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We consider a two-layer fluid with a depth-dependent upper-layer current (e.g. a river
inflow, an exchange flow in a strait, or a wind-generated current). In the rigid-lid
approximation, we find the necessary singular solution of the nonlinear first-order
ordinary differential equation responsible for the adjustment of the speed of the long
interfacial ring wave in different directions in terms of the hypergeometric function.
This allows us to obtain an analytical description of the wavefronts and vertical
structure of the ring waves for a large family of the current profiles and to illustrate
their dependence on the density jump and the type and the strength of the current.
In the limiting case of a constant upper-layer current we obtain a 2D ring waves’
analogue of the long-wave instability criterion for plane interfacial waves. On physical
level, the presence of instability for a sufficiently strong current manifests itself already
in the stable regime in the squeezing of the wavefront of the interfacial ring wave in
the direction of the current. We show that similar phenomenon can also take place
for other, depth-dependent currents in the family. KEYWORDS: Stratified shear flows;

internal waves; long-wave instability.
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1. Introduction

Long-wave models of the Korteweg-de Vries (KdV)
type have found numerous useful applications in
the studies of the oceanic nonlinear surface and in-
ternal waves (see, for example, [Grimshaw, 1998;
Helfrich and Melville, 2006; Grimshaw et al., 2007;
Grimshaw et al., 2010] and references therein).
Two-dimensional generalizations of these models
developed in the context of fluids include versions
of the Kadomtsev-Petviashvili (KP) equation for
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water waves in Cartesian [Ablowitz and Segur, 1979],
cylindrical [Johnson, 1980], and elliptic-cylindrical
[Khusnutdinova et al., 2013] geometries and inter-
nal waves, with a possible background shear flow,
in Cartesian geometry (see [Grimshaw, 2015] and
references therein), as well as cylindrical Korteweg-
de Vries (cKdV)-type models for surface waves
without shear flow [Miles, 1978; Johnson, 1980]
and on a shear flow [Johnson, 1990] and inter-
nal waves without shear flow [Lipovskii, 1985] and
on a shear flow [Khusnutdinova and Zhang, 2016a;
Khusnutdinova and Zhang, 2016b]. The latter mod-
els are relevant to the description of the nearly an-
nular internal waves generated in straits, river-sea
interaction zones as well as waves scattered by lo-
calized topographic features (see [Vlasenko et al.,
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2009; Nash and Moum, 2005; Vlasenko et al., 2013;
Khusnutdinova and Zhang, 2016a; and references
therein). Some relevant initial-value problems have
been considered in [Weidman and Zakhem, 1978;
Ramirez et al., 2002; McMilan and Sutherland,
2010; Khusnutdinova and Zhang, 2016b; Grimshaw,
2019].
Several recent studies have predicted various ef-

fects of shear flows on two-dimensional surface ring
and ship waves (see [Johnson, 1990; Ellingsen,
2014a; Ellingsen, 2014b; Khusnutdinova and
Zhang, 2016a; Li and Ellingsen, 2019] and refer-
ences therein) and some of these predictions have
been recently confirmed in laboratory experiments
[Smeltzer et al., 2019]. The study of the effects of
a piecewise-constant shear flow on long surface and
interfacial ring waves in a two-layer fluid has shown
a striking difference in the shapes of the wavefronts
of these waves: while the surface ring waves were
elongated in the direction of the current, the in-
terfacial ring waves were squeezed in that direction
[Khusnutdinova and Zhang, 2016a]. Overall, the
study of the effects of the shear flow on internal
ring waves is in its infancy. It the present paper we
aim to build a rather large family of current pro-
files amenable to theoretical analysis which could
be used to approximate some currents present in
natural settings, and to elucidate their effects on
the long internal ring waves.

2. Modal Equations for Ring Waves

In this section we overview the derivation of
the far-field set of modal equations for long ring
waves in a stratified fluid over a parallel depth-
dependent shear flow derived and studied in [Khus-
nutdinova and Zhang, 2016a; Khusnutdinova and
Zhang, 2016b]. A ring wave propagates in an in-
viscid incompressible fluid, described by the set of
Euler equations:

𝜌(𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧) + 𝑝𝑥 = 0,

𝜌(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧) + 𝑝𝑦 = 0,

𝜌(𝑤𝑡 + 𝑢𝑤𝑥 + 𝑣𝑤𝑦 + 𝑤𝑤𝑧) + 𝑝𝑧 + 𝜌𝑔 = 0,

𝜌𝑡 + 𝑢𝜌𝑥 + 𝑣𝜌𝑦 + 𝑤𝜌𝑧 = 0,

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0,

subject to the free surface and rigid bottom bound-
ary conditions:

𝑤 = ℎ𝑡 + 𝑢ℎ𝑥 + 𝑣ℎ𝑦 at 𝑧 = ℎ(𝑥, 𝑦, 𝑡),

𝑝 = 𝑝𝑎 at 𝑧 = ℎ(𝑥, 𝑦, 𝑡),

𝑤 = 0 at 𝑧 = 0.

Here, 𝑢, 𝑣, 𝑤 are the velocity components in 𝑥, 𝑦, 𝑧
directions respectively, 𝑝 is the pressure, 𝜌 is the
density, 𝑔 is the gravitational acceleration, 𝑧 =
ℎ(𝑥, 𝑦, 𝑡) is the free surface height (𝑧 = 0 at the bot-
tom), and 𝑝𝑎 is the constant atmospheric pressure
at the surface. We assume that in the basic state
𝑢0 = 𝑢0(𝑧), 𝑣0 = 𝑤0 = 0, 𝑝0𝑧 = −𝜌0𝑔, ℎ = ℎ0.
Here 𝑢0(𝑧) is a horizontal shear flow in the 𝑥-
direction, and 𝜌0 = 𝜌0(𝑧) is a stable background
density stratification. The vertical particle dis-
placement 𝜁 is used as an additional dependent
variable, which is defined by the equation

