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Abstract. The shoaling of an internal solitary
waves of depression in two layer fluid with a
idealized slope-shelf topography is studied to
classify the regimes of shoaling. Two
mechanisms were assumed to be essential
during wave shoaling: (i) wave breaking
resulting in mixing and (ii) changing of the
polarity of the initial wave of depression over the
slope into wave of elevation on the shelf.
Proposed three-dimensional αβγ classification
diagram is based on three parameters: the slope
angle γ, the non-dimensional wave amplitude α
(wave amplitude normalized on the upper layer
thickness) and the blocking parameter β that is
the ratio of the height of the bottom layer on
the the shelf to the incident wave amplitude.
Relations between the parameters α,β,γ for
each regime were obtained using the empirical
condition for wave breaking and weakly
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nonlinear theory for criterion of changing polar-
ity of the wave. Four zones were separated in
αβγ classification diagram: (I) Without chang-
ing polarity and wave breaking; (II) Changing po-
larity without breaking; (III) Wave breaking with-
out changing polarity; (IV) Wave breaking with
changing polarity. The results of field, laboratory
and numerical experiments were compared with
proposed classification and good agreement was
found.

1. Introduction

The internal solitary waves (ISW) shoal and dissipate
as they cross abrupt changes of the topography in the
coastal ocean, estuaries and in the enclosed water bod-
ies. Typical of the coastal ocean is the presence of a
relatively shallow shelf connected to the abyssal by a
continental slope. The continental slope and shelf are
important sink of the internal tide energy which is dis-
sipated due the tide generated ISWs [Lamb, 2014a].
Shoaling of ISW may results in the resuspension and
transport of bottom deposits [Boegman and Stastna,
2019; Pomar et al., 2012]. The internal bores propa-
gating into the shallows and resuspending seabed pollu-



tants may have serious ecological consequences. ISWs
with trapped core can also transport masses of water
and marine organisms for some distance [Lamb, 2014a].
The transport of cold, low oxygen waters results in
nutrient pumping. These facts require understanding
and prediction of the ISWs transformation over coastal
ocean topography to identify hot spots of wave energy
dissipation and corresponding environmental implica-
tions.

Two shoaling mechanisms are important: (i) wa-
ve breaking that results in mixing and dissipation, (ii)
changing of the polarity of the initial wave of depression
on the slope. Wave breaking is associated with gravita-
tional instability due to the wave overturning and shear
instability. The breaking regimes over slope were clas-
sified by [Boegman et al., 2005] into plunging breakers,
collapsing breakers and surging breakers assuming anal-
ogy with shoaling surface waves. The internal form of
Iribarren number as the ratio of the slope of the bottom
to the square root of the slope of the wave (amplitude
divided by wavelength) was used for identification of
breaker type. Shoaling on slope-shelf is more compli-
cated process because additional factor appears: slowly
varying depth of the shelf which affects the processes
of ISW breaking and polarity change. These processes



were studied in many coastal locations (e.g. [Fu et al.,
2016; Moum et al., 2003; Nam and Send, 2010; Os-
borne et al., 1980; Orr and Mignerey, 2003; Vlasenko et
al., 2014]), laboratory experiments [Wessels and Hut-
ter, 1996], using weakly-nonlinear models ([Grimshaw
et al., 2004; Helfrich and Melville, 1986; Helfrich et
al., 1984; Lamb and Xiao, 2014b]) and fully nonlinear
numerical models [Lamb and Xiao, 2014b; Maderich et
al., 2010, 2012; Talipova et al., 2013; Vlasenko and
Hutter, 2002; Vlasenko et al., 2005]. The results of
these studies confirm importance of shelf in the ISW
transformation. However, the available data are not
generalized in the form of a classification scheme that
takes into account the main features of the topography
of the slope-shelf and incident internal waves.

Our goal is to develop simple classification scheme
of ISW shoaling on slope-shelf based on criteria of the
wave breaking and changing of polarity. The field and
laboratory measurement data together with numerical
modelling data are described in Section 2. Criteria of
breaking and polarity change are presented in Section
3. The classification of regimes of ISW transformation
over slope-shelf topography is presented in Section 4.
This classification was verified in Section 5. The results
are summarized in Conclusions.



