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 Abstract

We consider a two-layer fluid with a depth-dependent upper-layer current (e.g. a river inflow, an exchange flow in a strait, or a wind-generated current). In the rigid-lid approximation, we find the necessary singular solution of the nonlinear first-order ordinary differential equation responsible for the adjustment of the speed of the long interfacial ring wave in different directions in terms of the hypergeometric function. This allows us to obtain an analytical description of the wavefronts and vertical structure of the ring waves for a large family of the current profiles and to illustrate their dependence on the density jump and the type and the strength of the current. In the limiting case of a constant upper-layer current we obtain a 2D ring waves' analogue of the long-wave instability criterion for plane interfacial waves. On physical level, the presence of instability for a sufficiently strong current manifests itself already in the stable regime in the squeezing of the wavefront of the interfacial ring wave in the direction of the current. We show that similar phenomenon can also take place for other, depth-dependent currents in the family. 

 1. Introduction

Long-wave models of the Korteweg-de Vries (KdV) type have found numerous useful applications in the studies of the oceanic nonlinear surface and internal waves (see, for example, [Grimshaw, 1998; Helfrich and Melville, 2006; Grimshaw et al., 2007; Grimshaw et al., 2010] and references therein). Two-dimensional generalizations of these models developed in the context of fluids include versions of the Kadomtsev-Petviashvili (KP) equation for water waves in Cartesian [Ablowitz and Segur, 1979], cylindrical [Johnson, 1980], and elliptic-cylindrical [Khusnutdinova et al., 2013] geometries and internal waves, with a possible background shear flow, in Cartesian geometry (see [Grimshaw, 2015] and references therein), as well as cylindrical Korteweg-de Vries (cKdV)-type models for surface waves without shear flow [Miles, 1978; Johnson, 1980] and on a shear flow [Johnson, 1990] and internal waves without shear flow [Lipovskii, 1985] and on a shear flow [Khusnutdinova and Zhang, 2016a; Khusnutdinova and Zhang, 2016b]. The latter models are relevant to the description of the nearly annular internal waves generated in straits, river-sea interaction zones as well as waves scattered by localized topographic features (see [Vlasenko et al., 2009; Nash and Moum, 2005; Vlasenko et al., 2013; Khusnutdinova and Zhang, 2016a; and references therein). Some relevant initial-value problems have been considered in [Weidman and Zakhem, 1978; Ramirez et al., 2002; McMilan and Sutherland, 2010; Khusnutdinova and Zhang, 2016b; Grimshaw, 2019].

Several recent studies have predicted various effects of shear flows on two-dimensional surface ring and ship waves (see [Johnson, 1990; Ellingsen, 2014a; Ellingsen, 2014b; Khusnutdinova and Zhang, 2016a; Li and Ellingsen, 2019] and references therein) and some of these predictions have been recently confirmed in laboratory experiments [Smeltzer et al., 2019]. The study of the effects of a piecewise-constant shear flow on long surface and interfacial ring waves in a two-layer fluid has shown a striking difference in the shapes of the wavefronts of these waves: while the surface ring waves were elongated in the direction of the current, the interfacial ring waves were squeezed in that direction [Khusnutdinova and Zhang, 2016a]. Overall, the study of the effects of the shear flow on internal ring waves is in its infancy. It the present paper we aim to build a rather large family of current profiles amenable to theoretical analysis which could be used to approximate some currents present in natural settings, and to elucidate their effects on the long internal ring waves.

 2. Modal Equations for Ring Waves

In this section we overview the derivation of the far-field set of modal equations for long ring waves in a stratified fluid over a parallel depth-dependent shear flow derived and studied in [Khusnutdinova and Zhang, 2016a; Khusnutdinova and Zhang, 2016b]. A ring wave propagates in an inviscid incompressible fluid, described by the set of Euler equations:

 ρ(ut+uux+vuy+wuz)+px=0,
 ρ(vt+uvx+vvy+wvz)+py=0,
 ρ(wt+uwx+vwy+wwz)+pz+ρg=0,
 ρt+uρx+vρy+wρz=0,
 ux+vy+wz=0,
 subject to the free surface and rigid bottom boundary conditions:

 w=ht+uhx+vhyatz=h(x,y,t),
 p=paatz=h(x,y,t),
 w=0atz=0.
 Here,  u,v,w are the velocity components in  x,y,z directions respectively,  p is the pressure,  ρ is the density,  g is the gravitational acceleration,  z=h(x,y,t) is the free surface height ( z=0 at the bottom), and  pa is the constant atmospheric pressure at the surface. We assume that in the basic state  u0=u0(z),v0=w0=0,p0z=−ρ0g,h=h0. Here  u0(z) is a horizontal shear flow in the  x-direction, and  ρ0=ρ0(z) is a stable background density stratification. The vertical particle displacement  ζ is used as an additional dependent variable, which is defined by the equation 

 ζt+uζx+vζy+wζz=w,
 subject to the surface boundary condition 

 ζ=h−h0atz=h(x,y,t),
 where  h0 is the unperturbed fluid depth.

The problem is considered using the following non-dimensional set of variables:

 x→λx,y→λy,z→h0z,t→λc∗t,
 u→c∗u,v→c∗v,w→h0c∗λw,
 (ρ0,ρ)→ρ∗(ρ0,ρ),h→h0+aη,
 p→pa+∫zh0ρ∗ρ0(s)gds+ρ∗gh0p,
 where  λ is the wave length,  a is the wave amplitude,  c∗=gh0 is the long-wave speed of surface waves,  ρ∗ is the dimensional reference density of the fluid, while  ρ0(z) is the non-dimensional function describing stratification in the basic state, and  η=η(x,y,t) is the non-dimensional free surface perturbation. Non-dimensionalisation leads to the appearance of two small parameters in the problem, the amplitude parameter  ε=a/h0 and the wavelength parameter  δ=h0/λ. The maximal balance condition  δ2=ε has been imposed in [Khusnutdinova and Zhang, 2016a].

The problem is then solved in the moving cylindrical coordinate frame (moving at a constant speed  c: a natural choice is the speed of the shear flow at the bottom, as follows from the derivation). We consider deviations from the basic state and use the same notations  u and  v for the projections on the new coordinate axis, scaling the appropriate variables by the amplitude parameter  ε:

 x→ct+rcos⁡θ,y→rsin⁡θ,z→z,t→t,
 u→u0(z)+ε(ucos⁡θ−vsin⁡θ),
 v→ε(usin⁡θ+vcos⁡θ),
 w→εw,p→εp,ρ→ρ0+ερ.
The modal equations are obtained by looking for a solution of the problem in the form of asymptotic multiple-scales expansions of the form  ζ=ζ1+εζ2+…, and similar expansions for other variables, where

 ζ1=A(ξ,R,θ)ϕ(z,θ),
 with the appropriate set of fast and slow variables:

 ξ=rk(θ)−st,R=εrk(θ),θ=θ,
 where we define  s to be the wave speed in the absence of a shear flow (with  k(θ)=1). When a shear flow is present the function  k(θ) is responsible for the adjustment of the wave speed in a particular direction, and is to be determined. The formal range of asymptotic validity of the model is defined by the conditions  ξ∼R∼O(1). To leading order, the wavefront at any fixed moment of time  t is described by the equation  rk(θ)=constant, and for the sake of definiteness we consider outward propagating ring waves, requiring that the function  k=k(θ)>0.

To leading order, assuming that perturbations of the basic state are caused only by the propagating wave, the motion is described by the solution [Khusnutdinova and Zhang, 2016a]

 u1=−Aϕu0zcos⁡θ−kFk2+k′2Aϕz,
 v1=Aϕu0zsin⁡θ−k′Fk2+k′2Aϕz,
 w1=AξFϕ,
 p1=ρ0k2+k′2AF2ϕz,
 ρ1=−ρ0zAϕ,
 η1=Aϕatz=1,
 where the function  ϕ=ϕ(z,θ) satisfies the following set of modal equations: 

  

	
  (ρ0F2k2+k′2ϕz)z−ρ0zϕ=0,
	(1)	


  

	
  F2k2+k′2ϕz−ϕ=0atz=1,
	(2)	


  

	
  ϕ=0atz=0,
	(3)	


 and F=−s+(u0−c)(kcos⁡θ−k′sin⁡θ).
 The speed of the moving coordinate frame  c is fixed to be equal to the speed of the shear flow at the bottom,  c=u0(0). Then,  F=−s≠0 at  z=0, and the condition  Fϕ=0 at  z=0 which appears as a result of the derivation implies (3).

