
RUSSIAN JOURNAL OF EARTH SCIENCES
vol. 20, 4, 2020, doi: 10.2205/2020ES000732

Dynamics of internal gravity waves
in the ocean with shear flows

V. V. Bulatov1, Yu. V. Vladimirov1

Ishlinsky Institute for Problems in Mechanics RAS,
Moscow, Russia

c© 2020 Geophysical Center RAS



Abstract. The problem of the harmonic
internal gravity wave dynamics in a stratified
ocean of finite depth with shear flows is solved.
Stratification with constant distribution of the
buoyancy frequency and various linear
dependences of the shear flow on depth were
used for the analytical solution of the problem.
Dispersion dependences were obtained, which
are expressed through a modified Bessel function
of an imaginary index. The Debye asymptotics
of the modified Bessel function of the imaginary
index were used to construct analytical solutions
under the Miles stability condition and large
Richardson numbers. The asymptotic properties
of the dispersion equation are studied. The
main analytical properties of dispersion curves
are investigated. The results of numerical
calculations of the fields of phase structures of
the generated internal gravity waves for various
models of wave generation are presented.
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Introduction

Among the large variety of observed wave processes of
different physical nature in the ocean and the Earth’s
atmosphere, the interaction between generated waves
and hydrodynamic flows is of particular interest [Fab-
rikant and Stepanyants, 1998; Miropol’skii, 2001; Mo-
rozov, 2018; Mei et al., 2017; Velarde et al., 2018].
The motion in a stratified medium is one of the main
factors that influence the dynamics of internal grav-
ity waves (IGW) both under natural conditions and in
technical devices. In the current scientific research,
asymptotic methods for studying analytic models of
wave generation are used to analyze the dynamics of
IGW in natural stratified media with the presence of
currents. In the linear approximation, the existing ap-
proaches to describing the wave pattern of the gen-
erated IGW fields are based on the representation of
wave fields by Fourier integrals and their asymptotic
analysis [Bulatov and Vladimirov, 2012, 2019]. When
studying the real ocean environment, it is necessary to
consider the IGW propagating against the background
of mean currents with a vertical velocity shear; the vari-
ations in the vertical speed are tens of cm/s and m/s,
that is, they are of the same order as the maximum



IGW speeds. Such flows must significantly influence
the IGW propagation [Massel, 2015; Pedlosky, 2010;
Sutherland, 2010]. If the scale of variations in the hor-
izontal flows is much larger than the length of IGW
and the scale of time variations is much larger than the
periods of internal waves, then a natural mathematical
model represents the case of stationary and horizontal
homogeneous shear flows [Fabrikant and Stepanyants,
1998; Fraternale et al., 2018; Miropol’skii, 2001]. The
goal of this work is to construct analytic solutions de-
scribing the IGW fields in a stratified medium of finite
depth with shear flows.

Problem Formulation

We consider a vertically stratified medium of finite depth
H . Let (U(z), V (z)) be the vector of shear flow at
depth z . The further analysis starts from the linearized
system of hydrodynamic equations for the unperturbed
state; the system has the form [Bulatov and Vladimirov,
2019; Fabrikant and Stepanyants, 1998; Miles, 1961;
Miropol’skii, 2001]
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where (U1, U2, W ) are components of the perturbed
velocity, (p, ρ) are perturbations of the pressure and
density, and ρ0(z) is the unperturbed density of the
medium. Using the Boussinesq approximation, one can
obtain the equation for the vertical component of ve-
locity [Bulatov and Vladimirov, 2012, 2019]
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where N2(z) is the squared Brunt-Vaisala frequency
(buoyancy frequency) and g is the acceleration due to
gravity. The boundary conditions are taken in the form
(the vertical axis Z is directed upward)

W = 0 at z = 0,−H . (2)

We further use the following assumptions. The Brunt-
Vaisala frequency is assumed to be constant: N(z) =
N = const. The shear flow is assumed to be one-
dimensional: V (z) ≡ 0. The function U(z) is a lin-
ear function of depth: U(z) = U0 + (U0 − UH)z/H ,
U0 = U(0) > 0, UH = U(−H) < 0. This hy-
drology model (constant distribution of buoyancy fre-
quency, multidirectional shear flows) is widely used in
real oceanological calculations and allows one to take
into account the main features of wave dynamics with
regard to the real variations in the density of the ma-
rine environment observed in full-scale measurements
of IGW in the ocean, as well as to investigate the prob-
lem analytically [Velarde et al., 2018]. The results of
numerous studies of natural measurements of internal
waves, flows, and their interaction in various regions of
the World Ocean were analyzed in [Frey et al., 2017;
Mei et al., 2017; Morozov, 2018], in particular, by using
this model. The generation of IGW by a shear current