2. Data and Methods

The continuously stably stratified oceans and lakes with
relatively thin pycnocline often can be approximated by
the two layers of depths h1 and h2 with corresponding
densities ρ1 and ρ2 (Figure 1). Total depth is H =
h1 +h2. The ISW exist in two waveforms depending on
the position of the interface: internal solitary waves of
elevation when interface is closer to the bottom (h1 >
h2) and wave of depression when interface is closer to
the surface (h1 < h2). In this paper only waves of
depression with an amplitude ain propagating over an
idealized slope-shelf are considered (Figure 1). It is
assumed that the depth of the shelf is constant whereas
continental slope depth varies linearly with an average
inclination angle about 3◦. It can be less than 1◦ or as
high as 10◦ whereas mean depth of shelf is in range of
100–400 m.

It was assumed that three parameters can be impor-
tant for behaviour of the incident wave on slope-shelf:
(i) slope inclination γ (measured as angle); (ii) block-
ing parameter β [Talipova et al., 2013] is the ratio of
the height of the bottom layer on the the shelf h2+

(Figure 1) to the incident wave amplitude | ain |
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β = h2+/|ain|; (1)

(iii) nonlinearity parameter that is the ratio of the wave
amplitude to the depth of upper layer

α = |ain|/h1. (2)

The classification is compared with available data of
field observations, laboratory experiments and numer-
ical simulations (Table 1). Parameters of simulations
performed in this study are also given in Table 2 in more
detail. The dependence of nonlinearity parameter α on
normalized thickness of upper layer for waves of depres-
sion from Table 1 and Table 2 is shown in Figure 2a.
The limit of ISW height in the Boussinesq approxima-
tion estimated from strongly-nonlinear theory [Choi and
Camassa, 1999] is

amax =
h1 − h2

2
. (3)

The corresponding curve separated area of existence of
ISW. Beyond this maximum wave amplitude |amax|, no
solitary wave solution exists.

The numerical simulations were carried out using the
Navier-Stokes equations for a continuously stratified
fluid. The numerical model was developed by [Kanarska
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Table 2. Parameters of ISW in Numerical Ex-
periments

|ain|(m) α β γ
0.02 0.25 0, 1, 2.5 0.5◦, 1.5◦, 60◦, 90◦

0.08 1 0.3, 1.1, 2.2 0.5◦, 1.5◦, 60◦, 90◦

0.15 1.5 0, 1.5, 2.5 0.5◦, 1.5◦, 60◦, 90◦

0.15 1.5 1.41, 0.8, 0.58 1.5◦

and Maderich 2003] as a nonhydrostatic extension of
the Princeton Ocean Model (POM). It is described in
detail in [Maderich et al., 2012]. Mode-splitting tech-
nique and decomposition of pressure and velocity fields
on hydrostatic and nonhydrostatic components were
used in numerical method. The quasi-two-dimensional
model with a resolution of 4 nodes across the wave
tank was used for present calculations. No-slip bound-
ary conditions were applied at the bottom and two end
walls. The free-slip conditions were applied at the side
walls. Resolution was 4500×220×4 nodes for all runs.

Wave tank was of length L = 46 m and depth H =
0.46 m. The background salinity stratification at con-
stant temperature of 20◦ C in the flume for both cases
was modelled by two layers of thickness h1 = 0.08 m
and h2 = 0.38 m separated by a thin stratified inter-
facial layer with thickness (dh = 0.1 cm) and salinity



difference 28. The model was initialized using itera-
tive solution the Dubreil-Jacotin-Long (DJL) equation
[Dubreil-Jacotin, 1932] with the initial guess obtained
from a weakly nonlinear theory. Stratification for all ex-
periments remaines the same, initial amplitude, bottom
slope and shelf depth were varied. Values of amplitudes
of waves of ain and parameters α, β, γ are given in Ta-
ble 1. The DJLES spectral solver from the MATLAB
package https://github.com/mdunphy/DJLES/ was
used. A total of 39 runs are performed with about 12–
15 runs for each incident wave amplitude (Table 2).
These runs cover a range of incident ISW of depression
with weakly nonlinear (α = 0.4), moderate (α = 1)
and large amplitudes (α = 1.5).

