference between the variable and the it means by the standard deviation:

 \begin{eqnarray*}      % \begin{equation}\label{2}
 z=\frac{x-\mu}{\sigma}
\end{eqnarray*}
Decimal scaling -- performed by removing the decimal separator of the variable value
[\itc{Seber and Lee,} \reflink{Seber03}{2003}].

In practice, minimax and $Z$-scaling have similar areas of applicability and are often interchangeable. However, in calculating the distances between points or vectors in most cases, $Z$-scaling is used, while minimax is useful for visualization.

\subsection{2.2. Assessment of Predisposition of Data for Clustering}

One of the most common problem of unsupervised machine learning is that clustering will form groups, even if the analyzed dataset is a completely random structure. That's why the first validation task that should be applied even before clustering is to assess the overall predisposition of the available data to cluster tendency
[\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

There are two common indicators, that can show us cluster tendency -- Hopkins statistics and Visual Assessment of cluster Tendency or ``VAT diagram''.

To calculate Hopkins statistics, we need to create B pseudo-datasets, randomly generated based on the distribution with the same standard deviation as the original dataset. For each observation $i$ from $n$, the average distance to $k$ nearest neighbors is calculated as follows:
$w_i$ between real observations and $q_i$ between generated observations and their closest real neighbors
[\itc{Keller et al.,} \reflink{Keller85}{1985};
\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].
Then the Hopkins statistics calculates as follows:

 \begin{eqnarray*}
H_{\mathrm{ind}} = H_{\mathrm{ind}}=\frac{\sum_{n}w_i}{\sum_{n}q_i+\sum_{n}w_i}
\end{eqnarray*}
If $H_{\mathrm{ind}}>0.5$,  then it will correspond to the null hypothesis that $q_i$ and $w_i$ are similar and values are distributed randomly and uniformly. If  $H_{\mathrm{ind}} < 0.25$ this indicates that a dataset has a tendency to data grouping.

For visual assessment of clustering tendency, the best way is to using VAT diagram. VAT algorithm consists of:

\begin{enumerate}
\item
Compute the dissimilarity matrix between the objects in the data set using the Euclidean distance measure;
\item
reorder the dissimilarity matrix so that similar objects are close to one another. This process creates an ordered dissimilarity matrix;
\item
the ordered dissimilarity matrix is displayed as an ordered dissimilarity image, which is the visual output of VAT.
\end{enumerate}

The VAT detects the clustering tendency in a visual form by counting the number of square shaped dark blocks along the diagonal in a VAT image [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

\subsection{2.3. Choosing the Optimal Number of Clusters}

At this moment there's two main ways to choose an optimal number of clusters -- ``elbow'' method and using of gap statistics
[\itc{Chapelle et al.,} \reflink{Chapelle06}{2006}].

The ``elbow'' method -- considered the pattern of variation in the dispersion of $W_{\mathrm{total}}$  with increasing in number of groups  $k$
[\itc{Tomar et al.,} \reflink{Tomar18}{2018}].
Combining all of the founded  observations in one group, we'll have the biggest intraclass dispersion, that will decrease to 0 when $k\rightarrow n$.
The point, when this decreasing of dispersion will be slowing down, called ``elbow''
[\itc{Seber and Lee,} \reflink{Seber03}{2003};
\itc{Thiery et al.,} \reflink{Thiery06}{2006}].

An alternative to the ``elbow'' method is using gap statistics, which are generated based on resampling and Monte-Carlo simulation processes. For example, let $E_n^\ast{\log(W_k^\ast)}$ denotes the valuation of average dispersion $W_k^\ast$, obtained by bootstrap method, when $k$ clusters are formed by several random objects $f$ from the original dataset of $n$ size. Then gap statistics will be calculated as follows:

 \begin{eqnarray*}          % \begin{equation}\label{4}
\mathrm{Gap}_n(k)=E_n^\ast{\log(W_k^\ast)}-\log(W_k)
\end{eqnarray*}
 $\mathrm{Gap}_n(k)$ determines the deviation of the observed dispersion $W_n$ from its expected value, if the original data formed only one cluster.