The amplitude function  A(ξ,R,θ) is then found by considering the equations at  O(ε). It satisfies a cylindrical Korteweg - de Vries (cKdV)-type equation [Khusnutdinova and Zhang, 2016a] 

 μ1AR+μ2AAξ+μ3Aξξξ+μ4AR+μ5AθR=0,
 where the coefficients  μi,i=1,5¯ are given in terms of solutions of the modal equations (1) - (3) by the following formulae:

 μ1=2s∫01ρ0Fϕz2dz,
 μ2=−3∫01ρ0F2ϕz3dz,
 μ3=−(k2+k′2)∫01ρ0F2ϕ2dz,
 μ4=−∫01{ρ0ϕz2k(k+k")(k2+k′2)2((k2−3k′2)F2−4k′(k2+k′2)(u0−c)sin⁡θF
 −sin2⁡θ(u0−c)2(k2+k′2)2)+2ρ0kk2+k′2Fϕzϕzθ(k′F+(k2+k′2)(u0−c)sin⁡θ)}dz,
 μ5=−2kk2+k′2∫01ρ0Fϕz2[k′F+(u0−c)(k2+k′2)sin⁡θ]dz.
In this paper we are concerned with the analysis of the modal equations for a two-layer fluid with the upper-layer current in the rigid-lid approximation, which will allow us to describe, to leading order, the wavefronts and vertical structure of the long interfacial ring waves. Our primary goal is to analyse the sensitivity of the shape of the wavefront to the variability of the background shear flow in the bulk of the fluid layer, but we will also illustrate the 3D modal functions and discuss the onset of the long-wave instability in the limiting case of a piecewise-constant current. In what follows, the free surface condition (2) is eventually replaced with the rigid-lid approximation 

 ϕ=0atz=1.


 3. Two-layer Fluid with an Upper-Layer Current

	[image: Fig 1]
	Figure 1

  We consider a two-layer fluid (see Figure 1. The density in the upper layer is  ρ1, and the density in the lower payer is  ρ2. The flow in the lower layer is assumed to have constant speed, and then without any loss of generality we can assume that this speed is equal to zero. The upper-layer flow is described by the function  U(z). Thus, 

 u0={U(z),ifd≤z≤1,0,if0≤z<d.
 We will assume the continuity of  u0 at  z=d, i.e.  U(d)=0. This is a generalisation of the case studied in [Johnson, 1990; 1997] for surface waves in a homogeneous fluid, it is a possible model for a river inflow, an exchange flow in a strait, or a wind-generated current, for example.

The continuous solution of the modal equations (1)–(3) is given (in respective layers) by 

  

	
  ϕ1=A(k2+k′2)ρ1(1−∫z1dzF12),
	(4)	


  

	
  ϕ2=Aρ1d[1−(k2+k′2)∫d1dzF12]z,
	(5)	


 where  F1=−s+U(z)(kcos⁡θ−k′sin⁡θ) and  A is an arbitrary constant. The derivative of this solution is discontinuous at  z=d and must satisfy the jump condition:

  

	
  F(d)2k2+k′2[ρ0ϕ]−[ρ0]ϕ(d)=0,
	(6)	


 where  F(d)=−s, yielding the following nonlinear first-order ordinary differential equation for the function  k(θ):

(7) (ρ1ρ2−1)(∫d1dzF12)(k2+k′2)2+(1+s2d∫d1dzF12)(k2+k′2)−s2d=0.
If there is no current, i.e.  U(z)=0, then  F1=−s,k=1,k′=0, and the equation (7) reduces to an algebraic equation for the speed  s:

 s4−s2−ρ1−ρ2ρ2d(1−d)=0,
 implying

  

	
  s1,22=1±1+4ρ1−ρ2ρ2d(1−d)2,
	(8)	


 giving us the speed of the surface and interfacial ring waves in the absence of any current.

In the rigid-lid approximation, the solution (4), (5) is replaced with

  

	
  ϕ1=−A(k2+k′2)ρ1∫z1dzF12,
	(9)	


  

	
  ϕ2=−A(k2+k′2)zρ1d∫d1dzF12,
	(10)	


 where  A is an arbitrary constant, while the jump condition (6) yields

  

	
  k2+k′2=ρ1d+ρ2s2∫d1dzF12(ρ2−ρ1)d∫d1dzF12.
	(11)	


 When  U(z)=0, this equation gives

  

	
  s2=(ρ2−ρ1)d(1−d)ρ1d+ρ2(1−d),
	(12)	


 the speed of the interfacial ring wave in the absence of the background current, and in the rigid-lid approximation. The equation (11) and the speed (12) can be formally obtained from (7) and (8) as an approximation when  ρ2−ρ1≪ρ1,ρ2.

 4. Wavefronts and Vertical Structure

Let us now consider the family of the upper-layer current profiles described by the function

  

	
  U(z)=γ(z−d)α,
	(13)	
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  where  γ and  α are some positive constants. In particular, the upper-layer current is shown in Figure 2 for  α=1,  α=12 and  α=2 for  d=0.7 and  γ=0.015 when  α=1,  γ=0.00821584 when  α=12,  γ=0.05 when  α=2 (all currents have the same strength  U(z)=0.0045 on the surface  z=1).

The equation (11) takes the form

  

	
  k2+k′2=ρ1d+ρ2s2I[K(θ)](ρ2−ρ1)dI[K(θ)],
	(14)	


 where 

 I[K(θ)]=∫d1dzF12=1−ds22F1(2,1α,1+1α,
 γK(θ)s(1−d)α),
 and  K(θ)=k(θ)cos⁡θ−k′(θ)sin⁡θ. Here, the function  I[K(θ)] is given in terms of the hypergeometric function  2F1.

The general solution of the equation (14) has the form

  

	
  k(θ)=acos⁡θ+b(a)sin⁡θ,
	(15)	


 where

  

	
  b2=−a2+ρ1d+ρ2s2I(a)(ρ2−ρ1)dI(a)
	(16)	


 and

 I(a)=∫d1dz[s−γa(z−d)α]2=1−ds22F1(2,1α,1+1α,γas(1−d)α).
The far-field wavefronts of the ring waves at a fixed moment of time are described by the curves

 H(r,θ,t)=rk(θ)−st=constant,
 where  k(θ) is the singular solution of the equation (11) (i.e. the envelope of the general solution found by requiring  dkda=0). In what follows all wavefronts are plotted for  rk(θ)=50 ( R∼1,ε∼0.02).

In this general setting we assume that the current is sufficiently weak, so that there exists a part of the wavefront which is able to propagate in the upstream direction, and therefore  θ∈[−π,π], but we will also discuss other possible regimes for the limiting case of a constant upper-layer current. It is sufficient to define the solution for  θ∈[0,π] because of the symmetry of the problem. For the family of currents described by (13), the singular solution can be found explicitly in parametric form

  

	
  k(a)=acos⁡θ(a)+b(a)sin⁡θ(a),
	(17)	


  

	
  b=ρ1d+ρ2s2I(a)(ρ2−ρ1)dI(a)−a2,
	(18)	


 θ(a)={arctan⁡2b(ρ2−ρ1)dI2(a)2a(ρ2−ρ1)dI2(a)+(1−ρ2s2I(a))I′(a)ifa∈[a0,amax](θ∈[0,π2]),
  

	
  
	(19)	


 arctan⁡2b(ρ2−ρ1)dI2(a)2a(ρ2−ρ1)dI2(a)+(1−ρ2s2I(a))I′(a)+πifa∈[amin,a0](θ∈[π2,π]);}
 where 

 I′(a)=1−dαas2[1[1−γas(1−d)α]2−2F1(2,1α,1+1α,γas(1−d)α)].
 Here, the parameter  a takes values in the interval  [amin,amax] which is found by requiring  b2≥0 in (16). We consider the outward propagating ring waves, and therefore require  k(θ)>0 for all  θ. Then, the interval must contain  a=0 since  a should take both positive and negative values to allow  k(θ) to be positive at both  θ=0 and  θ=π. The value  a0∈[amin,amax] is found from the condition 

 db(a)da=−1tan⁡θ=0.
 When  γ=0,  I(a)=1−ds2>0 yielding  a∈[−1,1] and  a0=0. By continuity, the real solution will continue to exist at least for a sufficiently small  γ, while the flow might become unstable for some stronger currents [Khusnutdinova and Zhang, 2016a].