𝜁𝑡 + 𝑢𝜁𝑥 + 𝑣𝜁𝑦 + 𝑤𝜁𝑧 = 𝑤,

subject to the surface boundary condition

𝜁 = ℎ− ℎ0 at 𝑧 = ℎ(𝑥, 𝑦, 𝑡),

where ℎ0 is the unperturbed fluid depth.
The problem is considered using the following

non-dimensional set of variables:

𝑥 → 𝜆𝑥, 𝑦 → 𝜆𝑦, 𝑧 → ℎ0𝑧, 𝑡 → 𝜆

𝑐*
𝑡,

𝑢 → 𝑐*𝑢, 𝑣 → 𝑐*𝑣, 𝑤 → ℎ0𝑐
*

𝜆
𝑤,

(𝜌0, 𝜌) → 𝜌*(𝜌0, 𝜌), ℎ → ℎ0 + 𝑎𝜂,

𝑝 → 𝑝𝑎 +

∫︁ ℎ0

𝑧
𝜌*𝜌0(𝑠)𝑔 d𝑠+ 𝜌*𝑔ℎ0𝑝,

where 𝜆 is the wave length, 𝑎 is the wave ampli-
tude, 𝑐* =

√
𝑔ℎ0 is the long-wave speed of surface

waves, 𝜌* is the dimensional reference density of
the fluid, while 𝜌0(𝑧) is the non-dimensional func-
tion describing stratification in the basic state, and
𝜂 = 𝜂(𝑥, 𝑦, 𝑡) is the non-dimensional free surface
perturbation. Non-dimensionalisation leads to the
appearance of two small parameters in the prob-
lem, the amplitude parameter 𝜀 = 𝑎/ℎ0 and the
wavelength parameter 𝛿 = ℎ0/𝜆. The maximal bal-
ance condition 𝛿2 = 𝜀 has been imposed in [Khus-
nutdinova and Zhang, 2016a].
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The problem is then solved in the moving cylin-
drical coordinate frame (moving at a constant speed
𝑐: a natural choice is the speed of the shear flow
at the bottom, as follows from the derivation). We
consider deviations from the basic state and use
the same notations 𝑢 and 𝑣 for the projections on
the new coordinate axis, scaling the appropriate
variables by the amplitude parameter 𝜀:

𝑥 → 𝑐𝑡+ 𝑟 cos 𝜃, 𝑦 → 𝑟 sin 𝜃, 𝑧 → 𝑧, 𝑡 → 𝑡,

𝑢 → 𝑢0(𝑧) + 𝜀(𝑢 cos 𝜃 − 𝑣 sin 𝜃),

𝑣 → 𝜀(𝑢 sin 𝜃 + 𝑣 cos 𝜃),

𝑤 → 𝜀𝑤, 𝑝 → 𝜀𝑝, 𝜌 → 𝜌0 + 𝜀𝜌.

The modal equations are obtained by looking for
a solution of the problem in the form of asymptotic
multiple-scales expansions of the form 𝜁 = 𝜁1 +
𝜀𝜁2+. . . , and similar expansions for other variables,
where

𝜁1 = 𝐴(𝜉,𝑅, 𝜃)𝜑(𝑧, 𝜃),

with the appropriate set of fast and slow variables:

𝜉 = 𝑟𝑘(𝜃)− 𝑠𝑡, 𝑅 = 𝜀𝑟𝑘(𝜃), 𝜃 = 𝜃,

where we define 𝑠 to be the wave speed in the ab-
sence of a shear flow (with 𝑘(𝜃) = 1). When a shear
flow is present the function 𝑘(𝜃) is responsible for
the adjustment of the wave speed in a particular
direction, and is to be determined. The formal
range of asymptotic validity of the model is de-
fined by the conditions 𝜉 ∼ 𝑅 ∼ 𝒪(1). To leading
order, the wavefront at any fixed moment of time
𝑡 is described by the equation 𝑟𝑘(𝜃) = constant,
and for the sake of definiteness we consider out-
ward propagating ring waves, requiring that the
function 𝑘 = 𝑘(𝜃) > 0.
To leading order, assuming that perturbations

of the basic state are caused only by the propagat-
ing wave, the motion is described by the solution

[Khusnutdinova and Zhang, 2016a]

𝑢1 = −𝐴𝜑𝑢0𝑧 cos 𝜃 −
𝑘𝐹

𝑘2 + 𝑘′2
𝐴𝜑𝑧,

𝑣1 = 𝐴𝜑𝑢0𝑧 sin 𝜃 −
𝑘′𝐹

𝑘2 + 𝑘′2
𝐴𝜑𝑧,

𝑤1 = 𝐴𝜉𝐹𝜑,

𝑝1 =
𝜌0

𝑘2 + 𝑘′2
𝐴𝐹 2𝜑𝑧,

𝜌1 = −𝜌0𝑧𝐴𝜑,

𝜂1 = 𝐴𝜑 at 𝑧 = 1,

where the function 𝜑 = 𝜑(𝑧, 𝜃) satisfies the follow-
ing set of modal equations:

(︁
𝜌0𝐹 2

𝑘2+𝑘′2𝜑𝑧

)︁
𝑧
− 𝜌0𝑧𝜑 = 0, (1)

𝐹 2

𝑘2+𝑘′2𝜑𝑧 − 𝜑 = 0 at 𝑧 = 1, (2)

𝜑 = 0 at 𝑧 = 0, (3)

and 𝐹 = −𝑠+ (𝑢0 − 𝑐)(𝑘 cos 𝜃 − 𝑘′ sin 𝜃).

