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 Abstract

Wave climate in the North Atlantic and subarctic seas is investigated based on data from Voluntary Observing Ships for the period 1900–2020. The proposed approach differs from any previous studies of the given region as a detailed climatology and long-term trends were performed separately for wind sea and swell characteristics. The method allows for tracing Arctic climate tendencies of the last century and analyzing the reasons behind the observed changes taking place. 

 Introduction

The global climate has been undergoing significant yet poorly understood anomalies in the recent decades, with the most extreme changes being manifested in the Arctic region. Climate tendencies in the subpolar North Atlantic and adjacent Arctic are not limited to the ice concentration (thickness and extent) and ocean and atmospheric temperatures – the main predictors of climate change – but also include wind wave characteristics [Marchenko and Morozov, 2016]. The region in question forms a strong air-sea interaction and wind signals, associated with significant mesoscale variability [Gavrikov et al., 2020]. Earlier Gulev and Grigorieva [2006] demonstrated strong variability of wind waves in the southern part of this region and associated it with changes in the cyclone activity. In this respect regional analysis of wave characteristics on interdecadal to centennial time scales is quite limited mostly due to the lack of long-term observational records.

The worldwide observational network for ocean wind waves is constantly evolving and currently includes buoys and satellite altimetry, as well as a wide range of observational platforms equipped with the most modern devices. The derived measurements are supplemented by global and regional wave and climate models which yield high-quality wave simulations: hindcasts and reanalysis. However, the wave data sources listed above cover only relatively short period of up to 50 years with most products dating back to the late 1970s. These data typically do not allow for tracking climate trends on multidecadal time scales. In this regard, visual wave observations (Voluntary Observing Ships, hereinafter VOS) provide the longest duration of data records effectively from 1888 to the present. Moreover, VOS data offer separate estimates of wind sea and swell characteristics [Freeman et al., 2017; Gulev et al., 2003; Grigorieva et al., 2017]. This comes as an advantage over remote sensing measurements and even model solutions where sea and swell separation is quite uncertain and largely relies on the model setting and on the methods of wave components identification [Markina et al., 2019; Portilla et al., 2009]. Therefore, in this study the analysis is focused on the wind sea and swell components, their climatological characteristics and long-term trends.

Commonly accepted concerns about low accuracy of the visual wave observations and relatively difficult procedures of data preprocessing unduly limit the applications of this unique dataset. However, various methods of the estimation of biases in VOS data and their correction have been recently developed along with multistage quality control procedures [Badulin and Grigorieva, 2012; Gulev et al., 2003]. Moreover, the accuracy of the VOS data is proven to be comparable or even superior to modern measurements [Grigorieva et al., 2020; Lavrova et al., 2011; Vignudelli et al., 2011]. 

Visual wave observations are primarily used for global wave climate analysis [Grigorieva and Badulin, 2016; Grigorieva et al., 2020; Gulev et al., 2003; Kent et al., 2019] as they cover the entire World Ocean, although they are characterized by strong sampling inhomogeneity in space and uneven sampling density in time. Model simulations and satellite measurements are sometimes considered superior in that regard and are more frequently used for wave studies in the last few decades [Badulin et al., 2018]. Nevertheless, the observational density of visual wave observations is comparable to the other meteorological variables [Gulev et al., 2007].

Wave climate studies for individual seas or selected regions are usually based on stationary buoy and platforms measurements, regional wave model simulations and short-term field experiments [Khimchenko et al., 2020; Lopatukhin et al., 2002, 2003; Markina and Gavrikov, 2016; Reistad et al., 2011; Saprykina and Kuznetsov, 2018a, 2018b]. This paper represents a novel analysis of the long-term wave climate tendencies for the subpolar North Atlantic Ocean including the Greenland, Norwegian, and Barents seas, based on the VOS data for the period of 120 years (1900–2020). The subpolar North Atlantic and Arctic region considered is bound between 60° N–80° N and 20° W–40° E. The selected study region is characterized by intense wind wave variability, especially in the conditions of severe weather. In winter season, wave heights can exceed 20 m in the Norwegian and Greenland seas, while the duration of "weather windows" (periods with waves less than 1.5 m) is never more than 3 days. In the Barents Sea, winter wave heights can exceed 19 meters in the western and central parts, and the probability of waves higher than 8 meters is about 2% [Davidan and Lopatukhin, 1982]. In the context of the Arctic warming amplification and the intense decline of sea ice extent [Stroeve et al., 2012], regional wave variability can further complement the analysis of the ongoing climate processes in this area.

 Data

Voluntary Observing Ships measurements are distinguished by the unchanging observational practice since 1853 with well-trained observers (marine officers or mates) estimating sea state characteristics along with atmospheric and oceanic parameters, and environmental characteristics. The visual approach, nevertheless, provides quite an accurate estimate ensuring the homogeneity of the resulted time series of wave characteristics in terms of observational practice. This makes VOS data useful for identifying and quantifying different wave systems and their parameters over longer periods.