3. ISW Transformations Scenarios Over

Slope-Shelf Topography

At first, consider breaking of the ISW of depression on
the uniform slope. The kinematics and dynamics of
breaking in the general case can depend on the slope,
stratification, wave amplitude and wavelength. A sev-
eral scenarios of ISW transformation can be realized.
Over a mild slope a scenario of adiabatic transforma-

https://github.com/mdunphy/DJLES/


tion can be realized when the ISW amplitude is close
to local value of amax [Vlasenko et al., 2005]. Then
ISW adjusts to the almost critical wave shape follow-
ing depth variation. In second scenario is formation of
secondary waves tail due to dispersion. One more sce-
nario was suggested by [Maderich et al., 2012] based on
numerical simulation results. In this non-adiabatic sce-
nario, at first, shear instability arises, and then the wave
changes polarity without overturning. If inclination of
bottom is moderate then ISW breaks. The breaking
process can be classified using the internal form of Irib-
arren number Ir [Boegman et al., 2005] is

Ir =
γ∗√
ain/λ

,

where γ∗ is non-dimensional slope, λ is ISW wave-
length. According this classification plunging breakers
with overturning leeward face for Ir < 0.7, collapsing
breakers for 0.7 < Ir < 1 and surging breakers reflect-
ing with little mixing for 1.5 < Ir .

A several breaking point criteria were proposed using
laboratory measurements and numerical simulations.
The breaking point criterion [Vlasenko and Hutter, 2002]
was build from the Navier Stokes numerical model sim-
ulations data. It was found that ratio of the amplitude



of the incident wave ain to the value of undisturbed
thickness of the lower layer in point where the breaking
takes place, hb (Figure 1a) depend on the the angle of
the slope γ as

ain

hb
=

0.8o

γ
+ 0.4. (4)

The comparison of (4) with data from Table 1 and
Table 2 show good agreement except extreme case of
step-like topography (γ = 90◦). Figure 2b shows rel-
atively weak dependence of wave breaking on γ in the
range γ < 5◦, whereas wave breaking strongly depends
on the slope in the case γ > 5◦. That is the conse-
quences of dispersive effects that work simultaneously
with nonlinearity. When γ > 5◦ wave transforms over
the slope on a short distance and then nonlinear effects
dominate, while in the case γ < 5◦ dispersive effects
dominate and the significant part of the energy trans-
fers into the dispersive wave trains.

Another criterion was built fitting results of labo-
ratory experiments on breaking over sloping bottom
[Boegman et al., 2005]

ain

hb
=

0.14

(λin/Li)0.52
− 0.3. (5)
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where Li = h2b/γ
∗, λin is the wavelength of inci-

dent ISW. Notice, that λin was estimated from weakly-
nonlinear KdV theory and γ∗ is height to slope length
ratio. This criterion was updated by [Aghsaee et al.,
2010] using numerical simulation output:

ain

hb
=

0.14

(λin/Li)0.28
+ 0.13. (6)

The difference between relations (5) and (6) can be ex-
plained by extension of range of the data and by direct
estimation of wave length in [Aghsaee et al., 2010].
The maximum of interface descent Hi in location of
the wave breaking was estimated by [Sutherland et al.,
2013] as

Hi =
√

4γ∗ainλin.

The ISW propagation and breaking in the system
slope-shelf is more complicated process because wave
behaviour depends also on thickness of the lower layer
h2+ over shelf. According to weakly-nonlinear theory
(e.g. [Grimshaw et al., 2004]) coefficient of quadratic
nonlinearity in the Gardner equation changes its sign
in the point where the thicknesses of two layers be-
come equal, while the coefficient of cubic nonlinear-



ity is always negative. Notice that numerical exper-
iments using full Navier-Stokes equations [Lamb and
Xiao, 2014b; Maderich et al., 2010] confirm applica-
bility of the Gardner equation to predict turning point
h1 = h2 even for wave of large amplitude. This rela-
tion for turning point can be can be expressed through
parameters α and β using (1) and (2)