The speed of the moving coordinate frame 𝑐 is fixed
to be equal to the speed of the shear flow at the
bottom, 𝑐 = 𝑢0(0). Then, 𝐹 = −𝑠 ̸= 0 at 𝑧 = 0,
and the condition 𝐹𝜑 = 0 at 𝑧 = 0 which appears
as a result of the derivation implies (3).
The amplitude function 𝐴(𝜉,𝑅, 𝜃) is then found

by considering the equations at 𝒪(𝜀). It satisfies a
cylindrical Korteweg - de Vries (cKdV)-type equa-
tion [Khusnutdinova and Zhang, 2016a]

𝜇1𝐴𝑅 + 𝜇2𝐴𝐴𝜉 + 𝜇3𝐴𝜉𝜉𝜉 + 𝜇4
𝐴

𝑅
+ 𝜇5

𝐴𝜃

𝑅
= 0,

where the coefficients 𝜇𝑖, 𝑖 = 1, 5 are given in terms
of solutions of the modal equations (1) - (3) by the
following formulae:

𝜇1 = 2𝑠

∫︁ 1

0
𝜌0𝐹𝜑2

𝑧 d𝑧,

𝜇2 = −3

∫︁ 1

0
𝜌0𝐹

2𝜑3
𝑧 d𝑧,

𝜇3 = −(𝑘2 + 𝑘′2)

∫︁ 1

0
𝜌0𝐹

2𝜑2 d𝑧,
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𝜇4 = −
∫︁ 1

0

{︂
𝜌0𝜑

2
𝑧𝑘(𝑘 + 𝑘′′)

(𝑘2 + 𝑘′2)2
(︀
(𝑘2 − 3𝑘′2)𝐹 2 − 4𝑘′(𝑘2 + 𝑘′2)(𝑢0 − 𝑐) sin 𝜃𝐹

− sin2 𝜃(𝑢0 − 𝑐)2(𝑘2 + 𝑘′2)2
)︀
+

2𝜌0𝑘

𝑘2 + 𝑘′2
𝐹𝜑𝑧𝜑𝑧𝜃(𝑘

′𝐹 + (𝑘2 + 𝑘′2)(𝑢0 − 𝑐) sin 𝜃)

}︂
d𝑧,

𝜇5 = − 2𝑘

𝑘2 + 𝑘′2

∫︁ 1

0
𝜌0𝐹𝜑2

𝑧[𝑘
′𝐹 + (𝑢0 − 𝑐)(𝑘2 + 𝑘′2) sin 𝜃] d𝑧.

In this paper we are concerned with the analysis
of the modal equations for a two-layer fluid with
the upper-layer current in the rigid-lid approxima-
tion, which will allow us to describe, to leading
order, the wavefronts and vertical structure of the
long interfacial ring waves. Our primary goal is to
analyse the sensitivity of the shape of the wavefront
to the variability of the background shear flow in
the bulk of the fluid layer, but we will also illus-
trate the 3D modal functions and discuss the on-
set of the long-wave instability in the limiting case
of a piecewise-constant current. In what follows,
the free surface condition (2) is eventually replaced
with the rigid-lid approximation

𝜑 = 0 at 𝑧 = 1.

3. Two-layer Fluid with an Upper-Layer
Current

We consider a two-layer fluid (see Figure 1. The
density in the upper layer is 𝜌1, and the density in
the lower payer is 𝜌2. The flow in the lower layer is
assumed to have constant speed, and then without
any loss of generality we can assume that this speed
is equal to zero. The upper-layer flow is described
by the function 𝑈(𝑧). Thus,

𝑢0 =

{︂
𝑈(𝑧), if 𝑑 ≤ 𝑧 ≤ 1,
0, if 0 ≤ 𝑧 < 𝑑.

We will assume the continuity of 𝑢0 at 𝑧 = 𝑑, i.e.
𝑈(𝑑) = 0. This is a generalisation of the case stud-
ied in [Johnson, 1990; 1997] for surface waves in
a homogeneous fluid, it is a possible model for a
river inflow, an exchange flow in a strait, or a wind-
generated current, for example.
The continuous solution of the modal equations

(1)–(3) is given (in respective layers) by

𝜑1 =
𝐴(𝑘2 + 𝑘′2)

𝜌1

(︂
1−

∫︁ 1

𝑧

𝑑𝑧

𝐹 2
1

)︂
, (4)

𝜑2 =
𝐴

𝜌1𝑑

[︂
1− (𝑘2 + 𝑘′2)

∫︁ 1

𝑑

𝑑𝑧

𝐹 2
1

]︂
𝑧, (5)

where 𝐹1 = −𝑠+𝑈(𝑧)(𝑘 cos 𝜃−𝑘′ sin 𝜃) and 𝐴 is an
arbitrary constant. The derivative of this solution
is discontinuous at 𝑧 = 𝑑 and must satisfy the jump
condition:

𝐹 (𝑑)2

𝑘2 + 𝑘′2
[𝜌0𝜑]− [𝜌0]𝜑(𝑑) = 0, (6)

where 𝐹 (𝑑) = −𝑠, yielding the following nonlin-
ear first-order ordinary differential equation for the
function 𝑘(𝜃):

(︂
𝜌1
𝜌2

− 1

)︂(︂∫︁ 1

𝑑

𝑑𝑧

𝐹 2
1

)︂
(𝑘2 + 𝑘′2)2 + (7)(︂

1 +
𝑠2

𝑑

∫︁ 1

𝑑

𝑑𝑧

𝐹 2
1

)︂
(𝑘2 + 𝑘′2)− 𝑠2

𝑑
= 0.

