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The shoaling of an internal solitary waves of depression in two layer fluid with a
idealized slope-shelf topography is studied to classify the regimes of shoaling. Two
mechanisms were assumed to be essential during wave shoaling: (i) wave breaking
resulting in mixing and (ii) changing of the polarity of the initial wave of depression
over the slope into wave of elevation on the shelf. Proposed three-dimensional
𝛼𝛽𝛾 classification diagram is based on three parameters: the slope angle 𝛾, the
non-dimensional wave amplitude 𝛼 (wave amplitude normalized on the upper layer
thickness) and the blocking parameter 𝛽 that is the ratio of the height of the bottom
layer on the the shelf to the incident wave amplitude. Relations between the parameters
𝛼,𝛽,𝛾 for each regime were obtained using the empirical condition for wave breaking
and weakly nonlinear theory for criterion of changing polarity of the wave. Four zones
were separated in 𝛼𝛽𝛾 classification diagram: (I) Without changing polarity and
wave breaking; (II) Changing polarity without breaking; (III) Wave breaking without
changing polarity; (IV) Wave breaking with changing polarity. The results of field,
laboratory and numerical experiments were compared with proposed classification and
good agreement was found. KEYWORDS: Internal solitary waves; shelf; continental slope;

wave breaking; changing polarity.
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1. Introduction

The internal solitary waves (ISW) shoal and dis-
sipate as they cross abrupt changes of the topogra-
phy in the coastal ocean, estuaries and in the en-
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closed water bodies. Typical of the coastal ocean
is the presence of a relatively shallow shelf con-
nected to the abyssal by a continental slope. The
continental slope and shelf are important sink of
the internal tide energy which is dissipated due the
tide generated ISWs [Lamb, 2014a]. Shoaling of
ISW may results in the resuspension and transport
of bottom deposits [Boegman and Stastna, 2019;
Pomar et al., 2012]. The internal bores propagat-
ing into the shallows and resuspending seabed pol-
lutants may have serious ecological consequences.
ISWs with trapped core can also transport masses
of water and marine organisms for some distance
[Lamb, 2014a]. The transport of cold, low oxygen
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waters results in nutrient pumping. These facts
require understanding and prediction of the ISWs
transformation over coastal ocean topography to
identify hot spots of wave energy dissipation and
corresponding environmental implications.
Two shoaling mechanisms are important: (i) wa-

ve breaking that results in mixing and dissipation,
(ii) changing of the polarity of the initial wave
of depression on the slope. Wave breaking is as-
sociated with gravitational instability due to the
wave overturning and shear instability. The break-
ing regimes over slope were classified by [Boeg-
man et al., 2005] into plunging breakers, collaps-
ing breakers and surging breakers assuming anal-
ogy with shoaling surface waves. The internal
form of Iribarren number as the ratio of the slope
of the bottom to the square root of the slope of
the wave (amplitude divided by wavelength) was
used for identification of breaker type. Shoaling
on slope-shelf is more complicated process because
additional factor appears: slowly varying depth
of the shelf which affects the processes of ISW
breaking and polarity change. These processes
were studied in many coastal locations (e.g. [Fu
et al., 2016; Moum et al., 2003; Nam and Send,
2010; Osborne et al., 1980; Orr and Mignerey,
2003; Vlasenko et al., 2014]), laboratory experi-
ments [Wessels and Hutter, 1996], using weakly-
nonlinear models ([Grimshaw et al., 2004; Helfrich
and Melville, 1986; Helfrich et al., 1984; Lamb
and Xiao, 2014b]) and fully nonlinear numerical
models [Lamb and Xiao, 2014b; Maderich et al.,
2010, 2012; Talipova et al., 2013; Vlasenko and
Hutter, 2002; Vlasenko et al., 2005]. The results
of these studies confirm importance of shelf in the
ISW transformation. However, the available data
are not generalized in the form of a classification
scheme that takes into account the main features
of the topography of the slope-shelf and incident
internal waves.
Our goal is to develop simple classification scheme

of ISW shoaling on slope-shelf based on criteria of
the wave breaking and changing of polarity. The
field and laboratory measurement data together
with numerical modelling data are described in Sec-
tion 2. Criteria of breaking and polarity change are
presented in Section 3. The classification of regimes
of ISW transformation over slope-shelf topography
is presented in Section 4. This classification was
verified in Section 5. The results are summarized
in Conclusions.