The global collection of visual wave observations is consolidated in the ICOADS (International Comprehensive Ocean Atmosphere Data Set, http://ico ads.noaa.gov/) archive [Freeman et al., 2017]. This dataset consists of the individual records providing about 100 marine and atmospheric parameters of surface meteorological observations at a given point along with metadata information on the measurement techniques and data quality flags. The study uses a historical archive developed on the base of ICOADS in [Grigorieva et al., 2017], which optimized and improved the accuracy of initial wave data records. New records added to the set provide a regular update of the collection.
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  The temporal distribution of the number of reports is presented in Figure 1a with the number of reports for the wind sea height shown in black and for swell height shown in grey. Wind sea height is reported more frequently compared to any other parameter. Even in the beginning of the 20th century, the annual number of observations was about 10,000, closely approaching 1,000,000 reports in the last five decades. Swell height count is at least two times lower than that for the wind sea. There is a notable gap in data coverage for this region over the period of WWI, while during WWII the reports were provided slightly less frequently compared to the adjacent periods.

Spatial inhomogeneity of sampling is the main drawback of the visual wave observations. Figure 1b shows spatial distribution of the average number of wind sea height observations for a calendar month in  1°×1° boxes. The highest observational density is observed along major ship routes, while the smallest number of the reports is found in the northern areas of the region which are extensively covered by ice during the year. Nevertheless, observational density is higher compared to the other regions and allows for reproducing reliable  1°×1° monthly mean fields of wave characteristics.

 Subpolar North Atlantic Climatology of Wave Parameters: 1900–2020
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  Using all the data available in this region we have developed spatial grids of all wave parameters for each calendar month over the 120-year period. To initiate this procedure we used for the intrabox averaging only the data which passed the quality control. As the next step, climatological distributions for each month, season and year (Figure 2, Figure 3) were derived for  1°×1° grids, thus forming the regime characteristics of wind wave climate for the area. The ice mask was applied according to the winter position of the ice margin.

The distributions of annual wind sea heights (Figure 2a) and periods (Figure 2c) show quite a homogeneous pattern that is consistent (from a sampling view point) with the high observational density of these parameters. Climatological distribution presents a tongue of strong winds and high wind sea extending from the southwest to the northeast and likely resulting from the propagation of high wind waves and swells from the storm formation region in the North Atlantic mid latitudes to the northwest into the subarctic regions. Annual maxima of both sea and swell amount to the values close to 3 m and are identified in the Norwegian Sea. Since the fetch is limited by ice sheets, wind waves gradually dissipate when propagating from the Atlantic northeastward to the Barents Sea. At the same time high swells exceeding 2 m are observed also in the Greenland Sea near the ice margin. Generally the distribution of swell heights is characterized by a more inhomogeneous pattern due to poorer sampling density and complicated conditions of the swell propagation in the region. Nevertheless, a regional pattern of relatively high swells in the Barents Sea originating from both the North Atlantic and the Greenland Sea looks quite realistic.

Annual periods of the wave components (Figure 2c, Figure 2d) are distributed similarly to wave heights pattern, thus showing reliability of the regional wave climatology in general. For wind sea, the 4–6 s periods prevail, which is consistent with e.g. Gulev et al. [2003] and the earlier estimates by Gulev and Hasse [1998]. Swell periods are about 3 s longer, with the corresponding wavelengths of up to 150 m.

Seasonal climatological maps of wind sea and swell heights (Figure 3) demonstrate the patterns largely consistent with stronger storminess in the winter season and decreasing winds in summer. The highest winter seas are observed in the Norwegian Sea where they amount to 3 m (Figure 3a) with swells being up to 3.5 m (Figure 3b) In summer time wind sea heights are typically smaller than 1.5 m with the smallest values of  <1 m observed in the coastal areas of the Barents Sea (Figure 3c). Summer swells are characterized by heights of less than 1.5 m with the local maxima exceeding 2 m observed in the northern part of the Barents Sea (Figure 3d). However, these local maxima should be interpreted with caution, potentially in the context of sampling density. Seasonal march of wind sea and swell periods (no figure shown) generally well captures the patterns of the wind sea and swell heights quite well. Wind sea periods in winter vary in the range of 4 to 7 s and swell periods may reach 11 s. In the summer wind sea periods range between 2 and 5 s and swell periods vary from 4 to 8 s.

 Long-Term Trends in the 1900–2020

Armed with the long and homogeneous time series of wave parameters we can derive regional characteristics of variability of wind waves on different time scales. Since the number of missing data in the first two decades of the 20th century is quite high (Figure 1a) and does not allow for developing robust estimates of variability, we have considered a shorter period of 1920–2020 for the analysis of long-term tendencies. For computing variability characteristics we used 5-degree averaging. This allowed to ensure still relatively long time series and to also account for the major geographical features of regional variability.

We used two methods for calculating linear trends in wave characteristics which provided qualitatively consistent results with respect to the sign and slightly quantitatively different magnitudes of the derived trend estimates. Specifically, we applied a non-parametric trend analysis based upon the Theil-Sen estimator [Sen, 1968; Theil, 1950] and the standard least square approach for wind sea and swell heights. Statistical significance of trends was estimated according to a Student t-test at 90% level. The Theil-Sen method reveals slightly smaller estimates of trend values compared to the least square approach. Notably, in the regions with high observational density both estimators provide almost equal results.

