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The problem of the harmonic internal gravity wave dynamics in a stratified ocean of
finite depth with shear flows is solved. Stratification with constant distribution of the
buoyancy frequency and various linear dependences of the shear flow on depth were
used for the analytical solution of the problem. Dispersion dependences were obtained,
which are expressed through a modified Bessel function of an imaginary index. The
Debye asymptotics of the modified Bessel function of the imaginary index were used to
construct analytical solutions under the Miles stability condition and large Richardson
numbers. The asymptotic properties of the dispersion equation are studied. The main
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Introduction

Among the large variety of observed wave pro-
cesses of different physical nature in the ocean and
the Earth’s atmosphere, the interaction between
generated waves and hydrodynamic flows is of par-
ticular interest [Fabrikant and Stepanyants, 1998;
Miropol’skii, 2001; Morozov, 2018; Mei et al., 2017;
Velarde et al., 2018]. The motion in a stratified
medium is one of the main factors that influence
the dynamics of internal gravity waves (IGW) both
under natural conditions and in technical devices.
In the current scientific research, asymptotic meth-
ods for studying analytic models of wave genera-
tion are used to analyze the dynamics of IGW in
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natural stratified media with the presence of cur-
rents. In the linear approximation, the existing ap-
proaches to describing the wave pattern of the gen-
erated IGW fields are based on the representation
of wave fields by Fourier integrals and their asymp-
totic analysis [Bulatov and Vladimirov, 2012, 2019].
When studying the real ocean environment, it is
necessary to consider the IGW propagating against
the background of mean currents with a vertical ve-
locity shear; the variations in the vertical speed are
tens of cm/s and m/s, that is, they are of the same
order as the maximum IGW speeds. Such flows
must significantly influence the IGW propagation
[Massel, 2015; Pedlosky, 2010; Sutherland, 2010].
If the scale of variations in the horizontal flows is
much larger than the length of IGW and the scale
of time variations is much larger than the periods of
internal waves, then a natural mathematical model
represents the case of stationary and horizontal ho-
mogeneous shear flows [Fabrikant and Stepanyants,
1998; Fraternale et al., 2018; Miropol’skii, 2001].
The goal of this work is to construct analytic so-
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lutions describing the IGW fields in a stratified
medium of finite depth with shear flows.

Problem Formulation

We consider a vertically stratified medium of fi-
nite depth 𝐻. Let (𝑈(𝑧), 𝑉 (𝑧)) be the vector of
shear flow at depth 𝑧. The further analysis starts
from the linearized system of hydrodynamic equa-
tions for the unperturbed state; the system has the
form [Bulatov and Vladimirov, 2019; Fabrikant and
Stepanyants, 1998; Miles, 1961; Miropol’skii, 2001]

𝜌0
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𝜕

𝜕𝑦
,

where (𝑈1, 𝑈2, 𝑊 ) are components of the per-
turbed velocity, (𝑝, 𝜌) are perturbations of the pres-
sure and density, and 𝜌0(𝑧) is the unperturbed den-
sity of the medium. Using the Boussinesq approx-
imation, one can obtain the equation for the verti-
cal component of velocity [Bulatov and Vladimirov,
2012, 2019]
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,

where𝑁2(𝑧) is the squared Brunt-Vaisala frequency
(buoyancy frequency) and 𝑔 is the acceleration due

to gravity. The boundary conditions are taken in
the form (the vertical axis 𝑍 is directed upward)

𝑊 = 0 at 𝑧 = 0,−𝐻. (2)