in the Kara Gates Strait was considered in [Morozov,
2003, 2008, 2017]; in this case, the flow fluctuates with
the tidal frequency, and the IGW packets appear at
intervals determined by the shear instability of flows.
Similar results were obtained in [Morozov, 2018] us-
ing the example of the Strait of Gibraltar, where the
measurements of flows and IGW whose amplitude can
be tens of meters are considered. Numerous measure-
ments of bottom flows in deep waters of the North At-
lantic show that, at high depths, the gradients of shear
velocities and the buoyancy frequency values are small
and the main variations in these hydrophysical param-
eters are observed in the upper layers of the ocean at
depths of about 100–200 meters, which allows one to
use the proposed hydrology model and the linear depen-
dence of shear flows on the depth [Frey et al., 2017].
We also assume that the Miles stability conditions are
satisfied for the Richardson number:

Ri = N2(
dU

dz
)−2 >

1

4

[Fabrikant and Stepanyants, 1998; Miles, 1961; Mi-
ropol’skii, 2001]. The characteristic values of the Richard-
son numbers in the waters of the World Ocean (Atlantic
Ocean, Arctic basin seas) in the absence of dynamic



instability of flows range from 2 to 20 [Velarde et al.,
2018]. Then Eqs. (1)–(2) can be represented in di-
mensionless variables

x∗ = πx/H , y∗ = πy/H , z∗ = πz/H ,

ω∗ = ω/N , t∗ = tN ,

M(z∗) = U(z)π/NH = a + bz∗

a = πU0/NH , b = (U0 − UH)/NH

in the form (asterisks “*” are omitted)

(
∂
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∂
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)2∆W + N2(z)∆2W = 0, (3)

W = 0 at z = 0,−π.

The above-introduced parameter b is the inverse square
root of the Richardson number: b = 1/

√
Ri , and pa-

rameter a is the ratio of the near-surface flow amplitude
U0 to the maximum group velocity of IGW propagation
in the ocean, equal to NH/π [Bulatov and Vladimirov,
2012, 2019].



Analytical Solutions

We seek the solution of problem (3) in the form of
harmonic waves: W (t, x , y , z) = ϕ(z) exp(i(ωt−µx−
νy). Then to determine the function ϕ(z), we have

∂2ϕ

∂z2
+ k2((ω − µM(z))−2 − 1)ϕ = 0, (4)

ϕ = 0 for z = 0,−π, k2 = µ2 + ν2.
We assume that two linearly independent solutions

of problem (4) exist

f±(z) =
√

2βr(z)I±iλ(βr(z)),

where I±iλ is the modified Bessel function with imagi-
nary index iλ, r(z) = ω − µM(z),

λ =
√
β2 − 1/4, β = k/bµ. The solution satisfying

the condition at z = 0 becomes: ϕ(z) = i(f+(0)f−(z)−
f−(0)f+(z)). The functions f±(z) are complex conju-
gate, and hence the solution ϕ(z) is real. Since we
assume that the Miles stability condition is satisfied for
the large Richardson numbers, we have b2 < 4. In
particular, this implies that β2 > 1/4, and hence the
values of λ are real. The requirement to satisfy the



boundary condition at z = −π determines the disper-
sion relation

Iiλ(βr(0))I−iλ(βr(−π))−

I−iλ(βr(0))Iiλ(βr(−π)) = 0. (5)

The dispersion relation for a similar hydrology model
(constant buoyancy frequency, linear profile of the shear
flow, the finite thickness of a stratified layer) is ob-
tained in [Gavrileva et al., 2019] in the form similar to
(5), and it was noted that to obtain a solution of this
equation is a difficult mathematical problem. A more
difficult problem is to study the analytical properties of
the obtained dispersion equation, since this allows one
to obtain asymptotic expressions for the IGW fields un-
der different modes of wave generation. Further, we
will study the main characteristic features of solutions
of dispersion equation (5) and construct asymptotic
representations of the solution of this equation. The
solutions of this equation can be represented in the
form ωn(µ, ν) or µn(ν,ω). In this paper, we study the
dispersion dependence µn(ν) (here ω is a fixed param-
eter) for ω = 0.54, a = 0.8. In the model of shear
flows, we take a < 1 which means that the ampli-
tudes of shear flows do not exceed the maximum group



velocity of IGW propagation, which is observed under
the real conditions in the World Ocean. Parameter
ω < 1 determines the ratio of the free wave frequency
to the maximum value of the buoyancy frequency and
describes the IGW propagation with a frequency al-
most two times smaller than the buoyancy frequency,
and this phenomenon is also observed in the real ocean
environment [Mei et al., 2017; Morozov, 2018; Velarde
et al., 2018].