2. Data and Methods

The continuously stably stratified oceans and
lakes with relatively thin pycnocline often can be
approximated by the two layers of depths ℎ1 and ℎ2
with corresponding densities 𝜌1 and 𝜌2 (Figure 1).
Total depth is 𝐻 = ℎ1 + ℎ2. The ISW exist in
two waveforms depending on the position of the
interface: internal solitary waves of elevation when
interface is closer to the bottom (ℎ1 > ℎ2) and
wave of depression when interface is closer to the
surface (ℎ1 < ℎ2). In this paper only waves of de-
pression with an amplitude 𝑎in propagating over an
idealized slope-shelf are considered (Figure 1). It
is assumed that the depth of the shelf is constant
whereas continental slope depth varies linearly with
an average inclination angle about 3∘. It can be less
than 1∘ or as high as 10∘ whereas mean depth of
shelf is in range of 100–400 m.
It was assumed that three parameters can be im-

portant for behaviour of the incident wave on slope-
shelf: (i) slope inclination 𝛾 (measured as angle);
(ii) blocking parameter 𝛽 [Talipova et al., 2013] is
the ratio of the height of the bottom layer on the
the shelf ℎ2+ (Figure 1) to the incident wave am-
plitude | 𝑎in |

𝛽 = ℎ2+/|𝑎in|; (1)

(iii) nonlinearity parameter that is the ratio of the
wave amplitude to the depth of upper layer

𝛼 = |𝑎in|/ℎ1. (2)

The classification is compared with available data
of field observations, laboratory experiments and
numerical simulations (Table 1). Parameters of
simulations performed in this study are also given
in Table 2 in more detail. The dependence of non-
linearity parameter 𝛼 on normalized thickness of
upper layer for waves of depression from Table 1
and Table 2 is shown in Figure 2a. The limit of
ISW height in the Boussinesq approximation es-
timated from strongly-nonlinear theory [Choi and
Camassa, 1999] is

𝑎𝑚𝑎𝑥 =
ℎ1 − ℎ2

2
. (3)

The corresponding curve separated area of exis-
tence of ISW. Beyond this maximum wave ampli-
tude |𝑎max|, no solitary wave solution exists.
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Figure 1. Sketch of transformation of depression ISW over a slope-shelf topography:
(a) Breaking of ISW of depression; (b) Changing polarity of ISW of depression to the
elevation ISW after passing through a turning point.

The numerical simulations were carried out us-
ing the Navier-Stokes equations for a continuously
stratified fluid. The numerical model was devel-
oped by [Kanarska and Maderich 2003] as a nonhy-
drostatic extension of the Princeton Ocean Model
(POM). It is described in detail in [Maderich et
al., 2012]. Mode-splitting technique and decompo-
sition of pressure and velocity fields on hydrostatic
and nonhydrostatic components were used in nu-
merical method. The quasi-two-dimensional model
with a resolution of 4 nodes across the wave tank
was used for present calculations. No-slip bound-
ary conditions were applied at the bottom and two
end walls. The free-slip conditions were applied at
the side walls. Resolution was 4500×220×4 nodes
for all runs.
Wave tank was of length 𝐿 = 46 m and depth

𝐻 = 0.46 m. The background salinity stratifi-
cation at constant temperature of 20∘ C in the
flume for both cases was modelled by two layers
of thickness ℎ1 = 0.08 m and ℎ2 = 0.38 m sep-
arated by a thin stratified interfacial layer with
thickness (𝑑ℎ = 0.1 cm) and salinity difference
28. The model was initialized using iterative so-
lution the Dubreil-Jacotin-Long (DJL) equation
[Dubreil-Jacotin, 1932] with the initial guess ob-
tained from a weakly nonlinear theory. Strat-
ification for all experiments remaines the same,
initial amplitude, bottom slope and shelf depth
were varied. Values of amplitudes of waves of 𝑎in

and parameters 𝛼, 𝛽, 𝛾 are given in Table 1. The
DJLES spectral solver from the MATLAB package
https://github.com/mdunphy/DJLES/ was used.
A total of 39 runs are performed with about 12–15
runs for each incident wave amplitude (Table 2).
These runs cover a range of incident ISW of de-
pression with weakly nonlinear (𝛼 = 0.4), moder-
ate (𝛼 = 1) and large amplitudes (𝛼 = 1.5).