β = 1/α. (7)

The observations [Fu et al., 2016] showed that the
transition of large-amplitude IWs during the shoaling
process is related to β that is good indicator of wave
deformation. When β < 1.2, all waves are bottom-
trapped elevation waves. It was shown in the laboratory
study [Cheng et al., 2011] interval 1.08 < β < 1.78
demarcated the boundary between non-inversion and
inversion ISWs regimes. Moreover, β < 1.08 might
be taken to distinguish waveform inversion induced by
intense wave breaking. An instability of ISW on slope-
shelf [Helfrich et al., 1986] and [Cheng et al., 2011]
could be classified into three scenarios: (1) no instabil-
ity, (2) shear instability, and (3) overturning (break-
ing) and second mode wave generation. The shear
instability resulting in Kelvin-Helmgoltz (KH) billows
are taking place for 3.3 < β < 5 and overturning



was observed for β < 3.3 [Cheng, 2011]. The inter-
nal waves of depression over the slope-shelf topogra-
phy with slope angle about 20.5◦ were studied in lab-
oratory experiments by [Lim, 2008]. For the values
2.7 < β < 7 wave saves their form of depression and
for β = 1.39 wave breaks and transforms into inter-
nal surge or solitary wave train. In the limiting case
of bottom step (γ = 90◦) three different regime were
identified in [Talipova, 2013] for h2 > 0: (i) Weak in-
teraction 3.1 < β, when the wave dynamics can be
fully described by weakly nonlinear theory [Grimshaw
2008]; (ii) Moderate interaction 2 < β < 3.1 when the
mechanism for wave breaking over the step is mainly
shear instability. (iii) Strong interaction when super-
critical flow in the step vicinity results in a backward
jet and vortices for depression waves, and in a forward
moving vortex (bolus) transporting dense fluid onto the
step at β < 2.

4. Classifications of Regimes of ISW Trans-

formation Over Slope-Shelf Topography

A new classification of regimes of internal solitary wave
interaction with a shelf-slope topography in the frame-



Figure 3. 3D diagram of regimes (I) – Without
changing polarity and wave breaking, (II) – Chang-
ing polarity without breaking, (III) – Regime of wave
breaking without changing polarity, (IV) – Breaking
with changing polarity.

work of two-layer fluid with layer depths h1 and h2(x)
is proposed. A three-dimensional diagram with the de-
pendence on parameters α, β, γ (αβγ diagram) is in-
troduced in Figure 3 where α is the wave amplitude
normalized on the upper layer thickness. Maximal am-
plitude amax defined by (3) can be rewritten in the
variables |ain|/h1 and h1/H as α < 0.5/(h1/H) − 1
[Aghsaee, 2010]. This ratio determines the geomet-



ric parameters of the existence of ISWs. As can be
seen from Figure 2a, the nonlinear parameter α for the
majority of waves observed on the shelf varies within in-
terval of 0.1–2. The blocking parameter β introduced
in [Talipova et al., 2013] controls the energy loss due
to ISW transformation over the slope-shelf topography.
The slope angle γ determines breaking process.

The type of ISW shoaling of depends on how wave
will pass through the cross sections xb and xr (Fig-
ure 1). A several scenarios can be realized:

• Wave breaks over the slope-shelf if hb > h2+;

• Wave does not break over the slope-shelf hb <
h2+;

• Wave changes polarity as it transforms over the
slope-shelf if h1 > h2+;

• Wave does not change polarity as it transforms
over the slope-shelf if h1 < h2+;