It is worth noting that in many natural cases the hypergeometric function featured in the solution reduces to elementary functions. In particular, for  α=1 (i.e.  U(z)=γ(z−d)), we have 

 2F1(2,1,2,γas(1−d))=11−γas(1−d),
 for  α=12 (i.e.  U(z)=γz−d),

 2F1(2,2,3,γas1−d)=21−d××[1−dγas(1−γas1−d+1γ2a2ln⁡(1−γas1−d],
 and for  α=2 (i.e.  U(z)=γ(z−d)2),

 2F1(2,12,32,γas(1−d)2)=12(1−γas(1−d)2)+12γas(1−d)arctan⁡[γas(1−d)].
 In the first case, for  U(z)=γ(z−d), the singular solution can be rewritten in the form  k=k(θ) as follows

  

	
  k(θ)=1+[ρ1γs2(ρ2−ρ1)]2−ρ1γs2(ρ2−ρ1)cos⁡θ,
	(20)	


 whereθ∈[−π,π].
 This solution has been used to test the Mathematica code for the general solution (17) – (19). The code was then used to plot other figures of the wavefronts of the ring waves shown below.

Following {Johnson, 1990}, we note that the local wave speed in the normal direction to the wavefront,  ∇H|∇H| is given by

 −Ht|∇H|=sk2+k′2.
 Therefore, to avoid the appearance of critical layers we require that 

 sk2+k′2≠U(z)cos⁡(θ+α),
 where  α is the angle between the radial direction and the normal to the wavefront, and  cos⁡α=kk2+k′2. This condition is equivalent to 

 F1=−s+U(z)(kcos⁡θ−k′sin⁡θ)≠0
 for  d≤z≤1 since  F2=−s≠0. Following [Khusnutdinova and Zhang, 2016a], we can obtain a simple sufficient condition for the absence of critical layers.

 

Indeed, 

 F1θ=−γ(z−d)α(k+k")sin⁡θ,
 where we assume that  γ>0,α>0,d≤z≤1 and  k+k">0 on the selected singular solution (outward propagating wave). Then,  F1 has a maximum at  θ=0, and we require that 

 F1≤F1|θ=0=−s+γ(z−d)αk(0)<0,
 implying 

 γ(z−d)α<sk(0),
 which we replace with a stronger condition 

 γ(z−d)α≤γ(1−d)α<s<sk(0).
 Thus, in order to avoid the appearance of critical layers, in what follows we impose this constraints on  γ for the examples of the shear flow.
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  In Figure 3 we show the wavefronts of the interfacial ring waves on the linear current 

 U(z)=γ(z−d).
 The plots on the left are obtained for  ρ1=1,ρ2=1.0001, while the plots on the right are for a greater density jump,  ρ1=1,ρ2=1.001, with  d=0.7 in all plots. The parameter  γ takes two values  γ1=0 (blue, solid) and  γ2=0.015 (red, dashed). For the same strength of the shear flow, the wavefronts appear to be convected by the flow and slightly elongated in the direction of the flow, which is more noticeable in the plots on the top, i.e. for the smaller density jump (and therefore slower interfacial waves; indeed,  s1=0.00458251 and  s2=0.0144892).
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  In Figure 4 we show the wavefronts of the interfacial ring waves on the current 

 U(z)=γz−d.
 Here again the plots on the top are obtained for  ρ1=1,ρ2=1.0001, while the plots on the bottom are for  ρ1=1,ρ2=1.001, with  d=0.7 in all plots. The parameter  γ takes the values  γ1=0 (blue, solid) and  γ2=0.00821584 (red, dashed). Thus, the first value is the same as before, while the second value is decreased in order to have the same strength of the current  U(z)=0.0045 on the surface  z=1. The wavefronts appear to be mainly convected in the downstream direction which is again much more pronounced in the plots on the top, i.e. for the smaller density jump.
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  In Figure 5 we show the wavefronts of the interfacial ring waves on the current 

 U(z)=γ(z−d)2.
The plots on the top are obtained for  ρ1=1,ρ2=1.0001, while the plots on the bottom are for  ρ1=1,ρ2=1.001, with  d=0.7 in all plots. The parameter  γ takes the values  γ1=0 (blue, solid) and  γ2=0.05 (red, dashed). Thus, the first value is the same as before, while the second value is increased in order to have the same strength of the current  U(z)=0.0045 on the surface  z=1. The wavefronts appear to be mainly elongated in the downstream direction which is again much more pronounced in the plots on the top, i.e. for the smaller density jump.
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  In Figure 6 we compare the wavefronts of the interfacial ring waves on the currents 

 U(z)=γ(z−d)αwhereα=12,1,2
 for the same set of parameters. Here,  ρ1=1,ρ2=1.0001,d=0.7 and  γ=0 (blue, solid),  γ=0.05 for  α=2 (red, dotted),  γ=0.015 for  α=1 (red, dashed) and  γ=0.00821584 for  α=12 (red, dot-dashed). All currents have the same strength  U(z)=0.0045 on the surface  z=1. It appears that the current with  α=12 convects the ring further downstream than the currents with  α=1 and  α=2, while the current with  α=2 has a stronger effect on the shape of the wavefront elongating it in the direction of the shear flow.
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  It is also instructive to analyze the 3D vertical structure of the internal wave field by illustrating the dependence of the modal functions in the upper and lower layers on  θ and  z. The plots in Figure 7 and Figure 8 show the upper- and lower-layer modal functions  ϕ1 and  ϕ2, respectively, for the linear current  U(z)=γ(z−d). The modal functions are given by the formulae (9), (10), and they have been normalized to be equal to 1 at  θ=π2 (orthogonal direction to the current, where the velocity field in the fluid is least affected by the current) and  z=d (i.e. on the interface). Here,  ρ1=1,ρ2=1.0001,d=0.7 and  γ=0 (blue, solid) or  γ=0.015 (red, dashed). The upper-layer modal function  ϕ1(z,θ) is shown in Figure 7 for three fixed values of  θ:  θ=0 (downstream direction),  θ=π2 (orthogonal direction to the current) and  θ=π (upstream direction). The lower-layer modal function  ϕ2(z,θ) is shown in Figure 8 for the same values of  θ. It is evident that the vertical structure strongly depends on the direction. For  γ=0.015, the greatest changes are in the downstream direction, compared to the case when there is no background shear flow, but there is also considerable variation in the upstream direction. The variation in the direction orthogonal to the current is less significant in the upper layer, and negligible in the lower layer. The upper-layer vertical structure in the downstream direction develops a sharp gradient near the interface.
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  Finally, we note that for the same surface strength  U(1)=0.0045 there exist currents in this family which appear to have wavefronts squeezed in the direction of the shear flow, in contrast to the behaviour illustrated in previous plots. Indeed, this happens, for example, for  α=1/4 and  γ=0.0060804 (where we continue to choose  α in the form of positive and negative powers of 2). The vertical profile of the current, and the corresponding deformation of the wavefront of the ring wave compared to the case when there is no shear flow are shown in Figure 9. This behaviour is similar to the squeezing which was previously reported for internal ring waves propagating in a two-layer fluid with the piecewise-constant shear flow [Khusnutdinova and Zhang, 2016a], where it was linked to the presence of the long-wave instability for plane waves tangent to the ring at  θ=0 and  θ=π for a sufficiently strong current [Ovsyannikov, 1979; Ovsyannikov, 1985].