3. ISW Transformations Scenarios Over
Slope-Shelf Topography

At first, consider breaking of the ISW of depres-
sion on the uniform slope. The kinematics and
dynamics of breaking in the general case can de-
pend on the slope, stratification, wave amplitude
and wavelength. A several scenarios of ISW trans-
formation can be realized. Over a mild slope a sce-
nario of adiabatic transformation can be realized
when the ISW amplitude is close to local value of
𝑎max [Vlasenko et al., 2005]. Then ISW adjusts to
the almost critical wave shape following depth vari-
ation. In second scenario is formation of secondary
waves tail due to dispersion. One more scenario
was suggested by [Maderich et al., 2012] based on
numerical simulation results. In this non-adiabatic
scenario, at first, shear instability arises, and then
the wave changes polarity without overturning. If
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Table 1. Parameters of ISW From Field Measurements, Laboratory and Numerical Experiments

No Location and source 𝛼 𝛽 𝛾 Diagram
zone

1 Oregon shelf [Moum et al., 2003] 0.85 4.3 0.3∘ 1
2 Andaman Sea [Osborne et al., 1980] 0.16 1.5 1.5∘ 2
3 South China Sea [Orr and Mignerey,

2003]
1.55 1.1 1∘ 1

4 Celtic Sea [Vlasenko et al., 2014] 0.77 1.4 3∘ 3
5 Dongsha Atoll [Fu et al., 2016] 0.66− 2.66 0.72− 4 3∘ 4
6 Huntington Beach [Nam and Send

2010]
0.06− 0.83 0.26− 1.28 0.23∘ −

2.08∘
1, 3, 4

7 Laboratory experiment [Cheng et al.,
2011]

0.2− 0.71 0.5− 4.5 14∘ 1− 4

8 Laboratory experiment [Helfrich and
Melville, 1986]

0.12− 0.23 0.18− 5.9 1.5∘ − 4∘ 1, 3, 4

9 Numerical experiment[Talipova et al.,
2013]

0.2− 2.2 −2− 8 90∘ 1− 4

10 Numerical experiment. Present study 0.25− 1.5 0− 2.5 0.5∘ − 90∘ 1− 4

inclination of bottom is moderate then ISW breaks.
The breaking process can be classified using the in-
ternal form of Iribarren number 𝐼𝑟 [Boegman et al.,
2005] is

𝐼𝑟 =
𝛾*√︀
𝑎in/𝜆

,

where 𝛾* is non-dimensional slope, 𝜆 is ISW wave-
length. According this classification plunging brea-
kers with overturning leeward face for 𝐼𝑟 < 0.7,
collapsing breakers for 0.7 < 𝐼𝑟 < 1 and surging
breakers reflecting with little mixing for 1.5 < 𝐼𝑟.
A several breaking point criteria were proposed

using laboratory measurements and numerical sim-
ulations. The breaking point criterion [Vlasenko
and Hutter, 2002] was build from the Navier Stokes
numerical model simulations data. It was found
that ratio of the amplitude of the incident wave 𝑎in
to the value of undisturbed thickness of the lower
layer in point where the breaking takes place, ℎ𝑏

Table 2. Parameters of ISW in Numerical Exper-
iments
|𝑎in|(m) 𝛼 𝛽 𝛾
0.02 0.25 0, 1, 2.5 0.5∘, 1.5∘, 60∘, 90∘

0.08 1 0.3, 1.1, 2.2 0.5∘, 1.5∘, 60∘, 90∘

0.15 1.5 0, 1.5, 2.5 0.5∘, 1.5∘, 60∘, 90∘

0.15 1.5 1.41, 0.8, 0.58 1.5∘

(Figure 1a) depend on the the angle of the slope 𝛾
as

𝑎in
ℎ𝑏

=
0.8∘

𝛾
+ 0.4. (4)

The comparison of (4) with data from Table 1
and Table 2 show good agreement except extreme
case of step-like topography (𝛾 = 90∘). Figure 2b
shows relatively weak dependence of wave breaking
on 𝛾 in the range 𝛾 < 5∘, whereas wave breaking
strongly depends on the slope in the case 𝛾 > 5∘.
That is the consequences of dispersive effects that
work simultaneously with nonlinearity. When 𝛾 >
5∘ wave transforms over the slope on a short dis-
tance and then nonlinear effects dominate, while
in the case 𝛾 < 5∘ dispersive effects dominate and
the significant part of the energy transfers into the
dispersive wave trains.
Another criterion was built fitting results of lab-

oratory experiments on breaking over sloping bot-
tom [Boegman et al., 2005]