	[image: Fig 4]
	Figure 4

  Centennial trends in wind sea heights show weakly negative changes over the period between 1920–2020 with the magnitudes amounting to  −2.5 cm per year ( ∼1%). These trends hold statistical significance over the most of the grid cells. The pattern of statistically significant trends of the opposite sign is observed in the Norwegian Sea close to the coast (Figure 4a). Considering swell heights, the dominant trend is quite opposite, showing positive values over the Norwegian Sea and the Greenland Sea where trends amount to 2.5 cm per year ( <1%). Negative swell trends can be found in the Western Barents Sea, but they are mostly insignificant (Figure 4b). 
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  Analysis of regionally averaged estimates of trends for the 100-year period shows that on the centennial scale the trend is superimposed by the strong interdecadal variability represented by the downward tendency over the first part of the record and the upward changes during the recent decades. To quantify this we analyzed the variability of the mean and extreme wave heights in every 5-degree box by estimating the trends over the segments of different duration. Figure 5 shows an example of these estimates for the mean and extreme (evaluated by the 99th percentile of Weibull distribution) wind sea heights in the 1920–2020. As can be seen from the diagram (Figure 5a), the centennial trend of wave heights is weakly positive. However, for the given period, the trends vary dramatically – from the significantly negative values in the beginning and the middle of the 20th century to the pronounced positive trends in the recent decades with some periods showing close to zero values in the 1960s.

The analysis of the 50-year trends (1970–2020) (Figure 4c, (Figure 4d) reveals the pattern which is completely different from the centennial ones (Figure 4a, (Figure 4b). These differences are not so indicative for the wind sea heights which show the enlarged in space pattern of the positive trends in the Norwegian Sea with the stronger magnitudes (Figure 4c). However, the trend pattern for swells demonstrates pronounced changes. Positive trends of up to 1.2 cm per year ( ∼0.5%) are only found in the Svalbard area, while the remaining part of the domain demonstrates statistically significant negative trends amounting to  −2.5 cm per year ( ∼1%). This transition of the trend pattern emphasizes the importance of considering interdecadal variability superimposed over the linear trend patterns.

 Conclusions

Wave climate of the subpolar North Atlantic as well as the Norwegian, Barents, and Greenland Seas has been analyzed on the basis of visual wave observations over the last 120 years. Climatological distributions of wind sea and swell characteristics were derived with  1°×1° resolution for every calendar month. Linear trends in the wave heights for the 120-year and 50-year periods were obtained using two different estimators. The long-term variability of the wind sea and swell has been found consistent with the large scale pattern earlier revealed by the VOS records for the Northern Hemisphere. For the last 50 years wind seas demonstrate the upward trends with the magnitude of about 0.1–0.4 cm/year, while swells show slightly decreasing trends of  −0.1−0.6 cm/year. Identified decadal and interannual variability yields a higher magnitude compared to centennial trends. This corresponds with the nature of intrinsic changes being two to three times stronger than secular ones, which was demonstrated in regional wave analyses in Gulev and Grigorieva [2004] and for other modes of long term variability in Gulev et al. [2013].
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Figure 1. a) temporal distribution of the number of VOS reports containing visually observed wind sea (shown in black) and swell (shown in grey) heights, 1900–2020; b) spatial distribution of the average number of wind sea heights for calendar month, 1900–2020.
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Figure 2. Annual climatology of VOS wave heights (m) and periods (s), 1900–2020: (a) – wind sea heights, (b) – swell heights, (c) – wind sea periods, (d) – swell periods.
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Figure 3. Seasonal climatology of VOS waves (m), 1900–2020: wind sea heights – DJF (a), JJA (c), swell heights – DJF (b), JJA (d).
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Figure 4. 120-year (a, b) and 50-year (c, d) trends (cm per year) in VOS waves: wind sea heights (a, c), swell heights (b, d). Significant values marked, 90% level Student t-test.
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Figure 5. (a) Trends in VOS wind sea heights (cm/year) estimated over the segments of different duration, 1920–2020; (b) time series of the yearly mean wind sea heights (black dots), Weibull-based yearly mean wind sea heights (grey dots), and 99th percentile wind sea heights (red dots) for 0°–5° W – 60°–65° N cell, 1920–2020.
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\abstract{Problem of area's zoning is very important and is one of the main problems of modern geographical science. Our point is to from a modern approach, based on the machine learning methods to provide zoning of any area. Key ideas of this methodology, that any distribution of factors that form any geographical system grouped around some clusters -- unique zones that represents specific nature conditions. Formed methodology based on several stages -- selection of data and objects for analysis, data normalization, assessment of predisposition of data for clustering, choosing the optimal number of clusters, clustering and validation of results. As an example, we tried to zone a surface layer of the Black Sea. We find that optimal number of unique zones is~3. Also, we find that the key driver of zone forming is a location of the rivers. Thus, we can say, that applying a machine learning approach in area's zoning tasks helps us increasing the quality of nature using and decision-making processes.}



\section{1. Introduction}



The problem of zoning has always been and will be the main problem of geographical science. In this context, region or zone is the main territorial system, which is always part of larger regional units. Based on this, zoning is the process of identifying and studying the objectively existing territorial structure, organization, and hierarchical subordination of physical and geographical complexes.

Zoning of any area includes several important goals

 [\itc{Vinokurov et al.,} \reflink{Vinokurov05}{2005};

\itc{Zaika} \reflink{Zaika14}{2014}]:



\begin{enumerate}

\item

Finding an existing physiography complexes;

\item

	mapping of physiography maps;

\item

	deep understanding of the complex composition;

\item

	research of processes and factors, that are forming complexes;

\item

	complex classification;

\item

Finding of any interactions between factors or complexes;

\item

	developing of physiography zoning methods.

\end{enumerate}



Thus, the main goal of this paper was to form a modern mathematical methodology, based on machine learning methods to provide zoning of any area.



