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In the theory of internal waves in the coastal ocean, linear stratification plays an
exceptional role. This is because the nonlinearity coefficient in KdV theory vanishes,
and in the case of large amplitude waves, the DJL theory linearizes and fails to give
solitary wave solutions. We consider small, physically consistent perturbations of a
linearly stratified fluid that would result from a localized mixing near a particular
depth. We demonstrate that the DJL equation does yield exact internal solitary waves
in this case. These waves are long due to the weak nonlinearity, and we explore how
this weak nonlinearity manifests during shoaling. KEYWORDS: Internal waves; DJL
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1. Introduction

Internal waves are an important physical phe-
nomenon in the world’s oceans primarily because
of their role in cascading energy from large to small
scales where they break, dissipate and mix. The
two primary generation mechanisms for internal
waves are tide-topography interactions and wind
stress at the ocean surface, each contributing ap-
proximately half of the energy in the oceanic inter-
nal wave field [Waterhouse et al., 2014]. Internal
waves have several interesting properties. The fre-
quency of a linear internal plane waves is a function
of the direction of its wave vector in the vertical
plane which has several far reaching consequences.
For example wave energy propagates along wave
crests rather than in the direction of phase prop-
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agation and waves reflect off a bottom slope with
their angle to the vertical preserved rather than
their angle to the boundary (i.e. Snell’s law). One
consequence of the latter is wave focusing after ups-
lope reflection which increases wave energy density
and transfers energy to shorter wavelengths.
Another interesting internal wave phenomenon

are internal solitary-like waves (ISWs) which are
ubiquitous in coastal regions of the world’s oceans
where they predominantly form via the nonlinear-
dispersive evolution of internal tides (internal waves
of tidal frequency generated by tide-topography
interaction) [Jackson et al., 2012]. These waves
propagate horizontally in the wave guide bounded
by the surface and bottom. For a continuously
stratified fluid there are a discrete set of modes
which have different vertical structures. By far the
most commonly observed and most energetic ISWs
are mode-one waves. Mode-one waves are char-
acterized by having isopycnals which are all verti-
cally displaced in the same direction: downward for
waves of depression and upward for waves of eleva-
tion. Mode-two waves are observed less frequently
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[Shroyer et al., 2010a; Liang, 2019]. They have
ispopycnal displacements in one direction in the
upper part of the water column and in the oppo-
site direction in the lower part and propagate much
more slowly. In general the direction of isopycnal
displacements changes sign 𝑛−1 times in a mode-𝑛
wave.
Fully nonlinear internal solitary waves can be

modeled with the Dubreil-Jacotin-Long (DJL) equa-
tion [Turkington et al., 1991; Lamb and Wan, 1998;
Stastna and Lamb, 2002]. This equation has the
appealing feature that it can model fully nonlinear-
dispersive waves however as it can only model
mode-one waves of permanent form it can not be
used to investigate the interaction of nonlinear in-
ternal waves or their evolution as they propagate
through a changing environment, e.g. a region with
variable water depth or currents. Long weakly-
nonlinear ISWs and other long weakly-nonlinear
horizontally propagating waves such as internal
bores can be modeled with the well-known Korteweg-
de Vries (KdV) equation

𝐵𝑡 + 𝑐0𝐵𝑥 + 𝛼𝐵𝐵𝑥 + 𝛽𝐵𝑥𝑥𝑥 = 0 (1)

which does enable investigations of an evolving
wave field including shoaling waves after the ad-
dition of a shoaling term [Grimshaw et al. 2004;
Lamb and Xiao, 2014]. This equation has solitary
wave solutions which have an number of fascinat-
ing properties. They are waves of permanent form
with a very particular shape that arises through
a balance of nonlinear and dispersive effects. As
their amplitude increases they get narrower and
their propagation speed increases. Two solitary
waves of different amplitude can therefor interact
when a large wave catches up to a smaller wave
and after a complicated nonlinear interact the two
waves re-emerge with exactly the same amplitudes
and shape that they started with, leading to the
name ‘soliton’ for waves with this special property.
Solitary waves solutions of the KdV equation are
waves of depression if 𝛼 < 0 and waves of elevation
if 𝛼 > 0.
In the ocean internal waves are often large enough

to necessitate the inclusion of higher-order nonlin-
earity in weakly-nonlinear models which leads to
the Gardner equation