\subsection{2.4. Validation of Clustering Results}

Currently, there are several ways to validate the results of clustering:

\begin{enumerate}
\item
 External validation -- comparing the results of cluster analysis with already known validation dataset;
\item
relative validation -- evaluating the structure of formed clusters by changing the algorithm parameters;
\item
internal validation -- obtaining internal information of clustering process;
\item
assessment of the clustering stability using resampling.
\end{enumerate}

The most widespread indexes are silhouette index and Calinski-Harabasz index [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

One of the approaches to validate the results of clustering is the Calinski-Harabasz index.

Let ${\overline{d}}^2$  is the mean square distance between elements in clustering variety and ${\overline{d}}_{c_i}^2$ -- mean square distance between elements in cluster $c_i$. Then the distance inside groups will be:

 \begin{eqnarray*}   % \begin{equation}\label{5}
\mathrm{WGSS} = \frac{1}{2}\sum_{i=1}^{c}(n_{c_i}-1){\overline{d}}_{c_i}^2
\end{eqnarray*}
and the distance between groups will be:

\begin{eqnarray*} % \begin{equation}\label{6}
\mathrm{BGSS} = \frac{1}{2}\left(\left(c-1\right)
{\overline{d}}^2+\left(N-c\right)A_c\right)
\end{eqnarray*}
where $a_c = A_c/\overline{d}^2$ -- is weighted mean difference of distances between cluster centers and a mutual variety center. Then the Calinski-Harabasz index will be:

\begin{eqnarray*}
\mathrm{VRC} = \frac{\mathrm{BGSS}/(c-1)}{\mathrm{WGSS}/(N-c)} =
\end{eqnarray*}
 \begin{eqnarray*}
 \frac{{\overline{d}}^2+ [(N-c)/(c-1)]A_c}{{\overline{d}}^2-A_c} =
\end{eqnarray*}
 \begin{eqnarray*}  %  \begin{equation}\label{7}
 \frac{1+[(N-c)/(c-1)]a_c}{1-a_c}
\end{eqnarray*}
where $a_c=A_c/\overline{d}^2$. We can see, that if the all distances between points are similar, then
$a_c=0$ and $\mathrm{VRC} = 1$. $a_c=1$
  characterize the prefect clustering. The maximum value of  corresponds to optimal cluster's structure.

Another approach to validate the clustering results is using the silhouette index. Its values shows the degree of similarity between object and cluster that he belongs to, compared to another clusters
[\itc{Shi and Horvath,} \reflink{Shi06}{2006};
\itc{Soliman et al.,} \reflink{Soliman17}{2017}].

Silhouette of every cluster estimates as follows: let object $x_j$ corresponds to cluster $c_p$. Denote the mean distance from this object to other objects from this cluster  $c_p$ as $a_{pj}$  and the mean distance from this object $x_j$ to objects from another cluster as
$c_q,q\ \neq\ p $ as $d_{q,j}$.
Let $b_{pj} = \min_{q\neq p}d_{qj}$. This value means the measure of dissimilarity of single object with objects from nearest cluster. Thus, the silhouette of every single element of cluster calculates as:

 \begin{eqnarray*}   % \begin{equation}\label{8}
S_{x_j}=\frac{b_{pj}-a_{pj}}{\max(a_{pj},b_{pj})}
\end{eqnarray*}
The highest values of $S_{x_j}$ corresponds to better affiliation of element  $x_j$
to cluster $p$.  The evaluation of all cluster structure provided by averaging the value by elements:

 \begin{eqnarray*}   %  \begin{equation}\label{9}
\mathrm{SWC} = \frac{1}{N}\sum_{j=1}^{N}S_{x_j}
\end{eqnarray*}
Better clustering characterized by bigger values of , that achieved when the distance inside cluster $a_{pj}$ is small and the distance between objects from neighboring clusters $b_{pj}$ is big.