In the last years problem of area's zoning and its methodology was tried to solve by several authors.



For example % G. N. Skrebets and S. M. Pavlova

\itc{Skrebets and Pavlova} [\reflink{Skrebets19}{2019}]

conducted a physical and geographical zoning of the Black Sea using correlation analysis. They used a mapping based on relationship between phytoplankton and natural factors, that limiting its distribution. Using this approach, they identified 5 regions that differ from each other in quantitative way, as well as in combination of relationships.



From a biological point of view, this problem was considered by

%V.~E.~Zaika

\itc{Zaika} [\reflink{Zaika14}{2014}].

He carried out biological zonation of the Black Sea and also described the main problems of its implementation. The principle of distinguishing different regions was based on quantitative analysis of the dominant species in different regions of the Black Sea.



The widespread use of physiographic zonation received in landscape ecology. %Yu.~I.~Vinokurov, Yu.~M.~Tsimbaleya and B.~A.~Krasnoyarova

\itc{Vinokurov et al.} [\reflink{Vinokurov05}{2005}]

proposed a methodology and implemented the physical and geographical zoning of Siberia. Based on various natural features, they identified more than 100 different regions with unique physical and geographical conditions.



%A. Tamaychuk

\itc{Tamaychuk} [\reflink{Tamaychuk17}{2017}]

in his paper tried analytical approach to zoning Black Sea area, based on main factors of spatial differentiation, distribution features of environmentally significant characteristics and modern ideas about the theory and methods of physiographic zoning. He divided area of the Black Sea into 3 water-provinces -- North-West moderate, North-East moderate and subtropical.



Mathematical approach was shown in %E. Sovga

\itc{Sovga et al.} [\reflink{Sovga05}{2005}]

work. They used depth, mean values of temperature and salinity, differences and features in flora and fauna as a factor. They divided area of the North-West part of the Black Sea into 4 groups -- West, Karkinitsky, Central and Kalamitsky.



V. Agostini

[\itc{Agostini et al.,} \reflink{Agostini15}{2015}]

in her paper tried to make a zoning of marine environment in St.~Kitts and Nevis. For her analysis, she used 37 spatial layers, that represent different factors and fully described functionality of the research area, that was divided into 3 major groups -- ``habitat'', ``species'' and ``human use''. As the result, she distinguished 4 major zones -- ``conservation'', ``transportation'', ``touristic'' and ``fishing''.



\itc{Petrov and Bobkov} [\reflink{Petrov17}{2017}]

tried to form the concept of hierarchical structure of large marine ecosystems in the Arctic shelf of Russia. Based on environmental variables, they distinguished 7 eco-regions of the Barents Sea -- South-Western, Pechora Sea, Central basin south, Central basin north, Novaya Zemlya shore, Svalbard Archipelago and Franz Josef Land Archipelago.



%Fyhr F., Nilsson A. and Sandman N. [

\itc{Fyhr et al.} [\reflink{Fyhr13}{2013}]

tried to review all of the modern concepts and tools for Ocean zoning. Based on their work, the most actual and commonly used tools are Atlantis, Cumulative Impacts Assessment Tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Marine Protected Areas Decision Support Tool (Marine Map), Marxan and Marxan with Zones, NatureServe Vista and Zonation.





\section{2. Clustering as Physiographic Zoning Method}



\enlargethispage{-1pc}



Clustering is a task of dividing the entire dataset into separate groups of homogenous objects, that are similar to each other, but have distinct difference between this separate groups

[\itc{Aleshin and Malygin,} \reflink{Aleshin19}{2019}].

Clustering algorithms are divided in two groups -- hierarchical and iterative.



I. Hierarchical -- consistently build clusters from already found clusters.

\begin{enumerate}

\item

Agglomerative (unifying) -- start with individual elements, and then combine them;

\item

separation -- start with one cluster, and then -- divide them;

\end{enumerate}



 II. Non-hierarchical -- optimize a certain objective function.

\begin{enumerate}

\item

Graph theory algorithms;

\item

EM algorithm;

\item

 $K$-means algorithm ($k$-means clustering);

\item

fuzzy algorithms.

\end{enumerate}



Any clustering algorithm can be considered effective if the compactness hypothesis is satisfied

[\itc{Shi and Horvath,} \reflink{Shi06}{2006}].



Physiographic zoning using clustering method is carried out in several stages:

\begin{enumerate}

\item

Selection of data and objects for analysis;

\item

data normalization;

\item

assessment of predisposition of data for clustering;

\item

choosing the optimal number of clusters;

\item

clustering and validation of results.

\end{enumerate}



Formally, almost all clustering tasks come down to this form. Let  $X$ be the set of objects, $Y$ is the set of numbers (names, labels) of clusters. The distance function between objects is specified as

$\rho(x,x\prime)$

[\itc{Collins et al.,} \reflink{Collins02}{2002}].

There is a finite training set of objects $X^m={x_1,...,x_n}\in X$. So, the main goal of clustering is to divide dataset into several disjoint subsets. These subsets called clusters and consist from objects, that are closed to the

$\rho$-metric. Objects from different clusters were significantly different. For every object $x_i\in X^m$ assigned the number of cluster $y_i$

[\itc{Marron et al.,} \reflink{Marron14}{2014}].