We further use the following assumptions. The
Brunt-Vaisala frequency is assumed to be constant:
𝑁(𝑧) = 𝑁 = const. The shear flow is assumed
to be one-dimensional: 𝑉 (𝑧) ≡ 0. The func-
tion 𝑈(𝑧) is a linear function of depth: 𝑈(𝑧) =
𝑈0 + (𝑈0 − 𝑈𝐻)𝑧/𝐻, 𝑈0 = 𝑈(0) > 0, 𝑈𝐻 =
𝑈(−𝐻) < 0. This hydrology model (constant dis-
tribution of buoyancy frequency, multidirectional
shear flows) is widely used in real oceanological cal-
culations and allows one to take into account the
main features of wave dynamics with regard to the
real variations in the density of the marine environ-
ment observed in full-scale measurements of IGW
in the ocean, as well as to investigate the prob-
lem analytically [Velarde et al., 2018]. The results
of numerous studies of natural measurements of in-
ternal waves, flows, and their interaction in various
regions of the World Ocean were analyzed in [Frey
et al., 2017; Mei et al., 2017; Morozov, 2018], in
particular, by using this model. The generation of
IGW by a shear current in the Kara Gates Strait
was considered in [Morozov, 2003, 2008, 2017]; in
this case, the flow fluctuates with the tidal fre-
quency, and the IGW packets appear at intervals
determined by the shear instability of flows. Simi-
lar results were obtained in [Morozov, 2018] using
the example of the Strait of Gibraltar, where the
measurements of flows and IGW whose amplitude
can be tens of meters are considered. Numerous
measurements of bottom flows in deep waters of
the North Atlantic show that, at high depths, the
gradients of shear velocities and the buoyancy fre-
quency values are small and the main variations
in these hydrophysical parameters are observed in
the upper layers of the ocean at depths of about
100–200 meters, which allows one to use the pro-
posed hydrology model and the linear dependence
of shear flows on the depth [Frey et al., 2017]. We
also assume that the Miles stability conditions are
satisfied for the Richardson number:

𝑅𝑖 = 𝑁2(
𝑑𝑈

𝑑𝑧
)−2 >

1

4

[Fabrikant and Stepanyants, 1998; Miles, 1961; Mi-
ropol’skii, 2001]. The characteristic values of the
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Richardson numbers in the waters of the World
Ocean (Atlantic Ocean, Arctic basin seas) in the
absence of dynamic instability of flows range from
2 to 20 [Velarde et al., 2018]. Then Eqs. (1)–(2)
can be represented in dimensionless variables

𝑥* = 𝜋𝑥/𝐻, 𝑦* = 𝜋𝑦/𝐻, 𝑧* = 𝜋𝑧/𝐻,

𝜔* = 𝜔/𝑁, 𝑡* = 𝑡𝑁,

𝑀(𝑧*) = 𝑈(𝑧)𝜋/𝑁𝐻 = 𝑎+ 𝑏𝑧*

𝑎 = 𝜋𝑈0/𝑁𝐻, 𝑏 = (𝑈0 − 𝑈𝐻)/𝑁𝐻

in the form (asterisks “*” are omitted)

(
𝜕

𝜕𝑡
+𝑀(𝑧)

𝜕

𝜕𝑥
)2Δ𝑊 +𝑁2(𝑧)Δ2𝑊 = 0, (3)

𝑊 = 0 at 𝑧 = 0,−𝜋.

The above-introduced parameter 𝑏 is the inverse
square root of the Richardson number: 𝑏 = 1/

√
𝑅𝑖,

and parameter 𝑎 is the ratio of the near-surface
flow amplitude 𝑈0 to the maximum group velocity
of IGW propagation in the ocean, equal to 𝑁𝐻/𝜋
[Bulatov and Vladimirov, 2012, 2019].

Analytical Solutions

We seek the solution of problem (3) in the form
of harmonic waves: 𝑊 (𝑡, 𝑥, 𝑦, 𝑧) = 𝜙(𝑧) exp(𝑖(𝜔𝑡−
𝜇𝑥−𝜈𝑦). Then to determine the function 𝜙(𝑧), we
have

𝜕2𝜙

𝜕𝑧2
+ 𝑘2((𝜔 − 𝜇𝑀(𝑧))−2 − 1)𝜙 = 0, (4)

𝜙 = 0 for 𝑧 = 0,−𝜋, 𝑘2 = 𝜇2 + 𝜈2.
We assume that two linearly independent solu-

tions of problem (4) exist

𝑓±(𝑧) =
√︀

2𝛽𝑟(𝑧)𝐼±𝑖𝜆(𝛽𝑟(𝑧)),

where 𝐼±𝑖𝜆 is the modified Bessel function with
imaginary index 𝑖𝜆, 𝑟(𝑧) = 𝜔 − 𝜇𝑀(𝑧),

𝜆 =
√︀

𝛽2 − 1/4, 𝛽 = 𝑘/𝑏𝜇. The solution satis-
fying the condition at 𝑧 = 0 becomes: 𝜙(𝑧) =
𝑖(𝑓+(0)𝑓−(𝑧) − 𝑓−(0)𝑓+(𝑧)). The functions 𝑓±(𝑧)

are complex conjugate, and hence the solution 𝜙(𝑧)
is real. Since we assume that the Miles stability
condition is satisfied for the large Richardson num-
bers, we have 𝑏2 < 4. In particular, this implies
that 𝛽2 > 1/4, and hence the values of 𝜆 are real.
The requirement to satisfy the boundary condition
at 𝑧 = −𝜋 determines the dispersion relation