𝑎in
ℎ𝑏

=
0.14

(𝜆in/𝐿𝑖)0.52
− 0.3. (5)

where 𝐿𝑖 = ℎ2𝑏/𝛾
*, 𝜆in is the wavelength of in-

cident ISW. Notice, that 𝜆𝑖𝑛 was estimated from
weakly-nonlinear KdV theory and 𝛾* is height to
slope length ratio. This criterion was updated by
[Aghsaee et al., 2010] using numerical simulation
output:

4 of 10



ES4002 terletska et al.: classification of internal waves shoaling ES4002

Figure 2. (a) Non-linearity parameter 𝛼 versus normalized thickness of upper layer for
ISWs of depression for data from Table 1. (b) Comparison of breaking criterion (4) with
data from Table 1.

𝑎in
ℎ𝑏

=
0.14

(𝜆𝑖𝑛/𝐿𝑖)0.28
+ 0.13. (6)

The difference between relations (5) and (6) can
be explained by extension of range of the data and
by direct estimation of wave length in [Aghsaee et
al., 2010]. The maximum of interface descent 𝐻𝑖

in location of the wave breaking was estimated by
[Sutherland et al., 2013] as

𝐻𝑖 =
√︀

4𝛾*𝑎in𝜆in.

The ISW propagation and breaking in the system
slope-shelf is more complicated process because
wave behaviour depends also on thickness of the
lower layer ℎ2+ over shelf. According to weakly-
nonlinear theory (e.g. [Grimshaw et al., 2004])
coefficient of quadratic nonlinearity in the Gard-
ner equation changes its sign in the point where
the thicknesses of two layers become equal, while
the coefficient of cubic nonlinearity is always nega-
tive. Notice that numerical experiments using full
Navier-Stokes equations [Lamb and Xiao, 2014b;
Maderich et al., 2010] confirm applicability of the
Gardner equation to predict turning point ℎ1 = ℎ2
even for wave of large amplitude. This relation for
turning point can be can be expressed through pa-

rameters 𝛼 and 𝛽 using (1) and (2)

𝛽 = 1/𝛼. (7)

The observations [Fu et al., 2016] showed that the
transition of large-amplitude IWs during the shoal-
ing process is related to 𝛽 that is good indicator of
wave deformation. When 𝛽 < 1.2, all waves are
bottom-trapped elevation waves. It was shown in
the laboratory study [Cheng et al., 2011] interval
1.08 < 𝛽 < 1.78 demarcated the boundary between
non-inversion and inversion ISWs regimes. More-
over, 𝛽 < 1.08 might be taken to distinguish wave-
form inversion induced by intense wave breaking.
An instability of ISW on slope-shelf [Helfrich et al.,
1986] and [Cheng et al., 2011] could be classified
into three scenarios: (1) no instability, (2) shear
instability, and (3) overturning (breaking) and sec-
ond mode wave generation. The shear instability
resulting in Kelvin-Helmgoltz (KH) billows are tak-
ing place for 3.3 < 𝛽 < 5 and overturning was
observed for 𝛽 < 3.3 [Cheng, 2011]. The internal
waves of depression over the slope-shelf topogra-
phy with slope angle about 20.5∘ were studied in
laboratory experiments by [Lim, 2008]. For the
values 2.7 < 𝛽 < 7 wave saves their form of depres-
sion and for 𝛽 = 1.39 wave breaks and transforms
into internal surge or solitary wave train. In the
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Figure 3. 3D diagram of regimes (I) – Without
changing polarity and wave breaking, (II) – Chang-
ing polarity without breaking, (III) – Regime of
wave breaking without changing polarity, (IV) –
Breaking with changing polarity.

limiting case of bottom step (𝛾 = 90∘) three dif-
ferent regime were identified in [Talipova, 2013] for
ℎ2 > 0: (i) Weak interaction 3.1 < 𝛽, when the
wave dynamics can be fully described by weakly
nonlinear theory [Grimshaw 2008]; (ii) Moderate
interaction 2 < 𝛽 < 3.1 when the mechanism for
wave breaking over the step is mainly shear in-
stability. (iii) Strong interaction when supercrit-
ical flow in the step vicinity results in a backward
jet and vortices for depression waves, and in a
forward moving vortex (bolus) transporting dense
fluid onto the step at 𝛽 < 2.