\subsection{2.1. Data Normalization}



Data normalization is one of the feature transformation operations that is performed during their generation at the data preparation stage. In case of machine learning, normalization is a procedure for preprocessing input information (training, test and validation samples, as well as real data), in which the values of the attributes in the input vector are reduced to a certain specified range of values, for example: $[0...1]$ or $[-1...1]$.



The importance of data normalization comes from the nature of algorithms and models in machine learning. The values of raw data can vary in a very wide range and differ from each other by several orders

[\itc{Rybkina et al.,} \reflink{Rybkina18}{2018}].

The work of such machine learning models like neural networks or Kohonen self-organizing maps with not normalized data will be incorrect -- difference between attribute's values can cause instability of the model, that will lead to worth learning results and slowing the modelling process. Also, some parametric machine learning models require symmetric and unimodal data distribution. After normalization, all the numerical values of the input attributes will be reduced to the same amount -- a certain narrow range

[\itc{Criminisi et al.,} \reflink{Criminisi12}{2012}]. %%% ??? +



There are many ways to normalize feature values in order to scale them to a single range and use them in various machine learning models. Depending on the function used, they can be divided into two large groups: linear and non-linear

[\itc{Tealab et al.,} \reflink{Tealab17}{2017}].

With nonlinear normalization, the calculated ratios use the functions of the logistic sigmoid or hyperbolic tangent. In linear normalization, the change of variables is carried out proportionally, according to a linear law.



The most common methods for data normalization are:



Minimax -- linear data transformation in the range $[0..1]$, where the minimum and maximum scalable values correspond to 0 and 1, respectively:



\begin{eqnarray*}    % \begin{equation}\label{1}

X_{\mathrm{norm}}=\frac{X-X_{\min}}{X_{\max}-X_{\min}}

\end{eqnarray*}

$Z$-scaling based on the mean and standard deviation: dividing the difference between the variable and the it means by the standard deviation:



 \begin{eqnarray*}      % \begin{equation}\label{2}

 z=\frac{x-\mu}{\sigma}

\end{eqnarray*}

Decimal scaling -- performed by removing the decimal separator of the variable value

[\itc{Seber and Lee,} \reflink{Seber03}{2003}].



In practice, minimax and $Z$-scaling have similar areas of applicability and are often interchangeable. However, in calculating the distances between points or vectors in most cases, $Z$-scaling is used, while minimax is useful for visualization.



\subsection{2.2. Assessment of Predisposition of Data for Clustering}



One of the most common problem of unsupervised machine learning is that clustering will form groups, even if the analyzed dataset is a completely random structure. That's why the first validation task that should be applied even before clustering is to assess the overall predisposition of the available data to cluster tendency

[\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



There are two common indicators, that can show us cluster tendency -- Hopkins statistics and Visual Assessment of cluster Tendency or ``VAT diagram''.



To calculate Hopkins statistics, we need to create B pseudo-datasets, randomly generated based on the distribution with the same standard deviation as the original dataset. For each observation $i$ from $n$, the average distance to $k$ nearest neighbors is calculated as follows:

$w_i$ between real observations and $q_i$ between generated observations and their closest real neighbors

[\itc{Keller et al.,} \reflink{Keller85}{1985};

\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

Then the Hopkins statistics calculates as follows:



 \begin{eqnarray*}

H_{\mathrm{ind}} = H_{\mathrm{ind}}=\frac{\sum_{n}w_i}{\sum_{n}q_i+\sum_{n}w_i}

\end{eqnarray*}

If $H_{\mathrm{ind}}>0.5$,  then it will correspond to the null hypothesis that $q_i$ and $w_i$ are similar and values are distributed randomly and uniformly. If  $H_{\mathrm{ind}} < 0.25$ this indicates that a dataset has a tendency to data grouping.



For visual assessment of clustering tendency, the best way is to using VAT diagram. VAT algorithm consists of:



\begin{enumerate}

\item

Compute the dissimilarity matrix between the objects in the data set using the Euclidean distance measure;

\item

reorder the dissimilarity matrix so that similar objects are close to one another. This process creates an ordered dissimilarity matrix;

\item

the ordered dissimilarity matrix is displayed as an ordered dissimilarity image, which is the visual output of VAT.

\end{enumerate}



The VAT detects the clustering tendency in a visual form by counting the number of square shaped dark blocks along the diagonal in a VAT image [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



\subsection{2.3. Choosing the Optimal Number of Clusters}



At this moment there's two main ways to choose an optimal number of clusters -- ``elbow'' method and using of gap statistics

[\itc{Chapelle et al.,} \reflink{Chapelle06}{2006}].



The ``elbow'' method -- considered the pattern of variation in the dispersion of $W_{\mathrm{total}}$  with increasing in number of groups  $k$

[\itc{Tomar et al.,} \reflink{Tomar18}{2018}].

Combining all of the founded  observations in one group, we'll have the biggest intraclass dispersion, that will decrease to 0 when $k\rightarrow n$.

The point, when this decreasing of dispersion will be slowing down, called ``elbow''

[\itc{Seber and Lee,} \reflink{Seber03}{2003};

\itc{Thiery et al.,} \reflink{Thiery06}{2006}].