𝐼𝑖𝜆(𝛽𝑟(0))𝐼−𝑖𝜆(𝛽𝑟(−𝜋))−

𝐼−𝑖𝜆(𝛽𝑟(0))𝐼𝑖𝜆(𝛽𝑟(−𝜋)) = 0. (5)

The dispersion relation for a similar hydrology
model (constant buoyancy frequency, linear profile
of the shear flow, the finite thickness of a strat-
ified layer) is obtained in [Gavrileva et al., 2019]
in the form similar to (5), and it was noted that
to obtain a solution of this equation is a difficult
mathematical problem. A more difficult problem is
to study the analytical properties of the obtained
dispersion equation, since this allows one to ob-
tain asymptotic expressions for the IGW fields un-
der different modes of wave generation. Further,
we will study the main characteristic features of
solutions of dispersion equation (5) and construct
asymptotic representations of the solution of this
equation. The solutions of this equation can be
represented in the form 𝜔𝑛(𝜇, 𝜈) or 𝜇𝑛(𝜈, 𝜔). In this
paper, we study the dispersion dependence 𝜇𝑛(𝜈)
(here 𝜔 is a fixed parameter) for 𝜔 = 0.54, 𝑎 = 0.8.
In the model of shear flows, we take 𝑎 < 1 which
means that the amplitudes of shear flows do not
exceed the maximum group velocity of IGW prop-
agation, which is observed under the real condi-
tions in the World Ocean. Parameter 𝜔 < 1 de-
termines the ratio of the free wave frequency to
the maximum value of the buoyancy frequency and
describes the IGW propagation with a frequency
almost two times smaller than the buoyancy fre-
quency, and this phenomenon is also observed in
the real ocean environment [Mei et al., 2017; Mo-
rozov, 2018; Velarde et al., 2018].
Starting from numerous results of oceanological

observations of shear flows in the waters of the
World Ocean, we can consider three model distri-
butions of one-dimensional shear flow [Frey et al.,
2017; Morozov, 2018; Velarde et al., 2018]. In this
paper, we use the hydrology model of linear shear
flow including the possibility that the flow changes
its direction as the depth increases.
The first model: Unidirectional flow, the flow
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Figure 1. Three linear models of shear flows.

does not change its direction with increasing depth,
the flow amplitude decreases with depth, but at
the bottom, the amplitude of the bottom flow is
different from zero 𝑈𝐻 ̸= 0 (line 1 in Figure 1).
The second model: Unidirectional flow, the flow

amplitude decreases with depth, and the amplitude
of the bottom flow is small as compared to the am-
plitude of the near-surface flow 𝑈𝐻 = 0 (line 2 in
Figure 1).
The third model: Multidirectional flows, the flow

changes its direction with increasing depth, the am-
plitude of the bottom flow is comparable in order
with the amplitude of the near-surface flow (line 3
in Figure 1). We use parameters 𝑏 = 0.2, 𝑅𝑖 = 25
for the first model, 𝑏 = 𝑎/𝜋, 𝑅𝑖 = 15.3 for the sec-
ond model, and 𝑏 = 0.39, 𝑅𝑖 = 6.5 for the third
model.

Asymptotic Results

We consider the asymptotic solutions of disper-
sion equation (5) under the assumption that pa-
rameter 𝛽 is large; then 𝜆 can be replaced by |𝛽|.
We use the Debye asymptotics (𝜆 ≫ 1) of the mod-
ified Bessel function with imaginary index 𝐼±𝑖𝜆(𝜏)
which, in contrast to the classical asymptotics as
𝜏 → ∞, determines the behavior of the function
𝐼±𝑖𝜆(𝜏) for large values of both index 𝜆 and ar-
gument 𝜏 . The modified Bessel function 𝐼±𝑖𝜆(𝜏)
satisfies the equation [Watson, 1995]

𝜏2𝑌 ′′(𝜏) + 𝜏𝑌 (𝜏) + (𝜆2 − 𝜏2)𝑌 (𝜏) = 0,

𝑌 (𝜏) = 𝐼±𝑖𝜆(𝜏).