4. Classifications of Regimes of ISW
Transformation Over Slope-Shelf
Topography

A new classification of regimes of internal soli-
tary wave interaction with a shelf-slope topogra-
phy in the framework of two-layer fluid with layer
depths ℎ1 and ℎ2(𝑥) is proposed. A three-dimensio-
nal diagram with the dependence on parameters
𝛼, 𝛽, 𝛾 (𝛼𝛽𝛾 diagram) is introduced in Figure 3
where 𝛼 is the wave amplitude normalized on the
upper layer thickness. Maximal amplitude 𝑎max

defined by (3) can be rewritten in the variables
|𝑎in|/ℎ1 and ℎ1/𝐻 as 𝛼 < 0.5/(ℎ1/𝐻)−1 [Aghsaee,
2010]. This ratio determines the geometric param-

eters of the existence of ISWs. As can be seen from
Figure 2a, the nonlinear parameter 𝛼 for the ma-
jority of waves observed on the shelf varies within
interval of 0.1–2. The blocking parameter 𝛽 intro-
duced in [Talipova et al., 2013] controls the energy
loss due to ISW transformation over the slope-shelf
topography. The slope angle 𝛾 determines breaking
process.
The type of ISW shoaling of depends on how

wave will pass through the cross sections 𝑥𝑏 and 𝑥𝑟
(Figure 1). A several scenarios can be realized:

∙ Wave breaks over the slope-shelf if ℎ𝑏 > ℎ2+;

∙ Wave does not break over the slope-shelf ℎ𝑏 <
ℎ2+;

∙ Wave changes polarity as it transforms over
the slope-shelf if ℎ1 > ℎ2+;

∙ Wave does not change polarity as it trans-
forms over the slope-shelf if ℎ1 < ℎ2+;

In 𝛼𝛽𝛾 diagram the 3D space is separated by
the surfaces 𝑓1(𝛽; 𝛾) = 0 and 𝑓2(𝛼;𝛽) = 0. The
surface 𝑓1(𝛽; 𝛾) = 0 separates the region of pa-
rameters where breaking takes place from the re-
gion without breaking. The polarity change sur-
face 𝑓2(𝛼;𝛽) = 0 is obtained from the condition
(7). In the two-layer stratification waves of depres-
sion converted into waves of elevation at the turn-
ing point (ℎ2 = ℎ1) as they propagate from deep
water onto a shallow shelf. Thus intersecting sur-
faces 𝑓1 and 𝑓2 divide three-dimensional (𝛼, 𝛽, 𝛾)
space into four zones (Figure 3). Zone I located
above these two surfaces corresponds to the non-
breaking regime. Zone II is placed above breaking
surface but below the surface of changing polarity.
It corresponds to the regime of changing polarity
without breaking. Zone III is placed above sur-
face of changing polarity but below breaking sur-
face. It corresponds to the regime of wave breaking
without changing polarity. Zone IV located below
of these two surfaces corresponds to the regime of
wave breaking with changing polarity. For each
slope angle 𝛾 the blocking parameter value 𝛽br that
divide zone of non breaking regime 𝛽 > 𝛽br and
breaking regime 𝛽 < 𝛽br. can be found from (7)
using (4) at ℎ2+ = ℎ𝑏 that yields

𝛽br = 𝛾/(0.8 + 0.4𝛾) (8)
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Figure 4. Comparison of classification with field and laboratory measurements, and
numerical simulations at 6 cross-sections 𝛼𝛽 for different 𝛾. The red line corresponds
to polarity change criterion (7), black line corresponds to breaking criterion (4). The
diamonds are non breaking without changing polarity cases, circles are changing polar-
ity without breaking cases, crosses are wave breaking without changing polarity cases,
triangles mark cases of changing polarity with breaking.

As seen from (8), the breaking value of the blocking
parameter does not depend on the ISW nonlinear-
ity parameter 𝛼. We can also obtain value 𝛼br that
divide zone IV on breaking regime when wave first
breaks and that changing polarity 𝛼 > 𝛼br and
when wave first change polarity and than breaks
and breaking regime 𝛼 < 𝛼br. It can be found
from (7) using (8) that yields

𝛼br = (0.8 + 0.4𝛾)/𝛾.