Indeed, the upper-layer current  U(z)=γ(z−d)α tends to  U(z)=γ as  α→0. In this limit, the equation (11) takes the form

  

	
  k2+k′2=ρ1d[−s+γ(kcos⁡θ−k′sin⁡θ)]2+ρ2(1−d)s2(ρ2−ρ1)d(1−d)
	(21)	


 and coincides with the equation obtained in [Khusnutdinova and Zhang, 2016a] for the case of a two-layer fluid with the constant current  U1 in the upper layer, and another constant current  U2 in the lower layer if we let  U1−U2=γ. Here,  s2 is given by (11), and the general solution has the form (15), where

 a2+b2=α~γ2a2−2α~γsa+1,α~=ρ1(ρ2−ρ1)(1−d)>0.
 The singular solution of (21) has been found in [Khusnutdinova and Zhang, 2016a] under the assumption that the current is sufficiently weak. We now identify three regimes depending on the strength of the current, and provide detailed analysis up to the onset of the long-wave instability.

If  γ2<1α~ (elliptic regime, the locus of parameters  a and  b is a circle) then the singular solution can be written in the form

 k(θ)=1−α~(1−α~s2)γ2cos2⁡θ+(1−α~γ2)sin2⁡θ×
  

	
  ×(1−α~γ2sin2⁡θ1−α~γ2)−α~γs1−α~γ2cos⁡θ,
	(22)	


 whereθ∈[−π,π].
 If  γ2=1α~ (parabolic regime, the locus of parameters  a and  b is a parabola), then

  

	
  k(θ)=12α~scos⁡θ(cos2⁡θ+α~s2sin2⁡θ),
	(23)	


 whereθ∈(−π2,π2).
 Here,  k(θ)→∞ as  θ→±π2 leading to the presence of a stationary point on the wavefront at the origin. Finally, if

 1α~<γ2<γc2=1α~(1−α~s2)
 (hyperbolic regime, the locus of parameters  a and  b is a hyperbola), then the singular solution has two branches (corresponding to the right and left parts of the wavefront):

  

	
  kr,l(θ)=α~γsα~γ2−1[cos⁡θ∓1−α~(1−α~s2)γ2α~γs×
	(24)	


 ×cos2⁡θ−(α~γ2−1)sin2⁡θ],
 where  θ∈[−arctan1α~γ2−1,arctan1α~γ2−1].

It is now instructive to compare the singular solutions (20) and (22) – (24), for  U(z)=γ(z−d) and  U(z)=γ, respectively. The solution (20) is real-valued for all values of parameters of the problem, while (22) - (24) is real-valued only for

 γ2<γc2=1α~(1−α~s2)=(ρ2−ρ1)[ρ1d+ρ2(1−d)]ρ1ρ2.
 This condition coincides with the rigid-lid version of the criterion of long-wave instability for co- and counter-propagating plane waves on that shear flow [Ovsyannikov, 1979; Ovsyannikov, 1985] (see also [Bontozoglou, 1991; Boonkasame and Milewski, 2014; Lannes and Ming, 2015] and references therein).
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  The deformation of the wavefront of a ring wave for the increasing strength of the current is shown in Figure 10. As the strength of the current  γ approaches the critical value  γc, the wavefront appears to be more and more squeezed, until the ring collapses at the critical value. In the elliptic regime a part of the wavefront propagates in the upstream direction, in the parabolic regime the wavefront has a stationary point at the origin, while in the hyperbolic regime all parts of the wavefront propagate in the downstream direction, and for each value of  θ in the interval

 

 θ∈[−arctan1α~γ2−1,arctan1α~γ2−1]
 the singular solution has two branches.

Since the family of currents approaches the piecewise-constant current as  α→0, we anticipate that the squeezing of the wavefront of the ring wave will persist for the values of  α smaller than a certain threshold value. This observation invites studies of the long-wave instability of the plane and ring waves propagating on the background of such currents, but this is beyond the scope of our present paper.

 5. Conclusion

In this paper we considered long internal ring waves in a two-layered fluid with a rather general depth-dependent parallel upper-layer current in the rigid-lid approximation. Our main aim was to obtain an analytical solution of the nonlinear first-order ordinary differential equation responsible for the adjustment of the speed of the long interfacial ring waves in different directions, which was key to the subsequent analysis of the wave field. For a large family of the upper-layer current profiles described by the function 

 U(z)=γ(z−d)α,
 where  d is the position of the interface, while  γ and  α are some positive constant parameters, an explicit analytical solution was obtained in terms of the hypergeometric function. In many natural cases the solution reduces to elementary functions, and we considered examples with  α=2,1,12 and  14 (in the latter case the corresponding formula in terms of elementary functions is rather long, therefore we did not show it).

The constructed solution has allowed us to illustrate the effects of such shear flows on the wavefronts and vertical structure of interfacial ring waves with an emphasis on the effects of the density jump and the type and the strength of the current. For the same strength of the shear flow, all flows had greater effect on internal waves for smaller values of the density jump (i.e. slower internal waves). For the currents with  α=1,2,12 with the same strength on the surface, the current with  α=12 convected the ring further downstream than both other currents, while the current with  α=2 had greater effect on the shape of the wavefront than both other currents, with all currents elongating the ring in the direction of the current. The  α=12 current and other currents with  α<1 could be more representative of the river inflows and exchange flows in straits, while the  α=2 and other currents with  α>1 could be closer to the wind-generated currents. While all currents had the same strength on the surface, the variation of their behaviour in the bulk of the layer had a profoundly different effect on the propagation of the ring waves. The vertical structure of the internal wave field is strongly three-dimensional with the greatest changes due to the current in both layers being in the downstream direction.

We also showed that for the same surface strength, the current with  α=14 leads to the squeezing of the wavefront of the ring wave in the direction of the current, similarly to the previously reported behaviour for the ring waves on a piecewise-constant current, which we now revisited and described in detail up to the onset of the long-wave instability. We conjecture that this behaviour in the stable regime is generally indicative of the presence of the long-wave instability for sufficiently strong currents in our family with  α less than some threshold value (possibly,  α<12) which we hope to address in our future studies.
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Figure 1. Schematic of the problem formulation.
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Figure 2. Upper-layer currents  U(z)=γ(z−d) (blue, solid),  U(z)=γ(z−d)2 (red, dotted) and  U(z)=γz−d (red, dot-dashed) for  d=0.7 and  U(1)=0.0045.
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Figure 3. Wavefronts of interfacial ring waves for  U(z)=γ(z−d);  ρ1=1,ρ2=1.0001 (top) and  ρ2=1.001 (bottom);  d=0.7;γ=0 (blue, solid),  γ=0.015 (red, dashed).
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Figure 4. Wavefronts of interfacial ring waves for  U(z)=γz−d;  ρ1=1,ρ2=1.0001 (top) and  ρ2=1.001 (bottom);  d=0.7;γ=0 (blue, solid),  γ=0.00821584 (red, dashed).
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Figure 5. Wavefronts of interfacial ring waves for  U(z)=γ(z−d)2;  ρ1=1,ρ2=1.0001 (top) and  ρ2=1.001 (bottom);  d=0.7;γ=0 (blue, solid),  γ=0.05 (red, dashed).
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Figure 6. Wavefronts of interfacial ring waves for  ρ1=1,ρ2=1.0001,d=0.7;  γ=0 (blue, solid),  γ=0.05 for  α=2 (red, dotted),  γ=0.015 for  α=1 (red, dashed), and  γ=0.00821584 for  α=12 (red, dot-dashed). For all three currents  U(1)=0.0045.
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Figure 7. Upper-layer modal function  ϕ1 of interfacial ring waves for  θ=0 (top),  θ=π2 (middle) and  θ=π (bottom). Here,  ρ1=1,ρ2=1.0001,d=0.7;  U(z)=γ(z−d) with  γ=0 (blue, solid) and  γ=0.015 (red, dashed). 
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Figure 8. Lower-layer modal function  ϕ2 of interfacial ring waves for  θ=0 (top),  θ=π2 (middle) and  θ=π (bottom). Here,  ρ1=1,ρ2=1.0001,d=0.7;  U(z)=γ(z−d) with  γ=0 (blue, solid) and  γ=0.015 (red, dashed). 
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Figure 9. Upper-layer current  U(z)=γ(z−d)1/4 for  d=0.7 and  U(1)=0.0045 (top), and wavefronts of interfacial ring waves (bottom) for  ρ1=1,ρ2=1.0001,d=0.7;  γ=0 (blue, solid) and  γ=0.0060804 (red, dashed). 
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Figure 10. Wavefront of an interfacial ring wave for  U(z)=γ, and  ρ1=1,ρ2=1.0001,d=0.7;  γ=0.0045<1α~=0.00547723 (red, dashed),  γ=1α~ (red, dotted),  1α~<γ=0.0099<γc=0.00999965 (red, dot-dashed). 