Using the change of variable 𝑌 (𝜏) = 𝑍(𝜏)/
√
𝜏 , we

can represent this equation in the form

𝑍 ′′(𝜏) + (1/4 + 𝜆2 − 𝜏2)𝜏−2𝑍(𝜏) = 0. (6)

For 𝜆 ≫ 1/4, Eq. (6) becomes simpler

𝑍 ′′(𝜏) + 𝑞(𝜏)𝑍(𝜏) = 0,

𝑞(𝜏) = (𝜆2 − 𝜏2)𝜏−2. (7)

Then the WKB asymptotics of Eq. (7) for 𝜏 < 𝜆,
which describes the oscillating solutions, becomes

𝑍(𝜏) ≈ 𝑞(𝜏)−1/4 exp(𝑖

∫︁ √︀
𝑞(𝜏)𝑑𝜏),

∫︁ √︀
𝑞(𝜏)𝑑𝜏 =

√︀
𝜆2 − 𝜏2 − 𝜆

2
ln

𝜆+
√
𝜆
2 − 𝜏2

𝜆−
√
𝜆2 − 𝜏2

For exponentially increasing or decreasing solu-
tions, the WKB asymptotics of Eq. (7) for 𝜏 > 𝜆
becomes

𝑍(𝜏) ≈ 𝐷±(−𝑞(𝜏))−1/4 exp(𝑖

∫︁ √︀
−𝑞(𝜏)𝑑𝜏),

∫︁ √︀
−𝑞(𝜏)𝑑𝜏 =

√︀
𝜏2 − 𝜆2−

𝜆 arctan(
√︀

𝜏2 − 𝜆2/𝜆).

Further, we consider only function 𝐼−𝑖𝜆(𝜏) (the
function 𝐼−𝑖𝜆(𝜏) is the complex conjugate of 𝐼𝑖𝜆(𝜏)
and 𝐼𝑖𝜆(−𝜏) = exp(−𝜋𝜆)𝐼𝑖𝜆(𝜏)). To determine
the multipliers 𝐷±, it is required to compare the
WKB asymptotics with the classical asymptotics
of 𝐼−𝑖𝜆(𝜏) as 𝜏 → ∞

Re 𝐼−𝑖𝜆(𝜏) ≈ exp(𝜏)/
√
2𝜋𝜏,

Im 𝐼−𝑖𝜆(𝜏) ≈ exp(−𝜏 + 𝜋𝜆)/2
√
2𝜋𝜏

The expression for theWKB asymptotics of func-
tion 𝐼−𝑖𝜆(𝜏) for 𝜏 > 𝜆 has the form

Re 𝐼−𝑖𝜆(𝜏) ≈ (𝜏2 − 𝜆2)−1/4 exp(Λ+)/
√
2𝜋,
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Im 𝐼−𝑖𝜆(𝜏) ≈ (𝜏2 − 𝜆2)−1/4 exp(Λ−)/2
√
2𝜋, (8)

Λ± = ±
√︀

𝜏2 − 𝜆2 ∓

𝜆 arctan(
√︀

𝜏2 − 𝜆2/𝜆) + 𝜋𝜆/2.

We analytically continue the first formula in (8)
from the domain 𝜏 > 𝜆 in the domain 𝜏 < 𝜆
through the upper half-plane of the complex vari-
able 𝜏 and, as a result, we obtain

𝐼−𝑖𝜆(𝜏) ≈ (𝜏2 − 𝜆2)−1/4 exp(𝛼)/
√
2𝜋, (9)

𝛼 = −𝑖(
√︀

𝜆2 − 𝜏2−

𝜆

2
ln

𝜆+
√
𝜆2 − 𝜏2

𝜆−
√
𝜆2 − 𝜏2

− 𝜋/4) + 𝜋𝜆/2.

Then the Debye asymptotics of the modified
Bessel function 𝐼−𝑖𝜆(𝜏) with imaginary index (for
large values of both index 𝜆 and argument 𝜏) is
obtained by substituting 𝜆𝑟 in (8) and (9) instead
of 𝜏 [Watson, 1995]

𝐼−𝑖𝜆(𝜆𝑟) ≈ (𝑟2 − 1)−1/4×

exp(±𝑖(𝜆Θ− 𝜋/4) exp(𝜋𝜆/2)/
√
2𝜋𝜆, (10)

Θ =
√︀

1− 𝑟2 − 1

2
ln

1 +
√
1− 𝑟2

1−
√
1− 𝑟2

), 0 < 𝑟 < 1,

Re 𝐼±𝑖𝜆(𝜆𝑟) ≈ (𝑟2 − 1)−1/4×

exp(𝜆(Φ(𝑟) + 𝜋/2))/
√
2𝜋𝜆,

Im 𝐼±𝑖𝜆(𝜆𝑟) ≈ 𝜇(𝑟2 − 1)−1/4× (11)

exp(−𝜆(Φ(𝑟)− 𝜋/2))/2
√
2𝜋𝜆

Φ(𝑟) =
√︀

𝑟2 − 1− arctan(
√︀

𝑟2 − 1), 𝑟 > 1.