Figure 1. Schematic of the problem formulation.
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If there is no current, i.e. 𝑈(𝑧) = 0, then 𝐹1 =
−𝑠, 𝑘 = 1, 𝑘′ = 0, and the equation (7) reduces to
an algebraic equation for the speed 𝑠:

𝑠4 − 𝑠2 − 𝜌1 − 𝜌2
𝜌2

𝑑(1− 𝑑) = 0,

implying

𝑠21,2 =
1±

√︁
1 + 4𝜌1−𝜌2

𝜌2
𝑑(1− 𝑑)

2
, (8)

giving us the speed of the surface and interfacial
ring waves in the absence of any current.
In the rigid-lid approximation, the solution (4),

(5) is replaced with

𝜑1 = −𝐴(𝑘2 + 𝑘′2)

𝜌1

∫︁ 1

𝑧

𝑑𝑧

𝐹 2
1

, (9)

𝜑2 = −𝐴(𝑘2 + 𝑘′2)𝑧

𝜌1𝑑

∫︁ 1

𝑑

𝑑𝑧

𝐹 2
1

, (10)

where 𝐴 is an arbitrary constant, while the jump
condition (6) yields

𝑘2 + 𝑘′2 =
𝜌1𝑑+ 𝜌2𝑠

2
∫︀ 1
𝑑

𝑑𝑧
𝐹 2

1

(𝜌2 − 𝜌1)𝑑
∫︀ 1
𝑑

𝑑𝑧
𝐹 2

1

. (11)

When 𝑈(𝑧) = 0, this equation gives

𝑠2 =
(𝜌2 − 𝜌1)𝑑(1− 𝑑)

𝜌1𝑑+ 𝜌2(1− 𝑑)
, (12)

the speed of the interfacial ring wave in the absence
of the background current, and in the rigid-lid ap-
proximation. The equation (11) and the speed (12)
can be formally obtained from (7) and (8) as an ap-
proximation when 𝜌2 − 𝜌1 ≪ 𝜌1, 𝜌2.

4. Wavefronts and Vertical Structure

Let us now consider the family of the upper-layer
current profiles described by the function

𝑈(𝑧) = 𝛾(𝑧 − 𝑑)𝛼, (13)

where 𝛾 and 𝛼 are some positive constants. In par-
ticular, the upper-layer current is shown in Fig-
ure 2 for 𝛼 = 1, 𝛼 = 1

2 and 𝛼 = 2 for 𝑑 = 0.7
and 𝛾 = 0.015 when 𝛼 = 1, 𝛾 = 0.00821584 when

Figure 2. Upper-layer currents 𝑈(𝑧) = 𝛾(𝑧 − 𝑑)
(blue, solid), 𝑈(𝑧) = 𝛾(𝑧 − 𝑑)2 (red, dotted) and
𝑈(𝑧) = 𝛾

√
𝑧 − 𝑑 (red, dot-dashed) for 𝑑 = 0.7 and

𝑈(1) = 0.0045.

𝛼 = 1
2 , 𝛾 = 0.05 when 𝛼 = 2 (all currents have the

same strength 𝑈(𝑧) = 0.0045 on the surface 𝑧 = 1).
The equation (11) takes the form

𝑘2 + 𝑘′2 =
𝜌1𝑑+ 𝜌2𝑠

2𝐼[𝐾(𝜃)]

(𝜌2 − 𝜌1)𝑑 𝐼[𝐾(𝜃)]
, (14)

where

𝐼[𝐾(𝜃)] =

∫︁ 1

𝑑

𝑑𝑧

𝐹 2
1

=
1− 𝑑

𝑠2
2𝐹1

(︂
2,

1

𝛼
, 1 +

1

𝛼
,

𝛾𝐾(𝜃)

𝑠
(1− 𝑑)𝛼

)︂
,

and 𝐾(𝜃) = 𝑘(𝜃) cos 𝜃− 𝑘′(𝜃) sin 𝜃. Here, the func-
tion 𝐼[𝐾(𝜃)] is given in terms of the hypergeometric
function 2𝐹1.
The general solution of the equation (14) has the

form

𝑘(𝜃) = 𝑎 cos 𝜃 + 𝑏(𝑎) sin 𝜃, (15)

where

𝑏2 = −𝑎2 +
𝜌1𝑑+ 𝜌2𝑠

2 𝐼(𝑎)

(𝜌2 − 𝜌1)𝑑 𝐼(𝑎)
(16)

and

𝐼(𝑎) =

∫︁ 1

𝑑

𝑑𝑧

[𝑠− 𝛾𝑎(𝑧 − 𝑑)𝛼]2

=
1− 𝑑

𝑠2
2𝐹1

(︂
2,

1

𝛼
, 1 +

1

𝛼
,
𝛾𝑎

𝑠
(1− 𝑑)𝛼

)︂
.
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The far-field wavefronts of the ring waves at a
fixed moment of time are described by the curves

𝐻(𝑟, 𝜃, 𝑡) = 𝑟𝑘(𝜃)− 𝑠𝑡 = constant,

where 𝑘(𝜃) is the singular solution of the equation
(11) (i.e. the envelope of the general solution found
by requiring 𝑑𝑘

𝑑𝑎 = 0). In what follows all wavefronts
are plotted for 𝑟𝑘(𝜃) = 50 (𝑅 ∼ 1, 𝜀 ∼ 0.02).
In this general setting we assume that the cur-

rent is sufficiently weak, so that there exists a part
of the wavefront which is able to propagate in the
upstream direction, and therefore 𝜃 ∈ [−𝜋, 𝜋], but
we will also discuss other possible regimes for the
limiting case of a constant upper-layer current. It
is sufficient to define the solution for 𝜃 ∈ [0, 𝜋] be-
cause of the symmetry of the problem. For the
family of currents described by (13), the singular
solution can be found explicitly in parametric form

𝑘(𝑎) = 𝑎 cos 𝜃(𝑎) + 𝑏(𝑎) sin 𝜃(𝑎), (17)

𝑏 =

√︃
𝜌1𝑑+ 𝜌2𝑠2 𝐼(𝑎)

(𝜌2 − 𝜌1)𝑑 𝐼(𝑎)
− 𝑎2, (18)

𝜃(𝑎) =

⎧⎪⎪⎨⎪⎪⎩
arctan

2𝑏(𝜌2 − 𝜌1)𝑑 𝐼2(𝑎)

2𝑎(𝜌2 − 𝜌1)𝑑 𝐼2(𝑎) + (1− 𝜌2𝑠2𝐼(𝑎))𝐼 ′(𝑎)
if 𝑎 ∈ [𝑎0, 𝑎𝑚𝑎𝑥] (𝜃 ∈ [0,

𝜋

2
]),

arctan
2𝑏(𝜌2 − 𝜌1)𝑑 𝐼2(𝑎)

2𝑎(𝜌2 − 𝜌1)𝑑 𝐼2(𝑎) + (1− 𝜌2𝑠2𝐼(𝑎))𝐼 ′(𝑎)
+ 𝜋 if 𝑎 ∈ [𝑎𝑚𝑖𝑛, 𝑎0] (𝜃 ∈ [

𝜋

2
, 𝜋]);

(19)

where

𝐼 ′(𝑎) =
1− 𝑑

𝛼𝑎𝑠2

[︂
1

[1− 𝛾𝑎
𝑠 (1− 𝑑)𝛼]2

− 2𝐹1

(︂
2,

1

𝛼
, 1 +

1

𝛼
,
𝛾𝑎

𝑠
(1− 𝑑)𝛼

)︂]︂
.