5. Comparison of Classification With
Data From Field Measurements,
Laboratory Experiments and Numerical
Simulations

The data from field and laboratory measure-
ments and numerical simulations were compared

in Figure 4 with proposed 𝛼𝛽𝛾 diagram. These
data are given for six cross-sections 𝛼𝛽 at differ-
ent angles of slope 𝛾. In the figure red line corre-
sponds to the polarity change criterion (7), whereas
black line corresponds to the breaking criterion (4).
The measurement and simulation data were identi-
fied as belonged to non breaking without changing
polarity cases (diamonds), changing polarity with-
out breaking cases (circles), wave breaking with-
out changing polarity cases (crosses), and cases of
changing polarity with breaking (triangles). The
wave parameters are given in Table 1 and Table 2.
As seen in Figure 4a, at small slope (𝛾 = 1∘)

strongly nonlinear waves of amplitude 60 m propa-
gating in the South China Sea at ocean depth from
264 m to a depth 110 m [Orr and Mignerey, 2003]
were between non-breaking waves zone I and the
breaking with changing polarity (zone III). How-
ever, these waves were subjected to the shear in-
stability.
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Figure 5. The evolution of the salinity 𝑆 in cross-sections at time 𝑡 = 50; 80; 120; 150
s of numerical simulations of laboratory scale for scenarios of ISW transformation corre-
sponding zones I–IV at 𝛾 = 1.5∘ (a) – 𝛼 = 1.5 𝛽 = 1.41 (zone I), (b) – 𝛼 = 0.25, 𝛽 = 1.4
(zone II), (c) – 𝛼 = 1.5, 𝛽 = 0.8 (zone III), (d) – 𝛼 = 1.5, 𝛽 = 0.58 (zone IV).

The ISW shown in Figure 4b as black symbols
were data from simulations for slope (𝛾 = 1.5∘).
They transformed into the elevation waves without
breaking (zone II), broken with changing polarity
(zone IV) and transformed without changing polar-
ity and wave breaking (zone I) in dependence on 𝛼
and 𝛽. The ISW transformation in the Andaman
Sea [Osborne et al., 1980] marked by open sym-
bol corresponds to the zone II where wave change
polarity without breaking.
Over the shelf of a slope 3∘ (Figure 4c) large am-

plitude depression waves in the South China Sea
[Fu et al., 2016] transformed according scenarios
for zones I–IV. Notice, that observed ISW in the
Celtic Sea [Vlasenko et al., 2014] is placed in vicin-
ity of node point connecting zones I–IV.
Data from laboratory experiments [Cheng, 2011]

on the ISW transformation over trapezoidal topog-
raphy with 𝛾 = 14∘ were classified in Figure 1d.
Laboratory experiments suggests that 𝛽 ≈ 1.8
might be taken for demarcating boundary between
non-inversion and inversion cases. Scenario when
𝛽 < 1.1 was accompanied by run-down, internal

hydraulic jump, vortex motion, turbulent mixing
and surging up along the slope, but with different
degrees of strength, from weak to moderate and
strong, depending on the value of 𝛼.
For the step-like topography with slopes 60∘ and

90∘ we present results of simulations given in Ta-
ble 2 and in [Talipova et al., 2013]. Here diamonds
correspond to non-breaking and non-wave inversion
regime defined by [Talipova et al., 2013] as weak in-
teraction, crosses correspond to breaking and inver-
sion, this case also includes cases with shear insta-
bility and finally triangles corresponds to breaking
with formation of boluses over shelf.
Consider in more detail characteristic for many