Starting from numerous results of oceanological ob-
servations of shear flows in the waters of the World
Ocean, we can consider three model distributions of
one-dimensional shear flow [Frey et al., 2017; Moro-
zov, 2018; Velarde et al., 2018]. In this paper, we use
the hydrology model of linear shear flow including the
possibility that the flow changes its direction as the
depth increases.

The first model: Unidirectional flow, the flow does
not change its direction with increasing depth, the flow
amplitude decreases with depth, but at the bottom,
the amplitude of the bottom flow is different from zero
UH 6= 0 (line 1 in Figure 1).

The second model: Unidirectional flow, the flow am-
plitude decreases with depth, and the amplitude of the
bottom flow is small as compared to the amplitude of



Figure 1. Three linear models of shear flows.

the near-surface flow UH = 0 (line 2 in Figure 1).
The third model: Multidirectional flows, the flow

changes its direction with increasing depth, the ampli-
tude of the bottom flow is comparable in order with
the amplitude of the near-surface flow (line 3 in Fig-
ure 1). We use parameters b = 0.2, Ri = 25 for the
first model, b = a/π, Ri = 15.3 for the second model,
and b = 0.39, Ri = 6.5 for the third model.



Asymptotic Results

We consider the asymptotic solutions of dispersion equa-
tion (5) under the assumption that parameter β is large;
then λ can be replaced by |β|. We use the Debye
asymptotics (λ � 1) of the modified Bessel function
with imaginary index I±iλ(τ) which, in contrast to the
classical asymptotics as τ → ∞, determines the be-
havior of the function I±iλ(τ) for large values of both
index λ and argument τ . The modified Bessel function
I±iλ(τ) satisfies the equation [Watson, 1995]

τ2Y ′′(τ) + τY (τ) + (λ2 − τ2)Y (τ) = 0,

Y (τ) = I±iλ(τ).

Using the change of variable Y (τ) = Z (τ)/
√
τ , we can

represent this equation in the form

Z ′′(τ) + (1/4 + λ2 − τ2)τ−2Z (τ) = 0. (6)

For λ� 1/4, Eq. (6) becomes simpler

Z ′′(τ) + q(τ)Z (τ) = 0,

q(τ) = (λ2 − τ2)τ−2. (7)



Then the WKB asymptotics of Eq. (7) for τ < λ,
which describes the oscillating solutions, becomes

Z (τ) ≈ q(τ)−1/4 exp(i
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For exponentially increasing or decreasing solutions,
the WKB asymptotics of Eq. (7) for τ > λ becomes

Z (τ) ≈ D±(−q(τ))−1/4 exp(i
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−q(τ)dτ),
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λ arctan(
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Further, we consider only function I−iλ(τ) (the func-
tion I−iλ(τ) is the complex conjugate of Iiλ(τ) and
Iiλ(−τ) = exp(−πλ)Iiλ(τ)). To determine the mul-
tipliers D±, it is required to compare the WKB asymp-
totics with the classical asymptotics of I−iλ(τ) as τ →
∞



Re I−iλ(τ) ≈ exp(τ)/
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The expression for the WKB asymptotics of function
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We analytically continue the first formula in (8) from
the domain τ > λ in the domain τ < λ through the
upper half-plane of the complex variable τ and, as a
result, we obtain

I−iλ(τ) ≈ (τ2 − λ2)−1/4 exp(α)/
√

2π, (9)
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Then the Debye asymptotics of the modified Bessel
function I−iλ(τ) with imaginary index (for large values
of both index λ and argument τ) is obtained by substi-
tuting λr in (8) and (9) instead of τ [Watson, 1995]
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exp(−λ(Φ(r)− π/2))/2
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The value r = 0 is a branch point, and r = 1 is the
turning point at which the asymptotics (10), (11) do
not work. If r < 0, then Iiλ(λr) = exp(−πλ)Iiλ(−λr),
I−iλ(λr) = exp(πλ)I−iλ(−λr).