In αβγ diagram the 3D space is separated by the
surfaces f1(β; γ) = 0 and f2(α; β) = 0. The surface
f1(β; γ) = 0 separates the region of parameters where
breaking takes place from the region without breaking.
The polarity change surface f2(α; β) = 0 is obtained
from the condition (7). In the two-layer stratification



waves of depression converted into waves of elevation
at the turning point (h2 = h1) as they propagate from
deep water onto a shallow shelf. Thus intersecting sur-
faces f1 and f2 divide three-dimensional (α, β, γ) space
into four zones (Figure 3). Zone I located above these
two surfaces corresponds to the non-breaking regime.
Zone II is placed above breaking surface but below
the surface of changing polarity. It corresponds to the
regime of changing polarity without breaking. Zone III
is placed above surface of changing polarity but be-
low breaking surface. It corresponds to the regime of
wave breaking without changing polarity. Zone IV lo-
cated below of these two surfaces corresponds to the
regime of wave breaking with changing polarity. For
each slope angle γ the blocking parameter value βbr

that divide zone of non breaking regime β > βbr and
breaking regime β < βbr. can be found from (7) using
(4) at h2+ = hb that yields

βbr = γ/(0.8 + 0.4γ) (8)

As seen from (8), the breaking value of the blocking
parameter does not depend on the ISW nonlinearity
parameter α. We can also obtain value αbr that divide
zone IV on breaking regime when wave first breaks and
that changing polarity α > αbr and when wave first



change polarity and than breaks and breaking regime
α < αbr. It can be found from (7) using (8) that yields

αbr = (0.8 + 0.4γ)/γ.

5. Comparison of Classification With Data

From Field Measurements, Laboratory Ex-

periments and Numerical Simulations

The data from field and laboratory measurements and
numerical simulations were compared in Figure 4 with
proposed αβγ diagram. These data are given for six
cross-sections αβ at different angles of slope γ. In the
figure red line corresponds to the polarity change crite-
rion (7), whereas black line corresponds to the breaking
criterion (4). The measurement and simulation data
were identified as belonged to non breaking without
changing polarity cases (diamonds), changing polarity
without breaking cases (circles), wave breaking without
changing polarity cases (crosses), and cases of changing
polarity with breaking (triangles). The wave parame-
ters are given in Table 1 and Table 2.

As seen in Figure 4a, at small slope (γ = 1◦) strongly
nonlinear waves of amplitude 60 m propagating in the
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South China Sea at ocean depth from 264 m to a depth
110 m [Orr and Mignerey, 2003] were between non-
breaking waves zone I and the breaking with changing
polarity (zone III). However, these waves were subjected
to the shear instability.

The ISW shown in Figure 4b as black symbols were
data from simulations for slope (γ = 1.5◦). They
transformed into the elevation waves without break-
ing (zone II), broken with changing polarity (zone IV)
and transformed without changing polarity and wave
breaking (zone I) in dependence on α and β. The ISW
transformation in the Andaman Sea [Osborne et al.,
1980] marked by open symbol corresponds to the zone
II where wave change polarity without breaking.

Over the shelf of a slope 3◦ (Figure 4c) large ampli-
tude depression waves in the South China Sea [Fu et al.,
2016] transformed according scenarios for zones I–IV.
Notice, that observed ISW in the Celtic Sea [Vlasenko
et al., 2014] is placed in vicinity of node point connect-
ing zones I–IV.

Data from laboratory experiments [Cheng, 2011] on
the ISW transformation over trapezoidal topography
with γ = 14◦ were classified in Figure 1d. Laboratory
experiments suggests that β ≈ 1.8 might be taken
for demarcating boundary between non-inversion and



inversion cases. Scenario when β < 1.1 was accompa-
nied by run-down, internal hydraulic jump, vortex mo-
tion, turbulent mixing and surging up along the slope,
but with different degrees of strength, from weak to
moderate and strong, depending on the value of α.

For the step-like topography with slopes 60◦ and 90◦

we present results of simulations given in Table 2 and
in [Talipova et al., 2013]. Here diamonds correspond
to non-breaking and non-wave inversion regime defined
by [Talipova et al., 2013] as weak interaction, crosses
correspond to breaking and inversion, this case also
includes cases with shear instability and finally triangles
corresponds to breaking with formation of boluses over
shelf.

Consider in more detail characteristic for many coastal
areas case of γ = 1.5◦. In Figure 5 the evolution of
cross-section of salinity S is shown for α = 1.5 using re-
sults of numerical simulations of laboratory scale given
in Table 2. Four values were used: β = 0.58 (h2+ = 7
cm) (zone IV) , β=0.8 (h2+ = 9.6 cm) (zone III),
β = 1.41 (h2+ = 17 cm) (zone I). These experiments
are marked by red symbols in Figure 4b.