Here, the parameter 𝑎 takes values in the interval
[𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] which is found by requiring 𝑏2 ≥ 0 in
(16). We consider the outward propagating ring
waves, and therefore require 𝑘(𝜃) > 0 for all 𝜃.
Then, the interval must contain 𝑎 = 0 since 𝑎
should take both positive and negative values to
allow 𝑘(𝜃) to be positive at both 𝜃 = 0 and 𝜃 = 𝜋.
The value 𝑎0 ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] is found from the con-
dition

𝑑𝑏(𝑎)

𝑑𝑎
= − 1

tan 𝜃
= 0.

When 𝛾 = 0, 𝐼(𝑎) = 1−𝑑
𝑠2 > 0 yielding 𝑎 ∈ [−1, 1]

and 𝑎0 = 0. By continuity, the real solution
will continue to exist at least for a sufficiently
small 𝛾, while the flow might become unstable for

some stronger currents [Khusnutdinova and Zhang,
2016a].
It is worth noting that in many natural cases the

hypergeometric function featured in the solution
reduces to elementary functions. In particular, for
𝛼 = 1 (i.e. 𝑈(𝑧) = 𝛾(𝑧 − 𝑑)), we have

2𝐹1

(︁
2, 1, 2,

𝛾𝑎

𝑠
(1− 𝑑)

)︁
=

1

1− 𝛾𝑎
𝑠 (1− 𝑑)

,

for 𝛼 = 1
2 (i.e. 𝑈(𝑧) = 𝛾

√
𝑧 − 𝑑),

2𝐹1

(︁
2, 2, 3,

𝛾𝑎

𝑠

√
1− 𝑑

)︁
=

2

1− 𝑑
×

×

[︃ √
1− 𝑑

𝛾𝑎
𝑠 (1− 𝛾𝑎

𝑠

√
1− 𝑑

+
1

𝛾2𝑎2
ln(1− 𝛾𝑎

𝑠

√
1− 𝑑

]︃
,

and for 𝛼 = 2 (i.e. 𝑈(𝑧) = 𝛾(𝑧 − 𝑑)2),

2𝐹1

(︂
2,

1

2
,
3

2
,
𝛾𝑎

𝑠
(1− 𝑑)2

)︂
=

1

2(1− 𝛾𝑎
𝑠 (1− 𝑑)2)

+

1

2
√︀

𝛾𝑎
𝑠 (1− 𝑑)

arctan[

√︂
𝛾𝑎

𝑠
(1− 𝑑)].

In the first case, for 𝑈(𝑧) = 𝛾(𝑧 − 𝑑), the singular
solution can be rewritten in the form 𝑘 = 𝑘(𝜃) as
follows

𝑘(𝜃) =

√︃
1 +

[︂
𝜌1𝛾𝑠

2(𝜌2 − 𝜌1)

]︂2
− 𝜌1𝛾𝑠

2(𝜌2 − 𝜌1)
cos 𝜃,

(20)
where 𝜃 ∈ [−𝜋, 𝜋].

This solution has been used to test the Mathe-
matica code for the general solution (17) – (19).
The code was then used to plot other figures of the
wavefronts of the ring waves shown below.
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Following Johnson, 1990, we note that the local
wave speed in the normal direction to the wave-
front, ∇𝐻

|∇𝐻| is given by

− 𝐻𝑡

|∇𝐻|
=

𝑠√
𝑘2 + 𝑘′2

.

Therefore, to avoid the appearance of critical layers
we require that

𝑠√
𝑘2 + 𝑘′2

̸= 𝑈(𝑧) cos(𝜃 + 𝛼),

where 𝛼 is the angle between the radial direction
and the normal to the wavefront, and cos𝛼 =

𝑘√
𝑘2+𝑘′2 . This condition is equivalent to

𝐹1 = −𝑠+ 𝑈(𝑧)(𝑘 cos 𝜃 − 𝑘′ sin 𝜃) ̸= 0

for 𝑑 ≤ 𝑧 ≤ 1 since 𝐹2 = −𝑠 ̸= 0. Following
[Khusnutdinova and Zhang, 2016a], we can obtain a
simple sufficient condition for the absence of critical
layers.
Indeed,

𝐹1𝜃 = −𝛾(𝑧 − 𝑑)𝛼(𝑘 + 𝑘′′) sin 𝜃,

where we assume that 𝛾 > 0, 𝛼 > 0, 𝑑 ≤ 𝑧 ≤ 1 and
𝑘 + 𝑘′′ > 0 on the selected singular solution (out-
ward propagating wave). Then, 𝐹1 has a maximum
at 𝜃 = 0, and we require that

𝐹1 ≤ 𝐹1|𝜃=0 = −𝑠+ 𝛾(𝑧 − 𝑑)𝛼𝑘(0) < 0,

implying

𝛾(𝑧 − 𝑑)𝛼 <
𝑠

𝑘(0)
,

which we replace with a stronger condition

𝛾(𝑧 − 𝑑)𝛼 ≤ 𝛾(1− 𝑑)𝛼 < 𝑠 <
𝑠

𝑘(0)
.

Thus, in order to avoid the appearance of critical
layers, in what follows we impose this constraints
on 𝛾 for the examples of the shear flow.
In Figure 3 we show the wavefronts of the inter-

facial ring waves on the linear current

𝑈(𝑧) = 𝛾(𝑧 − 𝑑).