\section{3. Black Sea Surface Physiographic Zoning}
\subsection{3.1. Research Area}

The Black Sea is an inland sea, that belongs to the basin of the Atlantic Ocean. Its maximum depth reaches the mark of 2258 meters
(\figref{1})
[\itc{Barratt,} \reflink{Barratt93}{1993}].
The total area of the Black Sea is 420,325~km$^2$, and with the Sea of Azov -- 462,000~km$^2$
[\itc{Murray,} \reflink{Murray05}{2005}].

The average seasonal cycle of geostrophic circulation of the Black Sea [\itc{Ivanov and Belokopytov,} \reflink{Ivanov11}{2011}]:

\begin{itemize}
\item
	From January to March -- a single cyclonic rotation with a center in the eastern part of the sea, the western circulation is weakly expressed;
\item
from April to May -- a single cyclonic rotation with a center in the western part of the sea, the eastern cycle is weakly expressed;
\item
from June to July -- two cycles, the western more intense;
\item
from August to September -- two cycles, the eastern one is more intense;
\item
from October to December -- two cycles of equal intensity.
\end{itemize}

About 80\%
of the river flow is concentrated in the northwestern part of the Black Sea. The Caucasian rivers contribute about 13\%
of the water balance, while the runoff from Turkeys rivers is about 7\%
[\itc{Ghervas} \reflink{Ghervas17}{2017}].  % Ghervas.
The contribution of the Crimean rivers a is insignificant
[\itc{Belokopytov and Shokurova,} \reflink{Belokopytov05}{2005}].

The biggest river, that flows into the Black Sea is Danube. The Danube usually brings about 203~km$^3$ of freshwater into North-Western part of the Black Sea, decreasing the level of salinity there. Another big river, that flows into Black Sea is Dnieper from Ukrainian part and Rioni from Georgian
[\itc{Ozsoy and Unluata,} \reflink{Ozsoy97}{1997}].

\begin{figure*}[t]                        %  Fig  1
\figurewidth{35pc}
\setimage{}{}{35pc}{}{2020es000707-f01}
\shortcaption{Bathymetric map of the Black Sea.}
\end{figure*}

\subsection{3.2. Data}

We used the monthly averaged data from Copernicus Marine Environmental Monitoring Service (CMEMS) -- Black Sea Reanalysis, which are based on 5 components:

\def\bottomfraction{.8}
\def\textfraction{.15}

\begin{table}[b]                                   % Table 1
\tablewidth{20pc}
\caption{Estimated Data Accuracy Results for Temperature and
Salinity. From Left Side in Each Row -- for 1995--2015 Data.
From Right -- for 2005--2015} \vspace{5pt}
\begin{tabular}
{@{}l@{\hspace{9pt}}
c@{\hspace{18pt}}
c@{}}
\hline
\\ [-7pt]
Feature & BIAS v4 & DMS v4 \\
 [7pt]  \hline   \\ [-4pt]
SST (\deg C)          & $-0.07/-0.07$ & 0.58/0.59 \\
T (\deg C) 0--100 m   & $-0.02/0.025$ & 0.87/0.74 \\
T (\deg C) 100--300 m & $-0.03/-0.003$ & 0.15/0.09 \\
T (\deg C) 300--800 m & $-0.02/-0.02$ & 0.11/0.05 \\
S (psu) 0--100 m      & $-0.014/0.002$ & 0.33/0.26 \\
S (psu) 100--300 m    & $-0.006/0.009$ & 0.19/0.15 \\
S (psu) 300--800 m    & $-0.005/-0.002$ & 0.05/0.03\\  [7pt]
\hline
\end{tabular}
\end{table}

\begin{enumerate}
\item
	Ocean model -- Hydrodynamic model, which is a part of the NEMO (Nucleus for European Modelling of the Ocean) project;
\item
	scheme of data assimilation (OceanVar) for temperature and salinity profiles, satellite data for sea surface temperature, sea level anomalies etc.;
\item
	assimilated data -- in-situ data for environmental variables;
\item
	recovery scheme for environmental variables;
\item
basic large-scale adjustments.
\end{enumerate}


Data from this model have a high level of correlation with in-situ data, that increasing with depth. For example, the accuracy of temperatures spatial distribution in the Black Sea at depth of 30~m
about $\pm{1.5}$\deg C, at the depth of 70~m it decreases to
$\pm{0.3}$\deg C and at the depth of 1100~m is about
$\pm{0.04}$\deg C
(\tabref{1}).    %Table 1).