Figure 2. Singular points of dispersion equation
solutions, 1 – first model, 2 – second model, 3 –
third model.

The value 𝑟 = 0 is a branch point, and 𝑟 = 1 is
the turning point at which the asymptotics (10),
(11) do not work. If 𝑟 < 0, then 𝐼𝑖𝜆(𝜆𝑟) =
exp(−𝜋𝜆)𝐼𝑖𝜆(−𝜆𝑟), 𝐼−𝑖𝜆(𝜆𝑟) = exp(𝜋𝜆)𝐼−𝑖𝜆(−𝜆𝑟).
Figure 2 illustrates the geometry of location of

singular points, which determines the main qual-
itative characteristics of the behavior of disper-
sion curves on the plane of variables (Ψ, 𝜇), where
Ψ = 𝜔 − 𝜇𝑀(𝑧). Figure 2 shows 𝑟(0) (line 1) and
𝑟(−𝜋) (line 2) as functions of 𝜇 for all three models.
The points 𝑎 and 𝑑 are branch points; they corre-
spond to the values of 𝜇 at which 𝑟(0) = 𝑟(−𝜋) = 0,
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Figure 3. Dispersion curve and its approxima-
tions in the first model.

and for the second model, there exists only one
branch point 𝑑. The cuts on the complex plane
of the variable 𝜇 are drawn in the intervals of the
axis 𝑅𝑒𝜇, where 𝑟(0)𝑟(−𝜋) < 0. In the first model,
the cuts on the complex plane 𝜇 pass from 𝑎 to 𝑑,
for the second model, the cuts pass from the point
𝑑 to +∞, and for the third model, the cuts pass
from −∞ to point 𝑎 and from the point 𝑑 to +∞.
The points 𝑏, 𝑐, 𝑒, 𝑓 (the first and second models)
are turning points and determine the values of the
variable 𝜇 for which the wave solution exists, i.e.,
these are the points at which |𝑟(0)| = |𝑟(−𝜋)| = 1.
For the second model, the turning points are 𝑏, 𝑓 .
In dispersion equation (5), the first and second

terms are complex conjugate, and hence this equa-
tion can be represented as

Im(𝐼𝑖𝛽(𝛽𝑟(0))𝐼−𝑖𝛽(𝛽𝑟(−𝜋))) = 0. (12)

Difficulties in obtaining numerical solutions of
dispersion equation (12) arise due to the fact that
the eigenvalues have accumulation points as 𝜈 → 0;
these points are branch points (points 𝑎 and 𝑑 in
Figure 2), and in the first model as 𝜈 → ∞, these
are also turning points (points 𝜇𝑐 and 𝜇𝑒). There-
fore, we further solve Eq. (12) asymptotically for
the three models of shear flow.

The first model. The dispersion curves con-
sist of two families 𝜇𝑛1(𝜈), 𝜇𝑛2(𝜈). First, we con-
sider the family of dispersion curves 𝜇𝑛1(𝜈). All
curves in this family lie in the interval (𝜇𝑐, 𝜇𝑑)
which is divided into two intervals by the turning
point 𝜇𝑏. Figure 2 shows that both functions in
Eq. (12) oscillate in the interval (𝜇𝑏, 𝜇𝑑). We re-
place each of them by asymptotics (10) and obtain

𝛽(Θ(𝑟(−𝜋))−Θ(𝑟(0))) = 𝜋𝑛, 𝑛 = 1, 2, ... (13)

This implies that

𝜈𝑛1(𝜇) = ± |𝜇| ((𝜋𝑛𝑏)2(Θ(𝑟(−𝜋))−

Θ(𝑟(0)))−2 − 1)1/2. (14)