𝐵𝑡 + 𝑐0𝐵𝑥 + 𝛼𝐵𝐵𝑥 + 𝛼1𝐵
2𝐵𝑥 + 𝛽𝐵𝑥𝑥𝑥 = 0. (2)

Further extensions are possible [Pelinovskii et al.,
2000]. While extending the range of validity of the

KdV equation the Gardner equation also has some
new features. Of some significance is that the cu-
bic coefficient 𝛼1 can have either sign in the ocean
[Grimshaw et al., 1997; Grimshaw et al., 2007]. If
𝛼1 < 0 solitary waves now have a maximum am-
plitude and become broad and flat-crested as this
limiting amplitude is approached, a feature of fully
nonlinear internal solitary waves. Such waves have
occasionally been observed in the field [Shroyer et
al., 2010b]. The case when 𝛼1 > 0 is particu-
larly interesting: solitary waves of either polarity
(i.e. waves of depression and waves of elevation) can
now exist and a new type of nonlinear wave, a pul-
sating packet called a breather, exists [Grimshaw
et al., 2007].
Because of the rich nonlinear-dispersive behav-

ior of internal waves they have been a topic of re-
search for decades. For a linear stratification under
the Boussinesq approximation both nonlinear coef-
ficients of the Gardner equation are zero and the
DJL equation, used to model fully nonlinear ISWs,
linearizes and has no solitary wave solutions. Small
perturbations to a linear stratification reintroduce
nonlinearity albeit very weakly. In this manuscript
we explore a few curious features of these waves
which, while perhaps not physically relevant to the
ocean, never-the-less enrich our understanding of
these fascinating waves.

2. Methods

Useful theoretical and computational tools for
studying ISWs in the ocean include weakly-nonlinear
theories, the DJL equation and fully nonlinear nu-
merical models. The latter can be computation-
ally expensive because of the necessity of includ-
ing non-hydrostatic effects and the high resolu-
tion required to resolve the waves coupled with
often large domains when studying their shoaling
behaviour [Lamb et al., 2015]. Weakly-nonlinear
models have the advantage of being quick mak-
ing it easier to more fully explore parameter space
and to focus on some key processes [Holloway et
al., 1999; Grimshaw et al., 2007; Grimshaw et al.,
2010; Lamb and Xiao, 2014].
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2.1. Fully Nonlinear Numerical Model

The second order finite volume code, IGW solves
the 2D, nonlinear, non-hydrostatic, Boussinesq equa-
tions [Lamb, 2007]. The version of the model equa-
tions solved here ignore rotational and viscous ef-
fects and are(︁

�⃗�𝑡 + �⃗� · ∇⃗�⃗�
)︁
= −∇⃗𝑝− 𝜌𝑔𝑘 (3)

𝜌𝑡 + �⃗� · ∇⃗𝜌 = 0 (4)

∇⃗ · �⃗� = 0, (5)

where the 2D velocity in the 𝑥𝑧-plane is �⃗� = (𝑢,𝑤),

represented by the �̂� and 𝑘 unit vectors respec-
tively. The dimensionless density 𝜌 represents the
variations in the density about the reference den-
sity 𝜌0, so the physical density is 𝜌* = 𝜌0(1 + 𝜌).
The pressure 𝑝 is the difference between the physi-
cal density 𝑝* and the pressure in hydrostatic bal-
ance with the reference density and has also been
scaled by 𝜌0. No variation occurs in the 𝑦 direction
(i.e. 𝜕/𝜕𝑦 = 0) maintaining the 2D approach. The
model uses a second-order, finite volume projection
method [Bell et al., 1989; Bell and Marcus, 1992].
The model has a rigid lid and uses terrain fol-

lowing coordinates thus increasing the resolution
over the shelf. We used 200 grid points in the ver-
tical (i.e. a resolution of 0.75 m) with a horizontal
resolution of 12 m.