coastal areas case of 𝛾 = 1.5∘. In Figure 5 the
evolution of cross-section of salinity 𝑆 is shown for
𝛼 = 1.5 using results of numerical simulations of
laboratory scale given in Table 2. Four values were
used: 𝛽 = 0.58 (ℎ2+ = 7 cm) (zone IV) , 𝛽=0.8
(ℎ2+ = 9.6 cm) (zone III), 𝛽 = 1.41 (ℎ2+ = 17
cm) (zone I). These experiments are marked by red
symbols in Figure 4b.
In Figure 5 the evolution of the cross-section
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salinity field for scenarios of ISW transformation
corresponding zones I–IV at 𝛾 = 1.5∘ is shown.
Three cases for same value 𝛼 = 1.5 (𝑎 = 0.12 m),
but with different values of 𝛽 are considered: 𝛽 =
0.58 (ℎ2+ = 7 cm) (zone IV) , 𝛽 = 0.8 (ℎ2+ =
9.6 cm) (zone III) , 𝛽 = 1.41 (ℎ2+ = 17 cm)
(zone I). These cases are marked by red symbols
in Figure 4b. According the breaking criterion (4)
the breaking depth ℎ𝑏 in this case should be ℎ𝑏 =
12.85 cm. Therefore, when the depth of the lower
layer over the shelf is greater than ℎ2+ > 12.85 cm
then no breaking occurs. It is follow from (8) that
blocking parameter value for breaking waves depth
is 𝛽 > 𝛽br = 1.07. Therefore, if ℎ2+ < 12.85 cm
then wave will break on slope.
Figure 5a shows that at (𝛼, 𝛽, 𝛾) = (1.5;1.41;1.5∘)

ISW evolves with formation of wave train without
breaking and changing polarity as predicted 𝛼 𝛽 𝛾
classification diagram (red diamond) for zone I.
This evolution can be described in frame weakly-
nonlinear theory (e.g. Gardner equation) in agree-
ment. The value 𝛽 = 1.41 is close to value of
𝛽br = 1.07. However, no breaking occurs during
ISW passing over the shelf.
In Figure 5b the ISW breaking without changing

polarity (Zone II) corresponding to (𝛼, 𝛽, 𝛾) =
(0.25; 1.5; 1.5∘) is shown. In classification diagram
it marked by red circle in Figure 4b. As can be seen
from 3D diagram this regime can be realized only
for weakly nonlinear and moderate internal waves
with 𝛼 < 𝛼𝑐𝑟.
The ISW transformation with wave breaking wi-

thout changing polarity (Zone III) shown in Fig-
ure 5c occurs in simulation with parameters (𝛼, 𝛽, 𝛾) =
(1.5; 0.8; 1.5∘). It was marked as red cross in Fig-
ure 4b. This transformation is essentially nonlinear
and might not occurs for small amplitude waves.
The value of 𝛽 = 0.8 was less than 𝛽br = 1.07
and breaking occurs near the shelf break, form-
ing region of mixed fluid that is absent in the case
shown in Figure 5a. Notice that value of 𝛽br = 1.07
obtained from (4) gives a good estimate for wave
breaking location in these numerical simulations.
Figure 5d shows case of ISW breaking with chang-

ing polarity occurs corresponding zone IV where
(𝛼, 𝛽, 𝛾) = (1.5; 0.58; 1.5∘). It is marked as red
triangle in Figure 4b. For weakly nonlinear and
moderate amplitude waves with 𝛼 < 𝛼br the waves
the first changes their polarity as they moves over
the slope and then break. But for large ampli-

tude waves 𝛼 > 𝛼br waves break firstly forming
boluses, and then waves move upslope as shown in
Figure 5d.

6. Conclusions

The shoaling of an internal solitary waves in two
layer fluid with a idealized slope-shelf topography
was studied to classify the regimes of wave trans-
formation. Two mechanisms were assumed to be
essential during wave shoaling: (i) wave breaking
resulting in mixing and (ii) changing of the polarity
of the initial wave of depression over the slope into
wave of elevation on the shelf. Proposed three-
dimensional 𝛼 𝛽 𝛾 classification diagram is based
on three parameters: the slope angle 𝛾, the non-
dimensional wave amplitude 𝛼 (wave amplitude
normalized on the thermocline thickness) and the
blocking parameter 𝛽 that is the ratio of the height
of the bottom layer on the the shelf to the incident
wave amplitude. Relations between the parame-
ters 𝛼, 𝛽, 𝛾 for each regime were obtained with us-
ing the empirical condition for wave breaking and
weakly nonlinear theory for criterion of changing
polarity of the wave. Four zones were separated in
𝛼𝛽𝛾 classification diagram: (I) – Without changing
polarity and wave breaking, (II) – Changing polar-
ity without breaking; (III) – Wave breaking with-
out changing polarity; (IV) – Wave breaking with
changing polarity. We concluded that results of
field, laboratory and numerical experiments are in
good agreement with proposed classification which
can be used for identification of hot spots of energy
dissipation in the ocean.
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