[image: RJES]        [image: Powered by MathJax]


 
Citation: Khusnutdinova Karima (2020), Long internal ring waves in a two-layer fluid with an upper-layer current, Russ. J. Earth Sci., 20, ES4006, doi:10.2205/2020ES000734.
 

Copyright 2020 by the Geophysical Center RAS.


Generated from LaTeX source by ELXfinal, v.2.0 software package.



RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 20, ES4006, doi:10.2205/2020ES000734, 2020


Figures    [Click on image to zoom]


	


Figure 1

	


Figure 2

	


Figure 3

	


Figure 4

	


Figure 5



	


	


Figure 6

	


Figure 7

	


Figure 8

	


Figure 9

	


Figure 10



	








[image: RJES]        [image: Powered by MathJax]


 
Citation: Khusnutdinova Karima (2020), Long internal ring waves in a two-layer fluid with an upper-layer current, Russ. J. Earth Sci., 20, ES4006, doi:10.2205/2020ES000734.
 

Copyright 2020 by the Geophysical Center RAS.


Generated from LaTeX source by ELXfinal, v.2.0 software package.
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 20, ES4006, doi:10.2205/2020ES000734, 2020


Contents

Long internal ring waves in a two-layer fluid with an upper-layer current

	Abstract

	1. Introduction

	2. Modal Equations for Ring Waves

	3. Two-layer Fluid with an Upper-Layer Current

	4. Wavefronts and Vertical Structure

	5. Conclusion

	Acknowledgments

	References



Figures




[image: RJES]        [image: Powered by MathJax]


 
Citation: Khusnutdinova Karima (2020), Long internal ring waves in a two-layer fluid with an upper-layer current, Russ. J. Earth Sci., 20, ES4006, doi:10.2205/2020ES000734.
 

Copyright 2020 by the Geophysical Center RAS.


Generated from LaTeX source by ELXfinal, v.2.0 software package.OPS/TOC734.xhtml




Contents



		Abstract



		1. Introduction



		2. Modal Equations for Ring Waves



		3. Two-layer Fluid with an Upper-Layer Current



		4. Wavefronts and Vertical Structure



		5. Conclusion



		Acknowledgments



		Figures

		Article Map









OPS/images/2020es000734-th06.png





OPS/images/2020es000734-th07.png





OPS/images/2020es000734-th10.png
‘V)'





OPS/images/2020es000734-th08.png





OPS/images/2020es000734-th09.png





OPS/images/2020es000734-o02.png
1.00f
0.95f
0.90f
0.85f
0.80f
0.75f

-

-
2= L

0.001

0.002

0.003

0.004





OPS/images/rjesCitationLogo.jpg





OPS/images/2020es000734-o03.png





OPS/images/title734.jpg
ISSN 1681-1208 .

Russian Journal of
Earth Sciences

EPUB Companion to Published Articles
doi:10.2205,/2020ES000734

Published byAGEophVSIcalfCenter RAS
Moscow 2020






OPS/images/2020ES000707.tex
\documentclass[twoside]{article}

\usepackage[silent,pdf,hyper]{elxfinal}

\usepackage{color}

\usepackage{hyperref}

\journalid{ES}{20}{2}{20}

\citnumber{}{3}

\paperid{2020ES000707}

\papertype{RAR}

\cpright{}{2020}

\lefthead{krivoguz}

\righthead{physiography zoning using machine learning}

\received{19}{February}{2020}

\accepted{13}{March}{2020}

\published{22}{March}{2020}

\definecolor{brown}{RGB}{157,23,4}



\authaddr{Denis Krivoguz,

``Fisheries Oceanography'' Research Institute of the Azov Sea Fishery Problems (AzNIIRKH),  Kerch,

Russian Federation.



\noindent (krivoguzdenis@gmail.com)}



\begin{document}



\title{Methodology of physiography zoning using machine learning: A case study of the Black Sea}



\author{1}{Krivoguz}{Denis}{}{1}{}{}





\affil{1}{``Fisheries Oceanography'' department, Research Institute of the Azov Sea Fishery Problems (AzNIIRKH)}{Kerch}{}{Russia}



\keywd{Spatial zoning}

\keywd{Machine learning}

\keywd{$k$-means clustering}

\keywd{Black Sea}

\keywd{Physiography zoning, GIS, clustering methodology}





\abstract{Problem of area's zoning is very important and is one of the main problems of modern geographical science. Our point is to from a modern approach, based on the machine learning methods to provide zoning of any area. Key ideas of this methodology, that any distribution of factors that form any geographical system grouped around some clusters -- unique zones that represents specific nature conditions. Formed methodology based on several stages -- selection of data and objects for analysis, data normalization, assessment of predisposition of data for clustering, choosing the optimal number of clusters, clustering and validation of results. As an example, we tried to zone a surface layer of the Black Sea. We find that optimal number of unique zones is~3. Also, we find that the key driver of zone forming is a location of the rivers. Thus, we can say, that applying a machine learning approach in area's zoning tasks helps us increasing the quality of nature using and decision-making processes.}



\section{1. Introduction}



The problem of zoning has always been and will be the main problem of geographical science. In this context, region or zone is the main territorial system, which is always part of larger regional units. Based on this, zoning is the process of identifying and studying the objectively existing territorial structure, organization, and hierarchical subordination of physical and geographical complexes.

Zoning of any area includes several important goals

 [\itc{Vinokurov et al.,} \reflink{Vinokurov05}{2005};

\itc{Zaika} \reflink{Zaika14}{2014}]:



\begin{enumerate}

\item

Finding an existing physiography complexes;

\item

	mapping of physiography maps;

\item

	deep understanding of the complex composition;

\item

	research of processes and factors, that are forming complexes;

\item

	complex classification;

\item

Finding of any interactions between factors or complexes;

\item

	developing of physiography zoning methods.

\end{enumerate}



Thus, the main goal of this paper was to form a modern mathematical methodology, based on machine learning methods to provide zoning of any area.



In the last years problem of area's zoning and its methodology was tried to solve by several authors.



For example % G. N. Skrebets and S. M. Pavlova

\itc{Skrebets and Pavlova} [\reflink{Skrebets19}{2019}]

conducted a physical and geographical zoning of the Black Sea using correlation analysis. They used a mapping based on relationship between phytoplankton and natural factors, that limiting its distribution. Using this approach, they identified 5 regions that differ from each other in quantitative way, as well as in combination of relationships.



From a biological point of view, this problem was considered by

%V.~E.~Zaika

\itc{Zaika} [\reflink{Zaika14}{2014}].

He carried out biological zonation of the Black Sea and also described the main problems of its implementation. The principle of distinguishing different regions was based on quantitative analysis of the dominant species in different regions of the Black Sea.



The widespread use of physiographic zonation received in landscape ecology. %Yu.~I.~Vinokurov, Yu.~M.~Tsimbaleya and B.~A.~Krasnoyarova

\itc{Vinokurov et al.} [\reflink{Vinokurov05}{2005}]

proposed a methodology and implemented the physical and geographical zoning of Siberia. Based on various natural features, they identified more than 100 different regions with unique physical and geographical conditions.



%A. Tamaychuk

\itc{Tamaychuk} [\reflink{Tamaychuk17}{2017}]

in his paper tried analytical approach to zoning Black Sea area, based on main factors of spatial differentiation, distribution features of environmentally significant characteristics and modern ideas about the theory and methods of physiographic zoning. He divided area of the Black Sea into 3 water-provinces -- North-West moderate, North-East moderate and subtropical.



Mathematical approach was shown in %E. Sovga

\itc{Sovga et al.} [\reflink{Sovga05}{2005}]

work. They used depth, mean values of temperature and salinity, differences and features in flora and fauna as a factor. They divided area of the North-West part of the Black Sea into 4 groups -- West, Karkinitsky, Central and Kalamitsky.