The quality of the model data, as well as the model itself, improve with increasing of in-situ observations numbers.

For Black Sea surface physiographic zoning we used 6 environmental parameters -- sea surface temperature, sea surface salinity, dissolved oxygen level, PO$_4$ and NO$_3$ content and primary production level.

\subsection{3.3. Results}

To understand, does dataset has a tendency to form clusters, we calculated a Hopkins index using the R-package ``clustertend''. It was equal to 0.0194, that means that this dataset can form clusters.

To estimate an optimal number of clusters, we used the R-package ``factoextra''. Results shown in
\figref{2}.    % figure 2.

\begin{figure}[t]                        %   Fig  2
\figurewidth{20pc}
\setimage{}{}{20pc}{}{2020es000707-f02}
\caption{Determining an optimal number of $k$ by elbow-method.}
\end{figure}

As we can see at the
\figref{2},
the elbow of our curve is located at 3, thus we can distinguish 3 completely different zones in the surface waters of the Black Sea
(\figref{3}, \figref{4}).
Allocation of this zones due equally to all of analyzed factors, except dissolved oxygen.

\begin{figure*}[t]                        %   Fig  3
\figurewidth{35pc}
\setimage{}{}{41pc}{}{2020es000707-f03}
\caption{Seasonal zoning of the Black Sea.%
{\bf A} -- Winter, {\bf B} -- Spring, {\bf C} -- Summer, {\bf D} -- Autumn.}
\end{figure*}

Based on statistical analysis all of these factors divided in two groups. First -- phosphates concentration, primary production and chlorophyll-$\alpha$, which are derivatives from each other -- the amount of phosphates impacts on amount of primary production and amount of primary production impacts on amount of produced chlorophyll-$\alpha$. Second are temperature, salinity and nitrates concentration.

Studying water objects, it's important to know a seasonal variability of zones, because of its very high change capability in time. Comparing with land, water systems aren't stable for long period of time and spatial distribution of factors can vary from season to season.

Generally, as we can see in figure, main reasons of zoning pattern forming are quantitative and qualitative characteristics on flows.

In winter season, there is a clear divide of the Black Sea from west to east. A significant role in this process is played by the interaction of the Black Sea with the Sea of Marmara, river flows in the northwest of the Black Sea and in the Caucasus and, in some cases, areas near the Southern coast of Crimea and the Kerch Peninsula due to the activity of currents from the Sea of Azov.

In spring season, the divide of the Black Sea occurs from north to south. In this case, a significant impact on this process is exerted by the significant flow of such rivers as the Dniester, Danube and Dnieper in the north-west of the Black Sea and the influx of water from the Sea of Marmara. Due to the interaction between two water masses radically different in their characteristics, it forms an intermediate zone between them, covering an area from the Kerch Strait to the Danube Delta.

In the summer, due to the nature of the internal currents in the Black Sea and changes in the volume of river flow, more saline water from the Sea of Marmara reaches the Danube. In spatial terms, the pattern of zones distribution in the Black Sea is similar to the winter one, in which they are located from east to west. The formation of the intermediate second zone is most likely due to the interaction with more fresh and cold water coming from the Sea of Azov.

In autumn, the formation of more fresh and colder waters off the coast of Turkey is observed, which is due to the significant flow of the rivers of the Turkish coast. The distribution pattern is more similar to the spring one, with significantly increased in size zone~1.

Annual zoning of the Black Sea is presented on  figref{4}.