2.2. KdV Theory

Weakly nonlinear theories (WNL) of internal wave
motion start with the stratified incompressible Eu-
ler Equations, shown above under the Boussinesq
approximation and in the absence of rotation. We
assume a flat ocean bottom located at 𝑧 = −𝐻.
WNL performs an expansion of these equations in
two parameters, one that specifies a small but fi-
nite amplitude, and the other that specifies a small
aspect ratio, or ratio of typical vertical to typical
horizontal length scales. For example, in the 𝑥𝑧-
plane, when written in terms of the isopycnal dis-
placement 𝜂(𝑥, 𝑧, 𝑡) WNL assumes

𝜂(𝑥, 𝑧, 𝑡) = 𝐵(𝑥, 𝑡)𝑍(𝑧)

at leading order. A systematic perturbation expan-
sion then derives an eigenvalue problem for 𝑍(𝑧),

𝑍 ′′ +
𝑁2

𝑐2
𝑍 = 0,

𝑍(−𝐻) = 𝑍(0) = 0.

Here
𝑁2(𝑧) = −𝑔𝜌′(𝑧)

where 𝜌(𝑧) is the background density profile. Con-
tinuing to the next order in amplitude and aspect
ration, the perturbation expansion also yields an
evolution equation for the wave form 𝐵(𝑥, 𝑡), e.g.
the KdV equation (1). The nonlinear and disper-
sive coefficients of the KdV equation are given by

𝛼 =
3𝑐

2

∫︀ 0
−𝐻 𝑍 ′3 𝑑𝑧∫︀ 0
−𝐻 𝑍 ′2 𝑑𝑧

𝛽 =
𝑐

2

∫︀ 0
−𝐻 𝑍2 𝑑𝑧∫︀ 0
−𝐻 𝑍 ′2 𝑑𝑧

.

2.3. DJL Theory

The Dubreil-Jacotin Long (DJL) equation is for-
mally equivalent to the full set of stratified Euler
equations [Turkington et al., 1991; Lamb and Wan,
1998; Stastna and Lamb, 2002]. Its solutions thus
describe exact internal solitary waves. In a frame
moving with the solitary wave, the DJL equation
under the Boussinesq approximation reads

∇2𝜂 +
𝑁2(𝑧 − 𝜂)

𝑐2
𝜂 = 0

with homogeneous (i.e. 𝜂 = 0) boundary conditions
at 𝑧 = −𝐻, 0 and as |𝑥| → ∞. When 𝑁2 = 𝑁2

0

is constant, or in other words when the density
profile is linear, the DJL equation linearizes. In
this case standard theory of linear elliptic equations
shows that the maximum of 𝜂 must occur on the
boundary and solitary waves are thus impossible.
We consider density profiles of the form

𝜌(𝑧) = −Δ𝜌
𝑧

𝐻
+ 𝑎𝑝 tanh

(︂
𝑧 − 𝑧0

𝑑

)︂
sech

(︂
𝑧 − 𝑧0

𝑑

)︂
(see Figure 1). Here Δ𝜌 specifies the top to bottom
density change for the linear stratification, while
the second term models a mixed layer centered at
𝑧0 with a thickness characterized by 𝑑. We choose
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Figure 1. Schematic of the basic density config-
uration. (a) density difference from the reference
value, profile versus 𝑧/𝐻, (b) details of density pro-
file, (c) details of 𝑁2 profile, scaled by value of 𝑁2

away from the perturbation.

Δ𝜌 = 0.01, or a 1% density change from domain
top to bottom. 𝑎𝑝 sets the amplitude of the per-
turbation, which has a functional form chosen so
that integral of the perturbation is zero. The cen-
tre of the perturbation consists of less stratified
(i.e. partially mixed) fluid, while the flanks of the
perturbation are more strongly stratified. In prac-
tice 𝑎𝑝 must be quite small, in order to preclude
local density overturns. While we varied 𝑎𝑝, re-
sults reported below fix 𝑎𝑝 = 0.0002. We will vary
𝑧0, but fix 𝑑 = 0.025𝐻.