The plots on the left are obtained for 𝜌1 = 1, 𝜌2 =
1.0001, while the plots on the right are for a greater
density jump, 𝜌1 = 1, 𝜌2 = 1.001, with 𝑑 = 0.7 in
all plots. The parameter 𝛾 takes two values 𝛾1 = 0
(blue, solid) and 𝛾2 = 0.015 (red, dashed). For the

Figure 3. Wavefronts of interfacial ring waves for
𝑈(𝑧) = 𝛾(𝑧 − 𝑑); 𝜌1 = 1, 𝜌2 = 1.0001 (top) and
𝜌2 = 1.001 (bottom); 𝑑 = 0.7; 𝛾 = 0 (blue, solid),
𝛾 = 0.015 (red, dashed).

same strength of the shear flow, the wavefronts ap-
pear to be convected by the flow and slightly elon-
gated in the direction of the flow, which is more
noticeable in the plots on the top, i.e. for the
smaller density jump (and therefore slower inter-
facial waves; indeed, 𝑠1 = 0.00458251 and 𝑠2 =
0.0144892).
In Figure 4 we show the wavefronts of the inter-

facial ring waves on the current

𝑈(𝑧) = 𝛾
√
𝑧 − 𝑑.

Here again the plots on the top are obtained for
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Figure 4. Wavefronts of interfacial ring waves for
𝑈(𝑧) = 𝛾

√
𝑧 − 𝑑; 𝜌1 = 1, 𝜌2 = 1.0001 (top) and

𝜌2 = 1.001 (bottom); 𝑑 = 0.7; 𝛾 = 0 (blue, solid),
𝛾 = 0.00821584 (red, dashed).

𝜌1 = 1, 𝜌2 = 1.0001, while the plots on the bottom
are for 𝜌1 = 1, 𝜌2 = 1.001, with 𝑑 = 0.7 in all plots.
The parameter 𝛾 takes the values 𝛾1 = 0 (blue,
solid) and 𝛾2 = 0.00821584 (red, dashed). Thus,
the first value is the same as before, while the sec-
ond value is decreased in order to have the same
strength of the current 𝑈(𝑧) = 0.0045 on the sur-
face 𝑧 = 1. The wavefronts appear to be mainly
convected in the downstream direction which is
again much more pronounced in the plots on the
top, i.e. for the smaller density jump.
In Figure 5 we show the wavefronts of the inter-

Figure 5. Wavefronts of interfacial ring waves for
𝑈(𝑧) = 𝛾(𝑧 − 𝑑)2; 𝜌1 = 1, 𝜌2 = 1.0001 (top) and
𝜌2 = 1.001 (bottom); 𝑑 = 0.7; 𝛾 = 0 (blue, solid),
𝛾 = 0.05 (red, dashed).

facial ring waves on the current

𝑈(𝑧) = 𝛾(𝑧 − 𝑑)2.

The plots on the top are obtained for 𝜌1 =
1, 𝜌2 = 1.0001, while the plots on the bottom are
for 𝜌1 = 1, 𝜌2 = 1.001, with 𝑑 = 0.7 in all plots.
The parameter 𝛾 takes the values 𝛾1 = 0 (blue,
solid) and 𝛾2 = 0.05 (red, dashed). Thus, the
first value is the same as before, while the sec-
ond value is increased in order to have the same
strength of the current 𝑈(𝑧) = 0.0045 on the sur-
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face 𝑧 = 1. The wavefronts appear to be mainly
elongated in the downstream direction which is
again much more pronounced in the plots on the
top, i.e. for the smaller density jump.

Figure 6. Wavefronts of interfacial ring waves for
𝜌1 = 1, 𝜌2 = 1.0001, 𝑑 = 0.7; 𝛾 = 0 (blue, solid),
𝛾 = 0.05 for 𝛼 = 2 (red, dotted), 𝛾 = 0.015 for
𝛼 = 1 (red, dashed), and 𝛾 = 0.00821584 for 𝛼 = 1

2
(red, dot-dashed). For all three currents 𝑈(1) =
0.0045.

In Figure 6 we compare the wavefronts of the
interfacial ring waves on the currents

𝑈(𝑧) = 𝛾(𝑧 − 𝑑)𝛼 where 𝛼 =
1

2
, 1, 2

for the same set of parameters. Here, 𝜌1 = 1, 𝜌2 =
1.0001, 𝑑 = 0.7 and 𝛾 = 0 (blue, solid), 𝛾 = 0.05
for 𝛼 = 2 (red, dotted), 𝛾 = 0.015 for 𝛼 = 1
(red, dashed) and 𝛾 = 0.00821584 for 𝛼 = 1

2 (red,
dot-dashed). All currents have the same strength
𝑈(𝑧) = 0.0045 on the surface 𝑧 = 1. It appears
that the current with 𝛼 = 1

2 convects the ring fur-
ther downstream than the currents with 𝛼 = 1 and
𝛼 = 2, while the current with 𝛼 = 2 has a stronger
effect on the shape of the wavefront elongating it
in the direction of the shear flow.
It is also instructive to analyze the 3D vertical

structure of the internal wave field by illustrating
the dependence of the modal functions in the up-
per and lower layers on 𝜃 and 𝑧. The plots in Fig-
ure 7 and Figure 8 show the upper- and lower-layer
modal functions 𝜑1 and 𝜑2, respectively, for the lin-
ear current 𝑈(𝑧) = 𝛾(𝑧 − 𝑑). The modal functions

Figure 7. Upper-layer modal function 𝜑1 of inter-
facial ring waves for 𝜃 = 0 (top), 𝜃 = 𝜋

2 (mid-
dle) and 𝜃 = 𝜋 (bottom). Here, 𝜌1 = 1, 𝜌2 =
1.0001, 𝑑 = 0.7; 𝑈(𝑧) = 𝛾(𝑧 − 𝑑) with 𝛾 = 0 (blue,
solid) and 𝛾 = 0.015 (red, dashed).