An alternative to the ``elbow'' method is using gap statistics, which are generated based on resampling and Monte-Carlo simulation processes. For example, let $E_n^\ast{\log(W_k^\ast)}$ denotes the valuation of average dispersion $W_k^\ast$, obtained by bootstrap method, when $k$ clusters are formed by several random objects $f$ from the original dataset of $n$ size. Then gap statistics will be calculated as follows:



 \begin{eqnarray*}          % \begin{equation}\label{4}

\mathrm{Gap}_n(k)=E_n^\ast{\log(W_k^\ast)}-\log(W_k)

\end{eqnarray*}

 $\mathrm{Gap}_n(k)$ determines the deviation of the observed dispersion $W_n$ from its expected value, if the original data formed only one cluster.



\subsection{2.4. Validation of Clustering Results}



Currently, there are several ways to validate the results of clustering:



\begin{enumerate}

\item

 External validation -- comparing the results of cluster analysis with already known validation dataset;

\item

relative validation -- evaluating the structure of formed clusters by changing the algorithm parameters;

\item

internal validation -- obtaining internal information of clustering process;

\item

assessment of the clustering stability using resampling.

\end{enumerate}



The most widespread indexes are silhouette index and Calinski-Harabasz index [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



One of the approaches to validate the results of clustering is the Calinski-Harabasz index.



Let ${\overline{d}}^2$  is the mean square distance between elements in clustering variety and ${\overline{d}}_{c_i}^2$ -- mean square distance between elements in cluster $c_i$. Then the distance inside groups will be:



 \begin{eqnarray*}   % \begin{equation}\label{5}

\mathrm{WGSS} = \frac{1}{2}\sum_{i=1}^{c}(n_{c_i}-1){\overline{d}}_{c_i}^2

\end{eqnarray*}

and the distance between groups will be:



\begin{eqnarray*} % \begin{equation}\label{6}

\mathrm{BGSS} = \frac{1}{2}\left(\left(c-1\right)

{\overline{d}}^2+\left(N-c\right)A_c\right)

\end{eqnarray*}

where $a_c = A_c/\overline{d}^2$ -- is weighted mean difference of distances between cluster centers and a mutual variety center. Then the Calinski-Harabasz index will be:



\begin{eqnarray*}

\mathrm{VRC} = \frac{\mathrm{BGSS}/(c-1)}{\mathrm{WGSS}/(N-c)} =

\end{eqnarray*}

 \begin{eqnarray*}

 \frac{{\overline{d}}^2+ [(N-c)/(c-1)]A_c}{{\overline{d}}^2-A_c} =

\end{eqnarray*}

 \begin{eqnarray*}  %  \begin{equation}\label{7}

 \frac{1+[(N-c)/(c-1)]a_c}{1-a_c}

\end{eqnarray*}

where $a_c=A_c/\overline{d}^2$. We can see, that if the all distances between points are similar, then

$a_c=0$ and $\mathrm{VRC} = 1$. $a_c=1$

  characterize the prefect clustering. The maximum value of  corresponds to optimal cluster's structure.



Another approach to validate the clustering results is using the silhouette index. Its values shows the degree of similarity between object and cluster that he belongs to, compared to another clusters

[\itc{Shi and Horvath,} \reflink{Shi06}{2006};

\itc{Soliman et al.,} \reflink{Soliman17}{2017}].



Silhouette of every cluster estimates as follows: let object $x_j$ corresponds to cluster $c_p$. Denote the mean distance from this object to other objects from this cluster  $c_p$ as $a_{pj}$  and the mean distance from this object $x_j$ to objects from another cluster as

$c_q,q\ \neq\ p $ as $d_{q,j}$.

Let $b_{pj} = \min_{q\neq p}d_{qj}$. This value means the measure of dissimilarity of single object with objects from nearest cluster. Thus, the silhouette of every single element of cluster calculates as:



 \begin{eqnarray*}   % \begin{equation}\label{8}

S_{x_j}=\frac{b_{pj}-a_{pj}}{\max(a_{pj},b_{pj})}

\end{eqnarray*}

The highest values of $S_{x_j}$ corresponds to better affiliation of element  $x_j$

to cluster $p$.  The evaluation of all cluster structure provided by averaging the value by elements:



 \begin{eqnarray*}   %  \begin{equation}\label{9}

\mathrm{SWC} = \frac{1}{N}\sum_{j=1}^{N}S_{x_j}

\end{eqnarray*}

Better clustering characterized by bigger values of , that achieved when the distance inside cluster $a_{pj}$ is small and the distance between objects from neighboring clusters $b_{pj}$ is big.



\section{3. Black Sea Surface Physiographic Zoning}

\subsection{3.1. Research Area}



The Black Sea is an inland sea, that belongs to the basin of the Atlantic Ocean. Its maximum depth reaches the mark of 2258 meters

(\figref{1})

[\itc{Barratt,} \reflink{Barratt93}{1993}].

The total area of the Black Sea is 420,325~km$^2$, and with the Sea of Azov -- 462,000~km$^2$

[\itc{Murray,} \reflink{Murray05}{2005}].



The average seasonal cycle of geostrophic circulation of the Black Sea [\itc{Ivanov and Belokopytov,} \reflink{Ivanov11}{2011}]:



\begin{itemize}

\item

	From January to March -- a single cyclonic rotation with a center in the eastern part of the sea, the western circulation is weakly expressed;

\item

from April to May -- a single cyclonic rotation with a center in the western part of the sea, the eastern cycle is weakly expressed;

\item

from June to July -- two cycles, the western more intense;

\item

from August to September -- two cycles, the eastern one is more intense;

\item

from October to December -- two cycles of equal intensity.