\subsubsection{Zone 1.}
 Located in the North-West part of the Black Sea. Flows from Danube, Dniester, Dnieper and Southern Bug completely equal of 3/4 of a total flow into the Black Sea. Dominated northern and north-western winds helps in spreading of matters, endured by rivers. The main feature of this part of the sea is an active interaction of fresh water from rivers with salty water from south of the Black Sea. Near the shore water salinity reaches values about $7-8 \pm$. Temperature of water surface, as a salinity, increasing from shore to open sea. Temperature differences reaches
 1.5--2.0\deg C. Bioproductivity of this zone is quite high, mainly cause of active flowing rivers matter and\linebreak
fresh water. But local hydrophysical and hydrochemical
conditions condition high variability of bioproductivity with
fishkills.

\subsubsection{Zone 2.}
 Basically, forming of this zone determined by interactions between 1-st and 3-rd zones, where as a results of Black Sea
 currents and flows from big rivers, cold fresh water from the coastal areas mixed up with more cold and salty water from
 central part of the Black Sea. Located in the north-west part of the Black Sea, near the Crimean-Caucasus shore of Russia,
 Georgian and Turkey coasts. Biggest rivers here are Rioni, Tuapse, Kizilirmak, Yesilirmak and Inguri. Like the zone~1, location
 of the zone 2 is due to the flows from rivers. But cause of lower levels of flow amount, compared with the zone 1, their
 impact  on water of the Black Sea is quite lower, but noticeable. Values of salinity here doesn't differ from the central part
 ($1-2 \pm$ fresher), same as a temperature.

\begin{figure*}[t]                          %  Fig  4
\figurewidth{35pc}
\setimage{}{}{35pc}{}{2020es000707-f04}
\shortcaption{Physiography zoning of the Black Sea.}
\end{figure*}

\subsubsection{Zone 3.}
 Natural conditions of this zone are a common to the Black Sea. The area of this zone is the biggest. Located in the south and central part of the Black Sea and near the Kerch Strait. Salinity here is a quite high -- $19-20 \pm $, and reaches $24 \pm $ near the Bosporus Strait. The impact of the Sea of Azov is quite low, due to specificity of Azov currents. Amount of phosphates and nitrates is low due to lack of any big rivers, which are the main sources of their presence in the sea water. As a result, concentrations of chlorophyll-$\alpha$ is quite low too.

\section{4. Conclusions}

Thus, the methodological approach, showed in this paper, helps us to use it fully in zoning tasks to provide distinguishing from them completely different areas, that aren't similar. As we can see, the main advantages of this approach are lack of subjectivity that is inherent to humans, high level of analysis accuracy, possibility of constant model's modification by adding new {\itshape in-situ} data or by modifying the algorithm itself. Also, it should be noted, that the indisputable advantage of this approach is the ability to use it in any kind of territory, both in size and in properties.

As we talk about disadvantages of this approach, we should note a strong dependency from input data quality and data normalization, which in some cases can lead to significant distortion in the analysis results. The same we can say about data size. With significant amount of data, it may be difficult to conduct the research, which leads to completely change the used algorithm or to significant reduction in data size and, as a result, to simplification of the model and distortion of the real results. Generally, we should note, that using of this approach is justified in most cases, but the need of improvement and further optimization of it doesn't disappear.

Obtained results helps us to understand that applying of this
approach can helps us to go away from analytical and empirical
zoning approaches to have a math basis, uniformity of
calculations and process automatization. Conducted as an
example of this approach application, Black Sea physiographic
zoning generally is quite similar with previous works. It was
determined, that the most optimal number of the dissimilar
groups, based on analyzed factors is 3. Generally, their
spatial location based on places where rivers flows into the
Black Sea, and as a result more comfortable for different flora
and fauna. For example, the conditions, that formed in the
second area is quite comfortable for spawning of many
commercial fishes, Like {\itshape Liza haematocheilus},
{\itshape Engraulis encragicolus}, {\itshape Liza aurata},
 {\itshape Mugil cephalus}, etc. Thus, applying a machine learning approach in area's zoning tasks helps us to increase the quality of nature using and decision-making process.
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