are given by the formulae (9), (10), and they have
been normalized to be equal to 1 at 𝜃 = 𝜋

2 (or-
thogonal direction to the current, where the veloc-
ity field in the fluid is least affected by the cur-
rent) and 𝑧 = 𝑑 (i.e. on the interface). Here,
𝜌1 = 1, 𝜌2 = 1.0001, 𝑑 = 0.7 and 𝛾 = 0 (blue,
solid) or 𝛾 = 0.015 (red, dashed). The upper-layer
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Figure 8. Lower-layer modal function 𝜑2 of inter-
facial ring waves for 𝜃 = 0 (top), 𝜃 = 𝜋

2 (mid-
dle) and 𝜃 = 𝜋 (bottom). Here, 𝜌1 = 1, 𝜌2 =
1.0001, 𝑑 = 0.7; 𝑈(𝑧) = 𝛾(𝑧 − 𝑑) with 𝛾 = 0 (blue,
solid) and 𝛾 = 0.015 (red, dashed).

modal function 𝜑1(𝑧, 𝜃) is shown in Figure 7 for
three fixed values of 𝜃: 𝜃 = 0 (downstream direc-
tion), 𝜃 = 𝜋

2 (orthogonal direction to the current)
and 𝜃 = 𝜋 (upstream direction). The lower-layer
modal function 𝜑2(𝑧, 𝜃) is shown in Figure 8 for
the same values of 𝜃. It is evident that the vertical
structure strongly depends on the direction. For

𝛾 = 0.015, the greatest changes are in the down-
stream direction, compared to the case when there
is no background shear flow, but there is also con-
siderable variation in the upstream direction. The
variation in the direction orthogonal to the current
is less significant in the upper layer, and negligible
in the lower layer. The upper-layer vertical struc-
ture in the downstream direction develops a sharp
gradient near the interface.
Finally, we note that for the same surface strength

𝑈(1) = 0.0045 there exist currents in this fam-
ily which appear to have wavefronts squeezed in
the direction of the shear flow, in contrast to the
behaviour illustrated in previous plots. Indeed,
this happens, for example, for 𝛼 = 1/4 and 𝛾 =
0.0060804 (where we continue to choose 𝛼 in the
form of positive and negative powers of 2). The
vertical profile of the current, and the correspond-
ing deformation of the wavefront of the ring wave
compared to the case when there is no shear flow
are shown in Figure 9. This behaviour is similar to
the squeezing which was previously reported for in-
ternal ring waves propagating in a two-layer fluid
with the piecewise-constant shear flow [Khusnut-
dinova and Zhang, 2016a], where it was linked to
the presence of the long-wave instability for plane
waves tangent to the ring at 𝜃 = 0 and 𝜃 = 𝜋
for a sufficiently strong current [Ovsyannikov, 1979;
Ovsyannikov, 1985].
Indeed, the upper-layer current 𝑈(𝑧) = 𝛾(𝑧−𝑑)𝛼

tends to 𝑈(𝑧) = 𝛾 as 𝛼 → 0. In this limit, the
equation (11) takes the form

𝑘2+𝑘′2=
𝜌1𝑑[−𝑠+𝛾(𝑘 cos 𝜃−𝑘′ sin 𝜃)]2+𝜌2(1− 𝑑)𝑠2

(𝜌2 − 𝜌1)𝑑(1− 𝑑)
(21)

and coincides with the equation obtained in [Khus-
nutdinova and Zhang, 2016a] for the case of a two-
layer fluid with the constant current 𝑈1 in the up-
per layer, and another constant current 𝑈2 in the
lower layer if we let 𝑈1 − 𝑈2 = 𝛾. Here, 𝑠2 is given
by (11), and the general solution has the form (15),
where

𝑎2+𝑏2 =̃𝛼𝛾2𝑎2−2𝛼̃𝛾𝑠𝑎+1, 𝛼̃=
𝜌1

(𝜌2−𝜌1)(1− 𝑑)
>0.

The singular solution of (21) has been found in
[Khusnutdinova and Zhang, 2016a] under the as-
sumption that the current is sufficiently weak. We
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Figure 9. Upper-layer current 𝑈(𝑧) = 𝛾(𝑧− 𝑑)1/4

for 𝑑 = 0.7 and 𝑈(1) = 0.0045 (top), and wave-
fronts of interfacial ring waves (bottom) for 𝜌1 =
1, 𝜌2 = 1.0001, 𝑑 = 0.7; 𝛾 = 0 (blue, solid) and
𝛾 = 0.0060804 (red, dashed).

now identify three regimes depending on the strength
of the current, and provide detailed analysis up to
the onset of the long-wave instability.
If 𝛾2 < 1

𝛼̃ (elliptic regime, the locus of parameters
𝑎 and 𝑏 is a circle) then the singular solution can
be written in the form

𝑘(𝜃) =

√︃
1− 𝛼̃(1− 𝛼̃𝑠2)𝛾2

cos2 𝜃 + (1− 𝛼̃𝛾2) sin2 𝜃
×

×
(︂
1− 𝛼̃𝛾2 sin2 𝜃

1− 𝛼̃𝛾2

)︂
− 𝛼̃𝛾𝑠

1− 𝛼̃𝛾2
cos 𝜃, (22)

where 𝜃 ∈ [−𝜋, 𝜋].

If 𝛾2 = 1
𝛼̃ (parabolic regime, the locus of parameters

𝑎 and 𝑏 is a parabola), then

𝑘(𝜃) =
1

2
√
𝛼̃𝑠 cos 𝜃

(cos2 𝜃 + 𝛼̃𝑠2 sin2 𝜃),(23)

where 𝜃 ∈
(︁
−𝜋

2
,
𝜋

2

)︁
.