\end{itemize}



About 80\%

of the river flow is concentrated in the northwestern part of the Black Sea. The Caucasian rivers contribute about 13\%

of the water balance, while the runoff from Turkeys rivers is about 7\%

[\itc{Ghervas} \reflink{Ghervas17}{2017}].  % Ghervas.

The contribution of the Crimean rivers a is insignificant

[\itc{Belokopytov and Shokurova,} \reflink{Belokopytov05}{2005}].



The biggest river, that flows into the Black Sea is Danube. The Danube usually brings about 203~km$^3$ of freshwater into North-Western part of the Black Sea, decreasing the level of salinity there. Another big river, that flows into Black Sea is Dnieper from Ukrainian part and Rioni from Georgian

[\itc{Ozsoy and Unluata,} \reflink{Ozsoy97}{1997}].



\begin{figure*}[t]                        %  Fig  1

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f01}

\shortcaption{Bathymetric map of the Black Sea.}

\end{figure*}



\subsection{3.2. Data}



We used the monthly averaged data from Copernicus Marine Environmental Monitoring Service (CMEMS) -- Black Sea Reanalysis, which are based on 5 components:



\def\bottomfraction{.8}

\def\textfraction{.15}



\begin{table}[b]                                   % Table 1

\tablewidth{20pc}

\caption{Estimated Data Accuracy Results for Temperature and

Salinity. From Left Side in Each Row -- for 1995--2015 Data.

From Right -- for 2005--2015} \vspace{5pt}

\begin{tabular}

{@{}l@{\hspace{9pt}}

c@{\hspace{18pt}}

c@{}}

\hline

\\ [-7pt]

Feature & BIAS v4 & DMS v4 \\

 [7pt]  \hline   \\ [-4pt]

SST (\deg C)          & $-0.07/-0.07$ & 0.58/0.59 \\

T (\deg C) 0--100 m   & $-0.02/0.025$ & 0.87/0.74 \\

T (\deg C) 100--300 m & $-0.03/-0.003$ & 0.15/0.09 \\

T (\deg C) 300--800 m & $-0.02/-0.02$ & 0.11/0.05 \\

S (psu) 0--100 m      & $-0.014/0.002$ & 0.33/0.26 \\

S (psu) 100--300 m    & $-0.006/0.009$ & 0.19/0.15 \\

S (psu) 300--800 m    & $-0.005/-0.002$ & 0.05/0.03\\  [7pt]

\hline

\end{tabular}

\end{table}



\begin{enumerate}

\item

	Ocean model -- Hydrodynamic model, which is a part of the NEMO (Nucleus for European Modelling of the Ocean) project;

\item

	scheme of data assimilation (OceanVar) for temperature and salinity profiles, satellite data for sea surface temperature, sea level anomalies etc.;

\item

	assimilated data -- in-situ data for environmental variables;

\item

	recovery scheme for environmental variables;

\item

basic large-scale adjustments.

\end{enumerate}





Data from this model have a high level of correlation with in-situ data, that increasing with depth. For example, the accuracy of temperatures spatial distribution in the Black Sea at depth of 30~m

about $\pm{1.5}$\deg C, at the depth of 70~m it decreases to

$\pm{0.3}$\deg C and at the depth of 1100~m is about

$\pm{0.04}$\deg C

(\tabref{1}).    %Table 1).



The quality of the model data, as well as the model itself, improve with increasing of in-situ observations numbers.



For Black Sea surface physiographic zoning we used 6 environmental parameters -- sea surface temperature, sea surface salinity, dissolved oxygen level, PO$_4$ and NO$_3$ content and primary production level.



\subsection{3.3. Results}



To understand, does dataset has a tendency to form clusters, we calculated a Hopkins index using the R-package ``clustertend''. It was equal to 0.0194, that means that this dataset can form clusters.



To estimate an optimal number of clusters, we used the R-package ``factoextra''. Results shown in

\figref{2}.    % figure 2.



\begin{figure}[t]                        %   Fig  2

\figurewidth{20pc}

\setimage{}{}{20pc}{}{2020es000707-f02}

\caption{Determining an optimal number of $k$ by elbow-method.}

\end{figure}



As we can see at the

\figref{2},

the elbow of our curve is located at 3, thus we can distinguish 3 completely different zones in the surface waters of the Black Sea

(\figref{3}, \figref{4}).

Allocation of this zones due equally to all of analyzed factors, except dissolved oxygen.



\begin{figure*}[t]                        %   Fig  3

\figurewidth{35pc}

\setimage{}{}{41pc}{}{2020es000707-f03}

\caption{Seasonal zoning of the Black Sea.%

{\bf A} -- Winter, {\bf B} -- Spring, {\bf C} -- Summer, {\bf D} -- Autumn.}

\end{figure*}



Based on statistical analysis all of these factors divided in two groups. First -- phosphates concentration, primary production and chlorophyll-$\alpha$, which are derivatives from each other -- the amount of phosphates impacts on amount of primary production and amount of primary production impacts on amount of produced chlorophyll-$\alpha$. Second are temperature, salinity and nitrates concentration.



Studying water objects, it's important to know a seasonal variability of zones, because of its very high change capability in time. Comparing with land, water systems aren't stable for long period of time and spatial distribution of factors can vary from season to season.



Generally, as we can see in figure, main reasons of zoning pattern forming are quantitative and qualitative characteristics on flows.