3. Results

3.1. Linear Theory Results

We considered the effect of the density perturba-
tion on the first 10 modes of linear theory as a func-
tion of depth. We define 𝑐𝑏𝑎𝑠𝑒 as the solution for the
linear stratification, and compute the relative error.
For vertical structure functions we compute the 𝐿2

difference between the mode in the perturbed case
and the mode in the linear stratification case. The
results are summarized in Figure 2. The top row
shows the results for all 10 modes. It is readily
apparent that higher modes are more strongly af-
fected by the perturbation. The perturbation form
is schematized in the lower left panel, where 𝑁2

is shown. Since the effects on the lower modes
were difficult to see when all modes were shown,
the lower right panel shows the 𝐿2 difference for
the first three modes. It is apparent again, that
the effect on the lowest mode is very small com-
pared to that on the higher modes. This is what
motivated us to look at the DJL equation next, to
see if a qualitative difference for mode-1 could be
observed.

3.2. DJL Theory Results

Solutions of the DJL equation were computed by
the variational method due to Turkington and co-
workers [Turkington et al., 1991] as implemented
in [Lamb and Wan, 1998; Stastna and Lamb, 2002].
Due to the weak nonlinearity the convergence of the
iteration procedure was considerably slower than
in stratifications with much larger variations in the
buoyancy frequency that are more typical for the
ocean.
Figure 3 shows the density field for four sample

internal solitary waves, two (panels a and b) for a

Figure 2. The effects of the density perturbation
on linear theory. The top left panel shows the rel-
ative error in linear longwave speed for the first 10
modes as the perturbation height changes, The top
right panel shows the 𝐿2 difference of the modal
structure for the first 10 modes as the perturba-
tion height changes. The bottom left panel shows
the form of the perturbation in the 𝑁2 profile. The
bottom right panel shows the 𝐿2 difference of the
modal structure for the first 3 modes as the per-
turbation height changes.
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mixed layer centered at 𝑧0 = −25 m and two (pan-
els c and d) for a mixed layer centered at 𝑧0 = −15
m. The location of the center of the mixed layer
is indicated by a dashed black line. It is immedi-
ately clear that changing the mixed layer location
can lead to a change in solitary wave polarity. The
waves of elevation have a fairly generic, bell-like
shape, while the waves of depression are quite a
bit broader.
Figure 4 shows bulk wave properties as func-

tions of the available potential energy, 𝐴𝑃𝐸, for
the waves of elevation (the mixed layer centered at
𝑧0 = −25 m). Panel (a) shows the maximum isopy-
cnal displacement, panel (b) shows the propagation
speed, panel (c) the wave half-width, and panel (d)
shows some sample surface currents for a range of
wave amplitudes It is clear that as the 𝐴𝑃𝐸 in-
creases the wave amplitude and propagation speed
gradually increase, approaching the conjugate flow
values [Lamb and Wan, 1998], while the half-width
initially decreases as predicted by KdV theory be-
fore increasing as the waves broaden. The broad-
ening of the waves is evident in the surface cur-
rent plot. The extremely weak nonlinearity leads
to only very small changes in propagation speed as
the wave amplitude increases. It is also responsi-
ble for the very long lengths of the waves: the wave
nonlinearity is balanced by dispersion which is very

Figure 3. Shaded density field for sample DJL
waves (a) the mixed layer is centered at 𝑧 = −25
m and 𝑎𝑝 = 0.0002 𝐴𝑃𝐸 = 6 MJ/m, (b) as (a)
but with 𝐴𝑃𝐸 = 34 MJ/m, (c) the mixed layer is
centered at 𝑧 = −15 m and 𝑎𝑝 = 0.0002 𝐴𝑃𝐸 = 6
MJ/m, (d) as (c) but with 𝐴𝑃𝐸 = 34 MJ/m.