Here, 𝑘(𝜃) → ∞ as 𝜃 → ±𝜋
2 leading to the presence

of a stationary point on the wavefront at the origin.
Finally, if

1

𝛼̃
< 𝛾2 < 𝛾2𝑐 =

1

𝛼̃(1− 𝛼̃𝑠2)

(hyperbolic regime, the locus of parameters 𝑎 and 𝑏
is a hyperbola), then the singular solution has two
branches (corresponding to the right and left parts
of the wavefront):

𝑘𝑟,𝑙(𝜃) =
𝛼̃𝛾𝑠

𝛼̃𝛾2−1

[︂
cos 𝜃 ∓

√
1−𝛼̃(1−𝛼̃𝑠2)𝛾2

𝛼̃𝛾𝑠 × (24)

×
√︀

cos2 𝜃 − (𝛼̃𝛾2 − 1) sin2 𝜃
]︁
,

where

𝜃 ∈ [− arctan
1√︀

𝛼̃𝛾2 − 1
, arctan

1√︀
𝛼̃𝛾2 − 1

].

It is now instructive to compare the singular so-
lutions (20) and (22) – (24), for 𝑈(𝑧) = 𝛾(𝑧−𝑑) and
𝑈(𝑧) = 𝛾, respectively. The solution (20) is real-
valued for all values of parameters of the problem,
while (22) - (24) is real-valued only for

𝛾2 < 𝛾2𝑐 =
1

𝛼̃(1− 𝛼̃𝑠2)
=

(𝜌2 − 𝜌1)[𝜌1𝑑+ 𝜌2(1− 𝑑)]

𝜌1𝜌2
.

This condition coincides with the rigid-lid version
of the criterion of long-wave instability for co- and
counter-propagating plane waves on that shear flow
[Ovsyannikov, 1979; Ovsyannikov, 1985] (see also
[Bontozoglou, 1991; Boonkasame and Milewski,
2014; Lannes and Ming, 2015] and references the-
rein).
The deformation of the wavefront of a ring wave

for the increasing strength of the current is shown
in Figure 10. As the strength of the current 𝛾 ap-
proaches the critical value 𝛾𝑐, the wavefront ap-
pears to be more and more squeezed, until the ring
collapses at the critical value. In the elliptic regime
a part of the wavefront propagates in the upstream
direction, in the parabolic regime the wavefront has
a stationary point at the origin, while in the hyper-
bolic regime all parts of the wavefront propagate in
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Figure 10. Wavefront of an interfacial ring wave
for 𝑈(𝑧) = 𝛾, and 𝜌1 = 1, 𝜌2 = 1.0001, 𝑑 = 0.7; 𝛾 =
0.0045 < 1√

𝛼̃
= 0.00547723 (red, dashed), 𝛾 = 1√

𝛼̃

(red, dotted), 1√
𝛼̃
< 𝛾 = 0.0099 < 𝛾𝑐 = 0.00999965

(red, dot-dashed).

the downstream direction, and for each value of 𝜃
in the interval

𝜃 ∈ [− arctan
1√︀

𝛼̃𝛾2 − 1
, arctan

1√︀
𝛼̃𝛾2 − 1

]

the singular solution has two branches.
Since the family of currents approaches the piece-

wise-constant current as 𝛼 → 0, we anticipate that
the squeezing of the wavefront of the ring wave will
persist for the values of 𝛼 smaller than a certain
threshold value. This observation invites studies
of the long-wave instability of the plane and ring
waves propagating on the background of such cur-
rents, but this is beyond the scope of our present
paper.

5. Conclusion

In this paper we considered long internal ring
waves in a two-layered fluid with a rather general
depth-dependent parallel upper-layer current in the
rigid-lid approximation. Our main aim was to ob-
tain an analytical solution of the nonlinear first-
order ordinary differential equation responsible for
the adjustment of the speed of the long interfacial
ring waves in different directions, which was key
to the subsequent analysis of the wave field. For
a large family of the upper-layer current profiles

described by the function

𝑈(𝑧) = 𝛾(𝑧 − 𝑑)𝛼,

where 𝑑 is the position of the interface, while 𝛾
and 𝛼 are some positive constant parameters, an
explicit analytical solution was obtained in terms
of the hypergeometric function. In many natural
cases the solution reduces to elementary functions,
and we considered examples with 𝛼 = 2, 1, 12 and
1
4 (in the latter case the corresponding formula in
terms of elementary functions is rather long, there-
fore we did not show it).
The constructed solution has allowed us to il-

lustrate the effects of such shear flows on the wave-
fronts and vertical structure of interfacial ring waves
with an emphasis on the effects of the density
jump and the type and the strength of the cur-
rent. For the same strength of the shear flow,
all flows had greater effect on internal waves for
smaller values of the density jump (i.e. slower in-
ternal waves). For the currents with 𝛼 = 1, 2, 12
with the same strength on the surface, the current
with 𝛼 = 1

2 convected the ring further downstream
than both other currents, while the current with
𝛼 = 2 had greater effect on the shape of the wave-
front than both other currents, with all currents
elongating the ring in the direction of the current.
The 𝛼 = 1

2 current and other currents with 𝛼 < 1
could be more representative of the river inflows
and exchange flows in straits, while the 𝛼 = 2 and
other currents with 𝛼 > 1 could be closer to the
wind-generated currents. While all currents had
the same strength on the surface, the variation of
their behaviour in the bulk of the layer had a pro-
foundly different effect on the propagation of the
ring waves. The vertical structure of the internal
wave field is strongly three-dimensional with the
greatest changes due to the current in both layers
being in the downstream direction.
We also showed that for the same surface strength,

the current with 𝛼 = 1
4 leads to the squeezing of

the wavefront of the ring wave in the direction of
the current, similarly to the previously reported be-
haviour for the ring waves on a piecewise-constant
current, which we now revisited and described in
detail up to the onset of the long-wave instabil-
ity. We conjecture that this behaviour in the sta-
ble regime is generally indicative of the presence of
the long-wave instability for sufficiently strong cur-
rents in our family with 𝛼 less than some threshold
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value (possibly, 𝛼 < 1
2) which we hope to address

in our future studies.
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