Figure 2 illustrates the geometry of location of singu-
lar points, which determines the main qualitative char-
acteristics of the behavior of dispersion curves on the
plane of variables (Ψ, µ), where Ψ = ω−µM(z). Fig-
ure 2 shows r(0) (line 1) and r(−π) (line 2) as func-
tions of µ for all three models. The points a and d are
branch points; they correspond to the values of µ at
which r(0) = r(−π) = 0, and for the second model,
there exists only one branch point d . The cuts on the
complex plane of the variable µ are drawn in the in-
tervals of the axis Reµ, where r(0)r(−π) < 0. In the
first model, the cuts on the complex plane µ pass from
a to d , for the second model, the cuts pass from the
point d to +∞, and for the third model, the cuts pass
from −∞ to point a and from the point d to +∞.
The points b, c , e, f (the first and second models) are
turning points and determine the values of the variable



Figure 2. Singular points of dispersion equation
solutions, 1 – first model, 2 – second model, 3 – third
model.



µ for which the wave solution exists, i.e., these are the
points at which |r(0)| = |r(−π)| = 1. For the second
model, the turning points are b, f .

In dispersion equation (5), the first and second terms
are complex conjugate, and hence this equation can be
represented as

Im(Iiβ(βr(0))I−iβ(βr(−π))) = 0. (12)

Difficulties in obtaining numerical solutions of dis-
persion equation (12) arise due to the fact that the
eigenvalues have accumulation points as ν → 0; these
points are branch points (points a and d in Figure 2),
and in the first model as ν →∞, these are also turning
points (points µc and µe). Therefore, we further solve
Eq. (12) asymptotically for the three models of shear
flow.

The first model.

The dispersion curves consist of two families µn1(ν),
µn2(ν). First, we consider the family of dispersion
curves µn1(ν). All curves in this family lie in the inter-
val (µc ,µd) which is divided into two intervals by the
turning point µb. Figure 2 shows that both functions in
Eq. (12) oscillate in the interval (µb,µd). We replace



each of them by asymptotics (10) and obtain

β(Θ(r(−π))−Θ(r(0))) = πn, n = 1, 2, ... (13)

This implies that

νn1(µ) = ± |µ| ((πnb)2(Θ(r(−π))−

Θ(r(0)))−2 − 1)1/2. (14)

The dependence µn1(ν) can be derived from expres-
sions (13), (14) by standard computational algorithms.
Figure 2 shows that, in the interval (µc ,µb), the sec-
ond function in (12) oscillates and the first function
does not oscillate. Then replacing the second function
in (12) by asymptotics (11) and the first function by
the asymptotics (10) we can obtain

|β| (Θ(r(−π)))− π/4 + 0.5 arctan×

(exp(−2 |β|Φ(r(0)))) = πn, n = 1, 2, ... (15)

In contrast to (12), Eq. (15) can easily be solved nu-
merically, because the left-hand side of this relation
(asymptotic approximation of the phase) is a strictly
monotonous function. Figure 3 presents the dispersion
curve µ11(ν) calculated numerically (solid line), its ap-
proximation calculated from formula (14) (dotted line),



Figure 3. Dispersion curve and its approximations
in the first model.

and a numerical solution of Eq. (15) (dashed line).
We consider the family of dispersion curves µn2(ν). All
dispersion curves of this family belong to the interval
(µa,µe). Figure 2 shows that the second function in
(12) oscillates, and the first function does not oscillate,
and the contribution of the first function to the phase
is zero in this case, because the turning point µf lies
outside the interval (µa,µe). As a result, we obtain

|β|Θ(r(−π))− π/4 = πn, n = 1, 2, ... (16)



Figure 4. Dispersion curve and its approximations
in the first model.

The solution of (16) has the form

νn2(µ) = ± |µ| (((πn − π/4)b)2×

(Θ(r(−π)))−2 − 1)1/2. (17)

We can also obtain the dependence µn2(ν) from expres-
sions (16), (17) by standard computations algorithms.
Figure 4 presents the dispersion curve µ21(ν) calculated
numerically (solid line) and its approximation calculated
by formula (17) (dotted line).



The second model.

In this case, there is only one family of dispersion curves,
namely, µn(ν). All other curves of this family lie in
(−∞,µd), which is divided by the turning point µb
into two intervals. In the interval (µb,µd), the solution
of dispersion equation (12) has the form (15), where
r(−π) = ω. In the interval (−∞,µb), dispersion equa-
tion (12) has a form similar to (15), where r(−π) = ω.
For large values of ν, we have the asymptotics

µn(µ) = −Bnν, Bn = (((πn − π/4)b)2×

(Θ(r(−π)))−2 − 1)1/2. (18)

Figure 5 shows the dispersion curve µ1(µ) calculated
numerically (solid line), its approximation by formula
(14) (dotted line), and a numerical solution of Eq. (15)
(dashed line).