Figure 4. Bulk properties as a function of 𝐴𝑃𝐸
of DJL waves with the mixed layer at 𝑧 = −25 m
and 𝑎𝑝 = 0.0002. (a) Maximum isopycnal displace-
ment, (b) propagation speed, (c) wave half-width,
(d) surface currents for waves with 𝐴𝑃𝐸 = 1, 10,
20, 40, 60, 80, 100 and 117 MJ/m. Horizontal grey
lines in panels (a,b) are the conjugate flow values.

weak for long waves. This will be seen to have im-
plications for wave behavior when shoaling. The
gradient Richardson number (not shown) remains
large in all cases, implying that shear instability
will not play a role in the evolution of these waves.
Figure 5 shows the corresponding information for

the waves of depression when the mixed layer is
centered at 𝑧0 = −10 m.
It is evident from Figure 3 that a small change in

the height of the perturbation has led to a change
in wave polarity. Indeed the waves with the smaller
𝑧0 are even broader than those in the base case as
is predicted by the much smaller magnitude of 𝛼
for this stratification. The questions is, thus, in
an ocean setting where a wave of depression shoals
onto a shelf, is the nonlinearity strong enough for
a reversal of polarity to be observed? And if the
answer to this question is ‘No’, then how is nonlin-
earity manifested?

3.3. Shoaling Results

Given the weak nonlinearity of the perturbed lin-
ear stratification and the observation that pertur-
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Figure 5. Bulk properties as a function of 𝐴𝑃𝐸
of DJL waves with the mixed layer at 𝑧 = −10 m
and 𝑎𝑝 = 0.0002. (a) Maximum isopycnal displace-
ment, (b) propagation speed, (c) wave half-width,
(d) surface currents for waves with 𝐴𝑃𝐸 = 1, 10,
20, 40 MJ/m. Horizontal grey lines in panels (a,b)
are the conjugate flow values.

bations at different heights yield different polari-
ties of internal solitary waves, we wanted to assess
how large amplitude internal waves evolve during
shoaling. The stratification used is the stratifica-
tion used for the ISWs shown in Figure 6. Figure 6a
shows the shape of the bathymetry which was cho-
sen so that the mixed layer is at depths of 15% and
25% of the water depth in the deep and shallow wa-
ter corresponding to the depths of the mixed layer
in the example waves in Figure 3. The remain-
ing panels show the initial wave–induced surface
(solid line) and bottom (dashed line) horizontal ve-
locity profiles (panel (a)); and the wave–induced
surface (solid line) and bottom (dashed line) hor-
izontal velocity profiles after shoaling (panel (b)).
The reader should note the extremely long length
scale of the initial wave which is based on KdV the-
ory, i.e. it is not a DJL solution. In spite of this
is propagates without noticeably changing shape
until it shoals onto the shelf.
It is immediately evident that the shoaling pro-

cess leads to both an asymmetry in the horizontal
structure and significant shedding of waves behind
the leading wave. The back of the wave is quite
steep (though recall that this wave is very long and

hence the wave is not close to breaking). On the
scale of the figure only a mode-1 tail is evident.
Higher mode waves are found further behind the
leading wave, and will be discussed below. It is
interesting that the long tail is accompanied by a
train of short length scale waves. On the scale of
the figure these are difficult to see as anything more
than ‘squiggles’, but they are well-resolved by the
numerical model with at least twenty grid points
per wavelength.
In Figure 7 we show the horizontal velocity field

(shaded) and density field (black) associated with
the mode-1 wave after it has moved onto the shelf.
The horizontal asymmetry of the wave is evident
in both the horizontal velocity and density fields,
while evidence of short wave generation is found
not only at the back of the wave, but in weaker
form near the front of the wave. The fact that
short wave activity is possible near the front is due
to the extremely weak nonlinearity of the system.
In other words the mode-1 wave cannot outrun the
shorter waves on the timescales shown.
In Figure 8 we show the horizontal velocity field