The dependence 𝜇𝑛1(𝜈) can be derived from ex-
pressions (13), (14) by standard computational al-
gorithms. Figure 2 shows that, in the interval
(𝜇𝑐, 𝜇𝑏), the second function in (12) oscillates and
the first function does not oscillate. Then replac-
ing the second function in (12) by asymptotics (11)
and the first function by the asymptotics (10) we
can obtain

|𝛽| (Θ(𝑟(−𝜋)))− 𝜋/4 + 0.5 arctan×

(exp(−2 |𝛽|Φ(𝑟(0)))) = 𝜋𝑛, 𝑛 = 1, 2, ... (15)

In contrast to (12), Eq. (15) can easily be solved
numerically, because the left-hand side of this re-
lation (asymptotic approximation of the phase) is
a strictly monotonous function. Figure 3 presents
the dispersion curve 𝜇11(𝜈) calculated numerically
(solid line), its approximation calculated from for-
mula (14) (dotted line), and a numerical solution
of Eq. (15) (dashed line). We consider the family
of dispersion curves 𝜇𝑛2(𝜈). All dispersion curves
of this family belong to the interval (𝜇𝑎, 𝜇𝑒). Fig-
ure 2 shows that the second function in (12) oscil-
lates, and the first function does not oscillate, and
the contribution of the first function to the phase
is zero in this case, because the turning point 𝜇𝑓

lies outside the interval (𝜇𝑎, 𝜇𝑒). As a result, we
obtain

|𝛽|Θ(𝑟(−𝜋))− 𝜋/4 = 𝜋𝑛, 𝑛 = 1, 2, ... (16)

The solution of (16) has the form

𝜈𝑛2(𝜇) = ± |𝜇| (((𝜋𝑛− 𝜋/4)𝑏)2×

(Θ(𝑟(−𝜋)))−2 − 1)1/2. (17)

We can also obtain the dependence 𝜇𝑛2(𝜈) from
expressions (16), (17) by standard computations
algorithms. Figure 4 presents the dispersion curve
𝜇21(𝜈) calculated numerically (solid line) and its
approximation calculated by formula (17) (dotted
line).

6 of 11



ES4004 bulatov and vladimirov: dynamics of internal gravity waves ES4004

Figure 4. Dispersion curve and its approxima-
tions in the first model.

The second model. In this case, there is
only one family of dispersion curves, namely, 𝜇𝑛(𝜈).
All other curves of this family lie in (−∞, 𝜇𝑑),
which is divided by the turning point 𝜇𝑏 into two
intervals. In the interval (𝜇𝑏, 𝜇𝑑), the solution of
dispersion equation (12) has the form (15), where
𝑟(−𝜋) = 𝜔. In the interval (−∞, 𝜇𝑏), dispersion
equation (12) has a form similar to (15), where
𝑟(−𝜋) = 𝜔. For large values of 𝜈, we have the
asymptotics

𝜇𝑛(𝜇) = −𝐵𝑛𝜈, 𝐵𝑛 = (((𝜋𝑛− 𝜋/4)𝑏)2×

(Θ(𝑟(−𝜋)))−2 − 1)1/2. (18)

Figure 5 shows the dispersion curve 𝜇1(𝜇) calcu-
lated numerically (solid line), its approximation by
formula (14) (dotted line), and a numerical solution
of Eq. (15) (dashed line).

Figure 5. Dispersion curve and its approxima-
tions in the second model.

Figure 6. Dispersion curve and its approxima-
tions in the third model.

The third model. In this case, there is one
family of closed curves which we denote by 𝜇𝑛(𝜇)
(each curve consists of two branches, 𝜇+

𝑛 (𝜇) is the
upper branch, 𝜇−

𝑛 (𝜇) is the lower branch). All
curves of this family lie in the interval (𝜇𝑎, 𝜇𝑑). In
this interval, there exists only one turning point 𝜇𝑏.
In the interval (𝜇𝑏, 𝜇𝑑), the solution of the disper-
sion equation has the form (14), and in the interval
(𝜇𝑎, 𝜇𝑏), the solution of the dispersion equation is
obtained by solving Eq. (15) numerically.
Figure 6 shows the dispersion curve 𝜇1(𝜇) calcu-

lated numerically (solid line), its approximation by
formula (14) (dashed line), and a numerical solu-
tion of Eq. (15) (dash-dotted line).