The third model.

In this case, there is one family of closed curves which
we denote by µn(µ) (each curve consists of two branches,
µ+
n (µ) is the upper branch, µ−n (µ) is the lower branch).

All curves of this family lie in the interval (µa,µd). In



Figure 5. Dispersion curve and its approximations
in the second model.

this interval, there exists only one turning point µb.
In the interval (µb,µd), the solution of the dispersion
equation has the form (14), and in the interval (µa,µb),
the solution of the dispersion equation is obtained by
solving Eq. (15) numerically.

Figure 6 shows the dispersion curve µ1(µ) calculated
numerically (solid line), its approximation by formula
(14) (dashed line), and a numerical solution of Eq. (15)
(dash-dotted line).



Figure 6. Dispersion curve and its approximations
in the third model.

Wave Fields Phase Structures

To study the induced IGW in the stratified ocean with
shear flows, it is required to solve problem (1)–(2) with
a nonzero right-hand side Q(t, x , y , z , z0) whose spe-



cific form is determined by the form of the perturbation
source. If a vertically directed force is considered as the
source, then we have

Q(t, x , y , z , z0) =

δ′(t)δ(z − z0)(δ′′(x)δ(y) + δ′′(y)δ(x)).

In the case of point mass source, we have Q(t, x , y ,
z , z0) = δ′′(t)δ(x)δ(y)δ′(z − z0). If this function has
the form

Q(t, x , y , z , z0) = δ(x)δ(y)δ(z − z0) exp(iωt),

then we consider the Green function of problem (3) for
an oscillating point source of perturbations located at
depth z0. Obviously, since the problem under study
is linear, using the obtained asymptotic solutions for
the Green function, we further can obtain representa-
tions for the IGW fields generated by arbitrary nonlocal
and nonstationary sources in the stratified ocean with
shear flows [Bulatov and Vladimirov, 2012; Svirkunov
and Kalashnik, 2014]. One of the main sources of IGW
generation in the ocean can be moving atmospheric
cyclones. The wave fields generated by this genera-
tion mechanism play a significant role in various mech-
anisms of energy transfer in the depth of the ocean.



The experimental detection of IGW trace from a mov-
ing hurricane was one of the most impressive achieve-
ments in oceanology [Furuichi et al., 2008; Voelker et
al., 2019]. At large distances, the real perturbation
sources (hurricane, perturbations of atmospheric pres-
sure, cyclone) allow a physically justified approximation
by a system of point localized sources taken with cer-
tain weights. As a point non-stationary source of IGW
generation in the real ocean, one can also consider a
steep slope of a transverse ridge in straits, where shear
flows and periodic tidal flows take place [Frey et al.,
2017; Morozov, 2003, 2008, 2018]. Such an approach
is physically justified and permits solving many prob-
lems of modeling of linear IGW generation in the ocean
with regard to shear flows [Velarde et al., 2018]. At
large distances from the perturbation sources, the ex-
act form of the source does not practically influence
the wave characteristics of IGW, which are determined
by parameters of the stratified medium and the cor-
responding dispersion laws [Bulatov and Vladimirov,
2019; Bulatov et al., 2019; Svirkunov and Kalashnik,
2014]. In the general case, the solution is a sum of
vertical wave modes: W =

∑
n Wn, where each mode

is a superposition of plane waves of the form



Wn =

∫ ∞
−∞

Fn(z , ν)×

exp(−i(µn(ν)x + νy − ωt))dν, (19)

where the eigenfunctions of spectral problem (3) are
contained in the amplitude Fn(z , ν) which is a slowly
varying function of variable ν. The integral of the form
(19) can be calculated at large distances from IGW
perturbation sources by the method of stationary phase
[Bulatov and Vladimirov, 2012, 2019; Bulatov et al.,
2019].

We introduce the following notation for the phase:
Ω = µn(ν) + νy − ωt. In the third model, it is
required separately to consider the upper µ+

n (µ) and
lower µ−n (µ) branches of the corresponding dispersion
curve. We use the stationary phase condition (∂Ω/∂ν) =
0 to obtain the family of lines of constant phase with
parameter ν:

x =
Ω + ωt

µn(ν)− νdn(ν)
,

y =
dn(ν)(Ω + ωt)

µn(ν)− νdn(ν)
, (20)



Figure 7. Phase structure for first model.

dn(ν) =
d µn(ν)

dν
.