(shaded) and density field (black) associated with
the trailing, higher mode waves after the main wave
has moved onto the shelf. In panel (a) the trailing
face of the leading wave is visible near the right of
the figure. The evolution is clearly dominated by a
long mode-2 wave which maintains its form for all

Figure 6. Schematic and basic results of the
shoaling simulation (a) the bathymetry, (b) wave–
induced surface (red) and bottom (black) velocities
(m s−1) at the initial time, (c) wave–induced sur-
face (solid) and bottom (dashed) velocities (m s−1)
after shoaling.
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Figure 7. Evolution of the horizontal velocity field
(shaded and saturated at 0.675 m s−1) and den-
sity field (black) at various points after the main
wave has shoaled onto the shelf with a focus on the
mode-1 wave (a) 𝑡 = 45 hours, (b) 𝑡 = 55 hours,
(c) 𝑡 = 65 hours, (d) 𝑡 = 75 hours.

times shown. This wave is not exactly horizontally
symmetric across its crest, but its asymmetry is
far less prominent than that of the leading mode-
1 wave. At the back of the mode-2 wave several
rapid horizontal transitions are observed. The au-
thors are not aware of any article that reports such
sharp transitions and they appear to be a novel
manifestation of nonlinear behavior in this param-
eter regime.
The details of the shoaling process are shown in

Figure 9. The leading wave steepens at the back
and a mode-2 wave can be seen to be generated be-
hind the leading wave as the leading wave reaches
the on-shelf portion of the domain. Had we not
identified the stratification as exceptional for the
reader, it would be difficult to identify how this
portion of the evolution differs from that in a lin-
early stratified fluid.

4. Conclusions

We have presented results on internal waves for
stratifications that are ‘close to’ a linearly stratified
fluid; a case that is known to be exceptionally weak
in terms of nonlinearity. The perturbations were
representations of a local mixing event, in that the
mean perturbation was zero with some regions with
a reduced buoyancy frequency and some with an

Figure 8. Evolution of the horizontal velocity field
(shaded and saturated at 0.45 m s−1) and density
field (black) at various points after the main wave
has shoaled onto the shelf with a focus on the trail-
ing higher mode waves (a) 𝑡 = 45 hours, (b) 𝑡 = 55
hours, (c) 𝑡 = 65 hours, (d) 𝑡 = 75 hours.

increased buoyancy frequency.
Linear theory suggested that higher mode waves

are more strongly affected than lower mode waves,
but that even mode-1 waves had some changes in
the vertical structure. For exact solitary waves, the
DJL equation has no solutions in the linearly strat-
ified case, and the perturbations did allow for solu-
tions to be found. However, the weak nonlinearity
meant that convergence of the iterative algorithm

Figure 9. Evolution of the horizontal velocity field
(shaded and saturated at 0.675 m s−1) and density
field (black) at various points after the main wave
has shoaled onto the shelf with a focus on the trail-
ing higher mode waves (a) 𝑡 = 20 h, (b) 𝑡 = 22.5
h, (c) 𝑡 = 25 , (d) 𝑡 = 27.5 h.
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was slow, and the resulting waves were very long.
Somewhat surprisingly, small changes in the per-
turbation location led to a change of solitary wave
polarity and this motivated us to consider shoaling
of such waves.
Numerical experiments suggest that the shoal-

ing waves do not have time to form a clear undu-
lar bore, or wave train of solitary waves of the op-
posite polarity. Instead, the leading mode-1 wave
develops short length scales on its trailing slope.
Small perturbations are also observed on the lead-
ing slope. These are possible due to the extremely
small range of variations in propagation speeds in
the solutions of the DJL equations. Much stronger
nonlinear effects are observed in the higher mode
waves that trail the leading mode-1 wave. Here a
prominent, long mode-2 wave is trailed by sharp
transitions in the density field.
Future work could consider the weakly nonlinear

description of the shoaling process to answer the
theoretical question of whether a true reversal of
polarity and the formation of a well defined wave
train takes place. An obvious avenue for numerical
simulations would involve consideration of higher
modes and the sharp fronts they exhibit on the
shelf.
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