In winter season, there is a clear divide of the Black Sea from west to east. A significant role in this process is played by the interaction of the Black Sea with the Sea of Marmara, river flows in the northwest of the Black Sea and in the Caucasus and, in some cases, areas near the Southern coast of Crimea and the Kerch Peninsula due to the activity of currents from the Sea of Azov.



In spring season, the divide of the Black Sea occurs from north to south. In this case, a significant impact on this process is exerted by the significant flow of such rivers as the Dniester, Danube and Dnieper in the north-west of the Black Sea and the influx of water from the Sea of Marmara. Due to the interaction between two water masses radically different in their characteristics, it forms an intermediate zone between them, covering an area from the Kerch Strait to the Danube Delta.



In the summer, due to the nature of the internal currents in the Black Sea and changes in the volume of river flow, more saline water from the Sea of Marmara reaches the Danube. In spatial terms, the pattern of zones distribution in the Black Sea is similar to the winter one, in which they are located from east to west. The formation of the intermediate second zone is most likely due to the interaction with more fresh and cold water coming from the Sea of Azov.



In autumn, the formation of more fresh and colder waters off the coast of Turkey is observed, which is due to the significant flow of the rivers of the Turkish coast. The distribution pattern is more similar to the spring one, with significantly increased in size zone~1.



Annual zoning of the Black Sea is presented on  figref{4}.



\subsubsection{Zone 1.}

 Located in the North-West part of the Black Sea. Flows from Danube, Dniester, Dnieper and Southern Bug completely equal of 3/4 of a total flow into the Black Sea. Dominated northern and north-western winds helps in spreading of matters, endured by rivers. The main feature of this part of the sea is an active interaction of fresh water from rivers with salty water from south of the Black Sea. Near the shore water salinity reaches values about $7-8 \pm$. Temperature of water surface, as a salinity, increasing from shore to open sea. Temperature differences reaches

 1.5--2.0\deg C. Bioproductivity of this zone is quite high, mainly cause of active flowing rivers matter and\linebreak

fresh water. But local hydrophysical and hydrochemical

conditions condition high variability of bioproductivity with

fishkills.



\subsubsection{Zone 2.}

 Basically, forming of this zone determined by interactions between 1-st and 3-rd zones, where as a results of Black Sea

 currents and flows from big rivers, cold fresh water from the coastal areas mixed up with more cold and salty water from

 central part of the Black Sea. Located in the north-west part of the Black Sea, near the Crimean-Caucasus shore of Russia,

 Georgian and Turkey coasts. Biggest rivers here are Rioni, Tuapse, Kizilirmak, Yesilirmak and Inguri. Like the zone~1, location

 of the zone 2 is due to the flows from rivers. But cause of lower levels of flow amount, compared with the zone 1, their

 impact  on water of the Black Sea is quite lower, but noticeable. Values of salinity here doesn't differ from the central part

 ($1-2 \pm$ fresher), same as a temperature.



\begin{figure*}[t]                          %  Fig  4

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f04}

\shortcaption{Physiography zoning of the Black Sea.}

\end{figure*}



\subsubsection{Zone 3.}

 Natural conditions of this zone are a common to the Black Sea. The area of this zone is the biggest. Located in the south and central part of the Black Sea and near the Kerch Strait. Salinity here is a quite high -- $19-20 \pm $, and reaches $24 \pm $ near the Bosporus Strait. The impact of the Sea of Azov is quite low, due to specificity of Azov currents. Amount of phosphates and nitrates is low due to lack of any big rivers, which are the main sources of their presence in the sea water. As a result, concentrations of chlorophyll-$\alpha$ is quite low too.



\section{4. Conclusions}



Thus, the methodological approach, showed in this paper, helps us to use it fully in zoning tasks to provide distinguishing from them completely different areas, that aren't similar. As we can see, the main advantages of this approach are lack of subjectivity that is inherent to humans, high level of analysis accuracy, possibility of constant model's modification by adding new {\itshape in-situ} data or by modifying the algorithm itself. Also, it should be noted, that the indisputable advantage of this approach is the ability to use it in any kind of territory, both in size and in properties.



As we talk about disadvantages of this approach, we should note a strong dependency from input data quality and data normalization, which in some cases can lead to significant distortion in the analysis results. The same we can say about data size. With significant amount of data, it may be difficult to conduct the research, which leads to completely change the used algorithm or to significant reduction in data size and, as a result, to simplification of the model and distortion of the real results. Generally, we should note, that using of this approach is justified in most cases, but the need of improvement and further optimization of it doesn't disappear.



Obtained results helps us to understand that applying of this

approach can helps us to go away from analytical and empirical

zoning approaches to have a math basis, uniformity of

calculations and process automatization. Conducted as an

example of this approach application, Black Sea physiographic

zoning generally is quite similar with previous works. It was

determined, that the most optimal number of the dissimilar

groups, based on analyzed factors is 3. Generally, their

spatial location based on places where rivers flows into the

Black Sea, and as a result more comfortable for different flora

and fauna. For example, the conditions, that formed in the

second area is quite comfortable for spawning of many

commercial fishes, Like {\itshape Liza haematocheilus},

{\itshape Engraulis encragicolus}, {\itshape Liza aurata},

 {\itshape Mugil cephalus}, etc. Thus, applying a machine learning approach in area's zoning tasks helps us to increase the quality of nature using and decision-making process.
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