Figure 7–Figure 10 show the lines of constant phase
(solid lines) for t = 4, Ω = 2πk , k = 1, 2, ..., 6,
calculated for the first wave mode of the generated
IGW fields. The dashed lines in Figure 7–Figure 9
are the wave fronts with the half-opening angle α =
arctan(µ′1(ν∗)), where ν∗ is a root of the equation



Figure 8. Phase structure in the first model.

µ′′1(ν∗) = 0.
Figure 7–Figure 8 present the results of calculations

for the first model, Figure 7 shows the lines of equal
phase for µ11(ν), and Figure 8 shows the lines of equal
phase for µ12(ν). Figure 9 presents the lines of equal
phase for µ1(ν) (second model). Figure 10 shows the
lines of equal phase for µ1(ν) (third model). For this
model, expressions (20) describe the wave pattern of
the generated IGW field at x > 0. At x < 0, a similar
family of lines of constant phase is described by rela-
tions (20), where it is necessary to use µ−n (ν) instead
of µ+

n (ν) in the equation for the phase Ω. The results
show that the phase structure of the generated IGW
fields significantly depends on the relation between the



amplitudes of the bottom and near-surface shear flows.
It should be noted that, for a constant (independent

of the depth) shear flow, the wave pattern of the gen-
erated IGW fields depends on frequency ω, and, for ex-
ample, annular waves can exist only at small amplitudes
[Bulatov and Vladimirov, 2018]. For linear shear flows,
the wave pattern of IGW is determined by the flow
properties. In particular, the unidirectional flow gen-
erates both wedge-shaped (longitudinal) and annular
(transverse) waves (Figure 7–Figure 9), and the mul-
tidirectional flow generates only annular (transverse)
waves (Figure 10).

The wave pattern of a separate wave mode of the
generated IGW fields in the first and second models is
a system of wedge-shaped (longitudinal) and annular
(transverse) waves (Figure 7–Figure 9). The annular
(transverse) waves occupy the whole spatial domain
inside the wedge with half-opening angle α, and the
length of the transverse wave of mode n for y = 0 is
equal to 2π/µn(0). The wedge-shaped (longitudinal)
waves of each mode are bounded by both the wave
front with the half-opening angle α and the wave front
(whose position is determined by the asymptotics (18)
describing the behavior of µn(ν) for large ν) with the
half-opening angle β = arctan Bn < α. Since there



Figure 9. Phase structure in the second model.

are two distinct families of dispersion curves in the first
model, there also exists a wave system of only wedge-
shaped (longitudinal) waves (Figure 8).

In the third model, if the amplitude of the bottom
and near-surface flows are equal to each other, then
the corresponding phase pattern of the wave field is
symmetric. If the amplitudes of the bottom and near-



Figure 10. Phase structure in the third model.

surface flows are distinct, then the phase pattern of the
generated IGW fields becomes asymmetric. Therefore,
the asymmetry of phase patterns of wave fields is one of
the signs of noticeable reconstruction in the distribution
of shear ocean flows in the water column.



Conclusions

Thus, we have solved the problem of IGW field in a
stratified medium of finite depth with multidirectional
shear flows. To solve the problem analytically, we used
a constant distribution of the buoyancy frequency and
three different linear dependences of the shear flown on
depth. Using the model hydrology, we obtained ana-
lytic expressions describing the dispersion dependences
which can be expressed in terms of the modified Bessel
function with imaginary index. If the Miles stability
condition is satisfied and the Richardson numbers are
large, the Debye asymptotics of the modified Bessel
function with imaginary index were used to construct
analytical solutions. The properties of the dispersion
equation are studied and the main analytical proper-
ties of the dispersion curves are investigated for dif-
ferent models of the shear velocity distribution. The
dispersion curves for the first model are two families
of open curves, and each dispersion curve is bounded.
The dispersion curves for the second model consist of
only one family, and each curve is enclosed in the corre-
sponding semi-infinite interval. The dispersion curves
corresponding to the third model consist of one family
of closed curves. The phase patterns of the generated



IGW fields are numerically calculated for different mod-
els of wave generation. The results show that there is
a significant dependence of the phase structure of the
generated IGW fields on the relation between the bot-
tom and near-surface amplitudes for different models
of shear flows.
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