Wave Fields Phase Structures

To study the induced IGW in the stratified ocean
with shear flows, it is required to solve problem (1)–
(2) with a nonzero right-hand side 𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0)
whose specific form is determined by the form of
the perturbation source. If a vertically directed
force is considered as the source, then we have

𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0) =

𝛿′(𝑡)𝛿(𝑧 − 𝑧0)(𝛿
′′(𝑥)𝛿(𝑦) + 𝛿′′(𝑦)𝛿(𝑥)).

In the case of point mass source, we have 𝑄(𝑡, 𝑥, 𝑦,
𝑧, 𝑧0) = 𝛿′′(𝑡)𝛿(𝑥)𝛿(𝑦)𝛿′(𝑧−𝑧0). If this function has
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the form

𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0) = 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧 − 𝑧0) exp(𝑖𝜔𝑡),

then we consider the Green function of problem (3)
for an oscillating point source of perturbations lo-
cated at depth 𝑧0. Obviously, since the problem un-
der study is linear, using the obtained asymptotic
solutions for the Green function, we further can ob-
tain representations for the IGW fields generated
by arbitrary nonlocal and nonstationary sources
in the stratified ocean with shear flows [Bulatov
and Vladimirov, 2012; Svirkunov and Kalashnik,
2014]. One of the main sources of IGW genera-
tion in the ocean can be moving atmospheric cy-
clones. The wave fields generated by this gener-
ation mechanism play a significant role in various
mechanisms of energy transfer in the depth of the
ocean. The experimental detection of IGW trace
from a moving hurricane was one of the most im-
pressive achievements in oceanology [Furuichi et
al., 2008; Voelker et al., 2019]. At large distances,
the real perturbation sources (hurricane, pertur-
bations of atmospheric pressure, cyclone) allow a
physically justified approximation by a system of
point localized sources taken with certain weights.
As a point non-stationary source of IGW genera-
tion in the real ocean, one can also consider a steep
slope of a transverse ridge in straits, where shear
flows and periodic tidal flows take place [Frey et
al., 2017; Morozov, 2003, 2008, 2018]. Such an ap-
proach is physically justified and permits solving
many problems of modeling of linear IGW genera-
tion in the ocean with regard to shear flows [Velarde
et al., 2018]. At large distances from the pertur-
bation sources, the exact form of the source does
not practically influence the wave characteristics of
IGW, which are determined by parameters of the
stratified medium and the corresponding dispersion
laws [Bulatov and Vladimirov, 2019; Bulatov et al.,
2019; Svirkunov and Kalashnik, 2014]. In the gen-
eral case, the solution is a sum of vertical wave
modes: 𝑊 =

∑︀
𝑛𝑊𝑛, where each mode is a super-

position of plane waves of the form

𝑊𝑛 =

∫︁ ∞

−∞
𝐹𝑛(𝑧, 𝜈)×

exp(−𝑖(𝜇𝑛(𝜈)𝑥+ 𝜈𝑦 − 𝜔𝑡))𝑑𝜈, (19)

where the eigenfunctions of spectral problem (3)
are contained in the amplitude 𝐹𝑛(𝑧, 𝜈) which is a

Figure 7. Phase structure for first model.

slowly varying function of variable 𝜈. The integral
of the form (19) can be calculated at large distances
from IGW perturbation sources by the method of
stationary phase [Bulatov and Vladimirov, 2012,
2019; Bulatov et al., 2019].
We introduce the following notation for the phase:

Ω = 𝜇𝑛(𝜈) + 𝜈𝑦 − 𝜔𝑡. In the third model, it is re-
quired separately to consider the upper 𝜇+

𝑛 (𝜇) and
lower 𝜇−

𝑛 (𝜇) branches of the corresponding disper-
sion curve. We use the stationary phase condition
(𝜕Ω/𝜕𝜈) = 0 to obtain the family of lines of con-
stant phase with parameter 𝜈:

𝑥 =
Ω+ 𝜔𝑡

𝜇𝑛(𝜈)− 𝜈𝑑𝑛(𝜈)
,

𝑦 =
𝑑𝑛(𝜈)(Ω + 𝜔𝑡)

𝜇𝑛(𝜈)− 𝜈𝑑𝑛(𝜈)
, (20)

𝑑𝑛(𝜈) =
𝑑𝜇𝑛(𝜈)

𝑑𝜈
.