In Figure 5 the evolution of the cross-section salinity
field for scenarios of ISW transformation corresponding
zones I–IV at γ = 1.5◦ is shown. Three cases for same



value α = 1.5 (a = 0.12 m), but with different values
of β are considered: β = 0.58 (h2+ = 7 cm) (zone IV)
, β = 0.8 (h2+ = 9.6 cm) (zone III), β = 1.41 (h2+ =
17 cm) (zone I). These cases are marked by red symbols
in Figure 4b. According the breaking criterion (4) the
breaking depth hb in this case should be hb = 12.85 cm.
Therefore, when the depth of the lower layer over the
shelf is greater than h2+ > 12.85 cm then no breaking
occurs. It is follow from (8) that blocking parameter
value for breaking waves depth is β > βbr = 1.07.
Therefore, if h2+ < 12.85 cm then wave will break on
slope.

Figure 5a shows that at (α, β, γ) = (1.5;1.41;1.5◦)
ISW evolves with formation of wave train without break-
ing and changing polarity as predicted α β γ classifica-
tion diagram (red diamond) for zone I. This evolution
can be described in frame weakly-nonlinear theory (e.g.
Gardner equation) in agreement. The value β = 1.41
is close to value of βbr = 1.07. However, no breaking
occurs during ISW passing over the shelf.

In Figure 5b the ISW breaking without changing po-
larity (Zone II) corresponding to (α, β, γ) = (0.25; 1.5;
1.5◦) is shown. In classification diagram it marked by
red circle in Figure 4b. As can be seen from 3D diagram
this regime can be realized only for weakly nonlinear



and moderate internal waves with α < αcr .
The ISW transformation with wave breaking without

changing polarity (Zone III) shown in Figure 5c occurs
in simulation with parameters (α, β, γ) = (1.5; 0.8; 1.5◦).
It was marked as red cross in Figure 4b. This trans-
formation is essentially nonlinear and might not oc-
curs for small amplitude waves. The value of β = 0.8
was less than βbr = 1.07 and breaking occurs near the
shelf break, forming region of mixed fluid that is absent
in the case shown in Figure 5a. Notice that value of
βbr = 1.07 obtained from (4) gives a good estimate for
wave breaking location in these numerical simulations.

Figure 5d shows case of ISW breaking with changing
polarity occurs corresponding zone IV where (α, β, γ) =
(1.5; 0.58; 1.5◦). It is marked as red triangle in Fig-
ure 4b. For weakly nonlinear and moderate amplitude
waves with α < αbr the waves the first changes their
polarity as they moves over the slope and then break.
But for large amplitude waves α > αbr waves break
firstly forming boluses, and then waves move upslope
as shown in Figure 5d.



6. Conclusions
The shoaling of an internal solitary waves in two layer
fluid with a idealized slope-shelf topography was stud-
ied to classify the regimes of wave transformation. Two
mechanisms were assumed to be essential during wave
shoaling: (i) wave breaking resulting in mixing and
(ii) changing of the polarity of the initial wave of de-
pression over the slope into wave of elevation on the
shelf. Proposed three-dimensional α β γ classification
diagram is based on three parameters: the slope angle
γ, the non-dimensional wave amplitude α (wave ampli-
tude normalized on the thermocline thickness) and the
blocking parameter β that is the ratio of the height of
the bottom layer on the the shelf to the incident wave
amplitude. Relations between the parameters α, β, γ
for each regime were obtained with using the empiri-
cal condition for wave breaking and weakly nonlinear
theory for criterion of changing polarity of the wave.
Four zones were separated in αβγ classification dia-
gram: (I) – Without changing polarity and wave break-
ing, (II) – Changing polarity without breaking; (III) –
Wave breaking without changing polarity; (IV) – Wave
breaking with changing polarity. We concluded that re-
sults of field, laboratory and numerical experiments are
in good agreement with proposed classification which



can be used for identification of hot spots of energy
dissipation in the ocean.
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