V. Agostini

[\itc{Agostini et al.,} \reflink{Agostini15}{2015}]

in her paper tried to make a zoning of marine environment in St.~Kitts and Nevis. For her analysis, she used 37 spatial layers, that represent different factors and fully described functionality of the research area, that was divided into 3 major groups -- ``habitat'', ``species'' and ``human use''. As the result, she distinguished 4 major zones -- ``conservation'', ``transportation'', ``touristic'' and ``fishing''.



\itc{Petrov and Bobkov} [\reflink{Petrov17}{2017}]

tried to form the concept of hierarchical structure of large marine ecosystems in the Arctic shelf of Russia. Based on environmental variables, they distinguished 7 eco-regions of the Barents Sea -- South-Western, Pechora Sea, Central basin south, Central basin north, Novaya Zemlya shore, Svalbard Archipelago and Franz Josef Land Archipelago.



%Fyhr F., Nilsson A. and Sandman N. [

\itc{Fyhr et al.} [\reflink{Fyhr13}{2013}]

tried to review all of the modern concepts and tools for Ocean zoning. Based on their work, the most actual and commonly used tools are Atlantis, Cumulative Impacts Assessment Tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Marine Protected Areas Decision Support Tool (Marine Map), Marxan and Marxan with Zones, NatureServe Vista and Zonation.





\section{2. Clustering as Physiographic Zoning Method}



\enlargethispage{-1pc}



Clustering is a task of dividing the entire dataset into separate groups of homogenous objects, that are similar to each other, but have distinct difference between this separate groups

[\itc{Aleshin and Malygin,} \reflink{Aleshin19}{2019}].

Clustering algorithms are divided in two groups -- hierarchical and iterative.



I. Hierarchical -- consistently build clusters from already found clusters.

\begin{enumerate}

\item

Agglomerative (unifying) -- start with individual elements, and then combine them;

\item

separation -- start with one cluster, and then -- divide them;

\end{enumerate}



 II. Non-hierarchical -- optimize a certain objective function.

\begin{enumerate}

\item

Graph theory algorithms;

\item

EM algorithm;

\item

 $K$-means algorithm ($k$-means clustering);

\item

fuzzy algorithms.

\end{enumerate}



Any clustering algorithm can be considered effective if the compactness hypothesis is satisfied

[\itc{Shi and Horvath,} \reflink{Shi06}{2006}].



Physiographic zoning using clustering method is carried out in several stages:

\begin{enumerate}

\item

Selection of data and objects for analysis;

\item

data normalization;

\item

assessment of predisposition of data for clustering;

\item

choosing the optimal number of clusters;

\item

clustering and validation of results.

\end{enumerate}



Formally, almost all clustering tasks come down to this form. Let  $X$ be the set of objects, $Y$ is the set of numbers (names, labels) of clusters. The distance function between objects is specified as

$\rho(x,x\prime)$

[\itc{Collins et al.,} \reflink{Collins02}{2002}].

There is a finite training set of objects $X^m={x_1,...,x_n}\in X$. So, the main goal of clustering is to divide dataset into several disjoint subsets. These subsets called clusters and consist from objects, that are closed to the

$\rho$-metric. Objects from different clusters were significantly different. For every object $x_i\in X^m$ assigned the number of cluster $y_i$

[\itc{Marron et al.,} \reflink{Marron14}{2014}].



\subsection{2.1. Data Normalization}



Data normalization is one of the feature transformation operations that is performed during their generation at the data preparation stage. In case of machine learning, normalization is a procedure for preprocessing input information (training, test and validation samples, as well as real data), in which the values of the attributes in the input vector are reduced to a certain specified range of values, for example: $[0...1]$ or $[-1...1]$.



The importance of data normalization comes from the nature of algorithms and models in machine learning. The values of raw data can vary in a very wide range and differ from each other by several orders

[\itc{Rybkina et al.,} \reflink{Rybkina18}{2018}].

The work of such machine learning models like neural networks or Kohonen self-organizing maps with not normalized data will be incorrect -- difference between attribute's values can cause instability of the model, that will lead to worth learning results and slowing the modelling process. Also, some parametric machine learning models require symmetric and unimodal data distribution. After normalization, all the numerical values of the input attributes will be reduced to the same amount -- a certain narrow range

[\itc{Criminisi et al.,} \reflink{Criminisi12}{2012}]. %%% ??? +



There are many ways to normalize feature values in order to scale them to a single range and use them in various machine learning models. Depending on the function used, they can be divided into two large groups: linear and non-linear

[\itc{Tealab et al.,} \reflink{Tealab17}{2017}].

With nonlinear normalization, the calculated ratios use the functions of the logistic sigmoid or hyperbolic tangent. In linear normalization, the change of variables is carried out proportionally, according to a linear law.



The most common methods for data normalization are:



Minimax -- linear data transformation in the range $[0..1]$, where the minimum and maximum scalable values correspond to 0 and 1, respectively:



\begin{eqnarray*}    % \begin{equation}\label{1}

X_{\mathrm{norm}}=\frac{X-X_{\min}}{X_{\max}-X_{\min}}

\end{eqnarray*}

$Z$-scaling based on the mean and standard deviation: dividing the difference between the variable and the it means by the standard deviation:



 \begin{eqnarray*}      % \begin{equation}\label{2}

 z=\frac{x-\mu}{\sigma}

\end{eqnarray*}

Decimal scaling -- performed by removing the decimal separator of the variable value

[\itc{Seber and Lee,} \reflink{Seber03}{2003}].



In practice, minimax and $Z$-scaling have similar areas of applicability and are often interchangeable. However, in calculating the distances between points or vectors in most cases, $Z$-scaling is used, while minimax is useful for visualization.



\subsection{2.2. Assessment of Predisposition of Data for Clustering}



One of the most common problem of unsupervised machine learning is that clustering will form groups, even if the analyzed dataset is a completely random structure. That's why the first validation task that should be applied even before clustering is to assess the overall predisposition of the available data to cluster tendency

[\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



There are two common indicators, that can show us cluster tendency -- Hopkins statistics and Visual Assessment of cluster Tendency or ``VAT diagram''.



To calculate Hopkins statistics, we need to create B pseudo-datasets, randomly generated based on the distribution with the same standard deviation as the original dataset. For each observation $i$ from $n$, the average distance to $k$ nearest neighbors is calculated as follows:

$w_i$ between real observations and $q_i$ between generated observations and their closest real neighbors

[\itc{Keller et al.,} \reflink{Keller85}{1985};

\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

Then the Hopkins statistics calculates as follows:



 \begin{eqnarray*}

H_{\mathrm{ind}} = H_{\mathrm{ind}}=\frac{\sum_{n}w_i}{\sum_{n}q_i+\sum_{n}w_i}

\end{eqnarray*}

If $H_{\mathrm{ind}}>0.5$,  then it will correspond to the null hypothesis that $q_i$ and $w_i$ are similar and values are distributed randomly and uniformly. If  $H_{\mathrm{ind}} < 0.25$ this indicates that a dataset has a tendency to data grouping.



For visual assessment of clustering tendency, the best way is to using VAT diagram. VAT algorithm consists of:



\begin{enumerate}

\item

Compute the dissimilarity matrix between the objects in the data set using the Euclidean distance measure;

\item

reorder the dissimilarity matrix so that similar objects are close to one another. This process creates an ordered dissimilarity matrix;

\item

the ordered dissimilarity matrix is displayed as an ordered dissimilarity image, which is the visual output of VAT.

\end{enumerate}



The VAT detects the clustering tendency in a visual form by counting the number of square shaped dark blocks along the diagonal in a VAT image [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



\subsection{2.3. Choosing the Optimal Number of Clusters}



At this moment there's two main ways to choose an optimal number of clusters -- ``elbow'' method and using of gap statistics

[\itc{Chapelle et al.,} \reflink{Chapelle06}{2006}].



The ``elbow'' method -- considered the pattern of variation in the dispersion of $W_{\mathrm{total}}$  with increasing in number of groups  $k$

[\itc{Tomar et al.,} \reflink{Tomar18}{2018}].

Combining all of the founded  observations in one group, we'll have the biggest intraclass dispersion, that will decrease to 0 when $k\rightarrow n$.