Figure 7–Figure 10 show the lines of constant
phase (solid lines) for 𝑡 = 4, Ω = 2𝜋𝑘, 𝑘 =
1, 2, ..., 6, calculated for the first wave mode of the
generated IGW fields. The dashed lines in Fig-
ure 7–Figure 9 are the wave fronts with the half-
opening angle 𝛼 = arctan(𝜇′

1(𝜈
*)), where 𝜈* is a

root of the equation 𝜇′′
1(𝜈

*) = 0.
Figure 7–Figure 8 present the results of calcula-

tions for the first model, Figure 7 shows the lines
of equal phase for 𝜇11(𝜈), and Figure 8 shows the
lines of equal phase for 𝜇12(𝜈). Figure 9 presents
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Figure 8. Phase structure in the first model.

the lines of equal phase for 𝜇1(𝜈) (second model).
Figure 10 shows the lines of equal phase for 𝜇1(𝜈)
(third model). For this model, expressions (20) de-
scribe the wave pattern of the generated IGW field
at 𝑥 > 0. At 𝑥 < 0, a similar family of lines of con-
stant phase is described by relations (20), where it
is necessary to use 𝜇−

𝑛 (𝜈) instead of 𝜇+
𝑛 (𝜈) in the

equation for the phase Ω. The results show that
the phase structure of the generated IGW fields
significantly depends on the relation between the
amplitudes of the bottom and near-surface shear
flows.
It should be noted that, for a constant (inde-

pendent of the depth) shear flow, the wave pattern
of the generated IGW fields depends on frequency
𝜔, and, for example, annular waves can exist
only at small amplitudes [Bulatov and Vladimirov,
2018]. For linear shear flows, the wave pattern
of IGW is determined by the flow properties. In
particular, the unidirectional flow generates both

Figure 9. Phase structure in the second model.

Figure 10. Phase structure in the third model.

wedge-shaped (longitudinal) and annular (trans-
verse) waves (Figure 7–Figure 9), and the multidi-
rectional flow generates only annular (transverse)
waves (Figure 10).
The wave pattern of a separate wave mode of the

generated IGW fields in the first and second models
is a system of wedge-shaped (longitudinal) and an-
nular (transverse) waves (Figure 7–Figure 9). The
annular (transverse) waves occupy the whole spa-
tial domain inside the wedge with half-opening an-
gle 𝛼, and the length of the transverse wave of
mode 𝑛 for 𝑦 = 0 is equal to 2𝜋/𝜇𝑛(0). The
wedge-shaped (longitudinal) waves of each mode
are bounded by both the wave front with the half-
opening angle 𝛼 and the wave front (whose position
is determined by the asymptotics (18) describing
the behavior of 𝜇𝑛(𝜈) for large 𝜈) with the half-
opening angle 𝛽 = arctan𝐵𝑛 < 𝛼. Since there
are two distinct families of dispersion curves in the
first model, there also exists a wave system of only
wedge-shaped (longitudinal) waves (Figure 8).
In the third model, if the amplitude of the bot-

tom and near-surface flows are equal to each other,
then the corresponding phase pattern of the wave
field is symmetric. If the amplitudes of the bot-
tom and near-surface flows are distinct, then the
phase pattern of the generated IGW fields becomes
asymmetric. Therefore, the asymmetry of phase
patterns of wave fields is one of the signs of no-
ticeable reconstruction in the distribution of shear
ocean flows in the water column.
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Conclusions

Thus, we have solved the problem of IGW field
in a stratified medium of finite depth with multi-
directional shear flows. To solve the problem an-
alytically, we used a constant distribution of the
buoyancy frequency and three different linear de-
pendences of the shear flown on depth. Using the
model hydrology, we obtained analytic expressions
describing the dispersion dependences which can
be expressed in terms of the modified Bessel func-
tion with imaginary index. If the Miles stability
condition is satisfied and the Richardson numbers
are large, the Debye asymptotics of the modified
Bessel function with imaginary index were used to
construct analytical solutions. The properties of
the dispersion equation are studied and the main
analytical properties of the dispersion curves are
investigated for different models of the shear ve-
locity distribution. The dispersion curves for the
first model are two families of open curves, and
each dispersion curve is bounded. The dispersion
curves for the second model consist of only one fam-
ily, and each curve is enclosed in the corresponding
semi-infinite interval. The dispersion curves corre-
sponding to the third model consist of one family
of closed curves. The phase patterns of the gen-
erated IGW fields are numerically calculated for
different models of wave generation. The results
show that there is a significant dependence of the
phase structure of the generated IGW fields on the
relation between the bottom and near-surface am-
plitudes for different models of shear flows.
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