The point, when this decreasing of dispersion will be slowing down, called ``elbow''

[\itc{Seber and Lee,} \reflink{Seber03}{2003};

\itc{Thiery et al.,} \reflink{Thiery06}{2006}].



An alternative to the ``elbow'' method is using gap statistics, which are generated based on resampling and Monte-Carlo simulation processes. For example, let $E_n^\ast{\log(W_k^\ast)}$ denotes the valuation of average dispersion $W_k^\ast$, obtained by bootstrap method, when $k$ clusters are formed by several random objects $f$ from the original dataset of $n$ size. Then gap statistics will be calculated as follows:



 \begin{eqnarray*}          % \begin{equation}\label{4}

\mathrm{Gap}_n(k)=E_n^\ast{\log(W_k^\ast)}-\log(W_k)

\end{eqnarray*}

 $\mathrm{Gap}_n(k)$ determines the deviation of the observed dispersion $W_n$ from its expected value, if the original data formed only one cluster.



\subsection{2.4. Validation of Clustering Results}



Currently, there are several ways to validate the results of clustering:



\begin{enumerate}

\item

 External validation -- comparing the results of cluster analysis with already known validation dataset;

\item

relative validation -- evaluating the structure of formed clusters by changing the algorithm parameters;

\item

internal validation -- obtaining internal information of clustering process;

\item

assessment of the clustering stability using resampling.

\end{enumerate}



The most widespread indexes are silhouette index and Calinski-Harabasz index [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



One of the approaches to validate the results of clustering is the Calinski-Harabasz index.



Let ${\overline{d}}^2$  is the mean square distance between elements in clustering variety and ${\overline{d}}_{c_i}^2$ -- mean square distance between elements in cluster $c_i$. Then the distance inside groups will be:



 \begin{eqnarray*}   % \begin{equation}\label{5}

\mathrm{WGSS} = \frac{1}{2}\sum_{i=1}^{c}(n_{c_i}-1){\overline{d}}_{c_i}^2

\end{eqnarray*}

and the distance between groups will be:



\begin{eqnarray*} % \begin{equation}\label{6}

\mathrm{BGSS} = \frac{1}{2}\left(\left(c-1\right)

{\overline{d}}^2+\left(N-c\right)A_c\right)

\end{eqnarray*}

where $a_c = A_c/\overline{d}^2$ -- is weighted mean difference of distances between cluster centers and a mutual variety center. Then the Calinski-Harabasz index will be:



\begin{eqnarray*}

\mathrm{VRC} = \frac{\mathrm{BGSS}/(c-1)}{\mathrm{WGSS}/(N-c)} =

\end{eqnarray*}

 \begin{eqnarray*}

 \frac{{\overline{d}}^2+ [(N-c)/(c-1)]A_c}{{\overline{d}}^2-A_c} =

\end{eqnarray*}

 \begin{eqnarray*}  %  \begin{equation}\label{7}

 \frac{1+[(N-c)/(c-1)]a_c}{1-a_c}

\end{eqnarray*}

where $a_c=A_c/\overline{d}^2$. We can see, that if the all distances between points are similar, then

$a_c=0$ and $\mathrm{VRC} = 1$. $a_c=1$

  characterize the prefect clustering. The maximum value of  corresponds to optimal cluster's structure.



Another approach to validate the clustering results is using the silhouette index. Its values shows the degree of similarity between object and cluster that he belongs to, compared to another clusters

[\itc{Shi and Horvath,} \reflink{Shi06}{2006};

\itc{Soliman et al.,} \reflink{Soliman17}{2017}].



Silhouette of every cluster estimates as follows: let object $x_j$ corresponds to cluster $c_p$. Denote the mean distance from this object to other objects from this cluster  $c_p$ as $a_{pj}$  and the mean distance from this object $x_j$ to objects from another cluster as

$c_q,q\ \neq\ p $ as $d_{q,j}$.

Let $b_{pj} = \min_{q\neq p}d_{qj}$. This value means the measure of dissimilarity of single object with objects from nearest cluster. Thus, the silhouette of every single element of cluster calculates as:



 \begin{eqnarray*}   % \begin{equation}\label{8}

S_{x_j}=\frac{b_{pj}-a_{pj}}{\max(a_{pj},b_{pj})}

\end{eqnarray*}

The highest values of $S_{x_j}$ corresponds to better affiliation of element  $x_j$

to cluster $p$.  The evaluation of all cluster structure provided by averaging the value by elements:



 \begin{eqnarray*}   %  \begin{equation}\label{9}

\mathrm{SWC} = \frac{1}{N}\sum_{j=1}^{N}S_{x_j}

\end{eqnarray*}

Better clustering characterized by bigger values of , that achieved when the distance inside cluster $a_{pj}$ is small and the distance between objects from neighboring clusters $b_{pj}$ is big.



\section{3. Black Sea Surface Physiographic Zoning}

\subsection{3.1. Research Area}



The Black Sea is an inland sea, that belongs to the basin of the Atlantic Ocean. Its maximum depth reaches the mark of 2258 meters

(\figref{1})

[\itc{Barratt,} \reflink{Barratt93}{1993}].

The total area of the Black Sea is 420,325~km$^2$, and with the Sea of Azov -- 462,000~km$^2$

[\itc{Murray,} \reflink{Murray05}{2005}].



The average seasonal cycle of geostrophic circulation of the Black Sea [\itc{Ivanov and Belokopytov,} \reflink{Ivanov11}{2011}]:



\begin{itemize}

\item

	From January to March -- a single cyclonic rotation with a center in the eastern part of the sea, the western circulation is weakly expressed;

\item

from April to May -- a single cyclonic rotation with a center in the western part of the sea, the eastern cycle is weakly expressed;

\item

from June to July -- two cycles, the western more intense;

\item

from August to September -- two cycles, the eastern one is more intense;

\item

from October to December -- two cycles of equal intensity.

\end{itemize}



About 80\%

of the river flow is concentrated in the northwestern part of the Black Sea. The Caucasian rivers contribute about 13\%

of the water balance, while the runoff from Turkeys rivers is about 7\%

[\itc{Ghervas} \reflink{Ghervas17}{2017}].  % Ghervas.

The contribution of the Crimean rivers a is insignificant

[\itc{Belokopytov and Shokurova,} \reflink{Belokopytov05}{2005}].



The biggest river, that flows into the Black Sea is Danube. The Danube usually brings about 203~km$^3$ of freshwater into North-Western part of the Black Sea, decreasing the level of salinity there. Another big river, that flows into Black Sea is Dnieper from Ukrainian part and Rioni from Georgian

[\itc{Ozsoy and Unluata,} \reflink{Ozsoy97}{1997}].



\begin{figure*}[t]                        %  Fig  1

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f01}

\shortcaption{Bathymetric map of the Black Sea.}

\end{figure*}



\subsection{3.2. Data}



We used the monthly averaged data from Copernicus Marine Environmental Monitoring Service (CMEMS) -- Black Sea Reanalysis, which are based on 5 components:



\def\bottomfraction{.8}

\def\textfraction{.15}



\begin{table}[b]                                   % Table 1

\tablewidth{20pc}

\caption{Estimated Data Accuracy Results for Temperature and

Salinity. From Left Side in Each Row -- for 1995--2015 Data.

From Right -- for 2005--2015} \vspace{5pt}

\begin{tabular}

{@{}l@{\hspace{9pt}}

c@{\hspace{18pt}}

c@{}}

\hline

\\ [-7pt]

Feature & BIAS v4 & DMS v4 \\

 [7pt]  \hline   \\ [-4pt]

SST (\deg C)          & $-0.07/-0.07$ & 0.58/0.59 \\

T (\deg C) 0--100 m   & $-0.02/0.025$ & 0.87/0.74 \\

T (\deg C) 100--300 m & $-0.03/-0.003$ & 0.15/0.09 \\

T (\deg C) 300--800 m & $-0.02/-0.02$ & 0.11/0.05 \\

S (psu) 0--100 m      & $-0.014/0.002$ & 0.33/0.26 \\

S (psu) 100--300 m    & $-0.006/0.009$ & 0.19/0.15 \\

S (psu) 300--800 m    & $-0.005/-0.002$ & 0.05/0.03\\  [7pt]

\hline

\end{tabular}

\end{table}



\begin{enumerate}

\item

	Ocean model -- Hydrodynamic model, which is a part of the NEMO (Nucleus for European Modelling of the Ocean) project;

\item

	scheme of data assimilation (OceanVar) for temperature and salinity profiles, satellite data for sea surface temperature, sea level anomalies etc.;

\item

	assimilated data -- in-situ data for environmental variables;

\item

	recovery scheme for environmental variables;

\item

basic large-scale adjustments.

\end{enumerate}





Data from this model have a high level of correlation with in-situ data, that increasing with depth. For example, the accuracy of temperatures spatial distribution in the Black Sea at depth of 30~m

about $\pm{1.5}$\deg C, at the depth of 70~m it decreases to

$\pm{0.3}$\deg C and at the depth of 1100~m is about

$\pm{0.04}$\deg C

(\tabref{1}).    %Table 1).



The quality of the model data, as well as the model itself, improve with increasing of in-situ observations numbers.



For Black Sea surface physiographic zoning we used 6 environmental parameters -- sea surface temperature, sea surface salinity, dissolved oxygen level, PO$_4$ and NO$_3$ content and primary production level.



\subsection{3.3. Results}



To understand, does dataset has a tendency to form clusters, we calculated a Hopkins index using the R-package ``clustertend''. It was equal to 0.0194, that means that this dataset can form clusters.



To estimate an optimal number of clusters, we used the R-package ``factoextra''. Results shown in

\figref{2}.    % figure 2.



\begin{figure}[t]                        %   Fig  2

\figurewidth{20pc}

\setimage{}{}{20pc}{}{2020es000707-f02}

\caption{Determining an optimal number of $k$ by elbow-method.}

\end{figure}



As we can see at the

\figref{2},

the elbow of our curve is located at 3, thus we can distinguish 3 completely different zones in the surface waters of the Black Sea

(\figref{3}, \figref{4}).

Allocation of this zones due equally to all of analyzed factors, except dissolved oxygen.



\begin{figure*}[t]                        %   Fig  3

\figurewidth{35pc}

\setimage{}{}{41pc}{}{2020es000707-f03}

\caption{Seasonal zoning of the Black Sea.%

{\bf A} -- Winter, {\bf B} -- Spring, {\bf C} -- Summer, {\bf D} -- Autumn.}

\end{figure*}



Based on statistical analysis all of these factors divided in two groups. First -- phosphates concentration, primary production and chlorophyll-$\alpha$, which are derivatives from each other -- the amount of phosphates impacts on amount of primary production and amount of primary production impacts on amount of produced chlorophyll-$\alpha$. Second are temperature, salinity and nitrates concentration.



Studying water objects, it's important to know a seasonal variability of zones, because of its very high change capability in time. Comparing with land, water systems aren't stable for long period of time and spatial distribution of factors can vary from season to season.



Generally, as we can see in figure, main reasons of zoning pattern forming are quantitative and qualitative characteristics on flows.



In winter season, there is a clear divide of the Black Sea from west to east. A significant role in this process is played by the interaction of the Black Sea with the Sea of Marmara, river flows in the northwest of the Black Sea and in the Caucasus and, in some cases, areas near the Southern coast of Crimea and the Kerch Peninsula due to the activity of currents from the Sea of Azov.



In spring season, the divide of the Black Sea occurs from north to south. In this case, a significant impact on this process is exerted by the significant flow of such rivers as the Dniester, Danube and Dnieper in the north-west of the Black Sea and the influx of water from the Sea of Marmara. Due to the interaction between two water masses radically different in their characteristics, it forms an intermediate zone between them, covering an area from the Kerch Strait to the Danube Delta.



In the summer, due to the nature of the internal currents in the Black Sea and changes in the volume of river flow, more saline water from the Sea of Marmara reaches the Danube. In spatial terms, the pattern of zones distribution in the Black Sea is similar to the winter one, in which they are located from east to west. The formation of the intermediate second zone is most likely due to the interaction with more fresh and cold water coming from the Sea of Azov.



In autumn, the formation of more fresh and colder waters off the coast of Turkey is observed, which is due to the significant flow of the rivers of the Turkish coast. The distribution pattern is more similar to the spring one, with significantly increased in size zone~1.



Annual zoning of the Black Sea is presented on  figref{4}.



\subsubsection{Zone 1.}

 Located in the North-West part of the Black Sea. Flows from Danube, Dniester, Dnieper and Southern Bug completely equal of 3/4 of a total flow into the Black Sea. Dominated northern and north-western winds helps in spreading of matters, endured by rivers. The main feature of this part of the sea is an active interaction of fresh water from rivers with salty water from south of the Black Sea. Near the shore water salinity reaches values about $7-8 \pm$. Temperature of water surface, as a salinity, increasing from shore to open sea. Temperature differences reaches

 1.5--2.0\deg C. Bioproductivity of this zone is quite high, mainly cause of active flowing rivers matter and\linebreak

fresh water. But local hydrophysical and hydrochemical

conditions condition high variability of bioproductivity with

fishkills.



\subsubsection{Zone 2.}

 Basically, forming of this zone determined by interactions between 1-st and 3-rd zones, where as a results of Black Sea

 currents and flows from big rivers, cold fresh water from the coastal areas mixed up with more cold and salty water from

 central part of the Black Sea. Located in the north-west part of the Black Sea, near the Crimean-Caucasus shore of Russia,

 Georgian and Turkey coasts. Biggest rivers here are Rioni, Tuapse, Kizilirmak, Yesilirmak and Inguri. Like the zone~1, location

 of the zone 2 is due to the flows from rivers. But cause of lower levels of flow amount, compared with the zone 1, their

 impact  on water of the Black Sea is quite lower, but noticeable. Values of salinity here doesn't differ from the central part

 ($1-2 \pm$ fresher), same as a temperature.



\begin{figure*}[t]                          %  Fig  4

\figurewidth{35pc}
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\shortcaption{Physiography zoning of the Black Sea.}

\end{figure*}



\subsubsection{Zone 3.}

 Natural conditions of this zone are a common to the Black Sea. The area of this zone is the biggest. Located in the south and central part of the Black Sea and near the Kerch Strait. Salinity here is a quite high -- $19-20 \pm $, and reaches $24 \pm $ near the Bosporus Strait. The impact of the Sea of Azov is quite low, due to specificity of Azov currents. Amount of phosphates and nitrates is low due to lack of any big rivers, which are the main sources of their presence in the sea water. As a result, concentrations of chlorophyll-$\alpha$ is quite low too.



\section{4. Conclusions}



Thus, the methodological approach, showed in this paper, helps us to use it fully in zoning tasks to provide distinguishing from them completely different areas, that aren't similar. As we can see, the main advantages of this approach are lack of subjectivity that is inherent to humans, high level of analysis accuracy, possibility of constant model's modification by adding new {\itshape in-situ} data or by modifying the algorithm itself. Also, it should be noted, that the indisputable advantage of this approach is the ability to use it in any kind of territory, both in size and in properties.



As we talk about disadvantages of this approach, we should note a strong dependency from input data quality and data normalization, which in some cases can lead to significant distortion in the analysis results. The same we can say about data size. With significant amount of data, it may be difficult to conduct the research, which leads to completely change the used algorithm or to significant reduction in data size and, as a result, to simplification of the model and distortion of the real results. Generally, we should note, that using of this approach is justified in most cases, but the need of improvement and further optimization of it doesn't disappear.



Obtained results helps us to understand that applying of this

approach can helps us to go away from analytical and empirical

zoning approaches to have a math basis, uniformity of

calculations and process automatization. Conducted as an

example of this approach application, Black Sea physiographic

zoning generally is quite similar with previous works. It was

determined, that the most optimal number of the dissimilar

groups, based on analyzed factors is 3. Generally, their

spatial location based on places where rivers flows into the

Black Sea, and as a result more comfortable for different flora

and fauna. For example, the conditions, that formed in the

second area is quite comfortable for spawning of many

commercial fishes, Like {\itshape Liza haematocheilus},

{\itshape Engraulis encragicolus}, {\itshape Liza aurata},

 {\itshape Mugil cephalus}, etc. Thus, applying a machine learning approach in area's zoning tasks helps us to increase the quality of nature using and decision-making process.
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