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Abstract. The description of the behavior of
the geomagnetic field in the geological past is
greatly hampered by the paucity of the data
both in space and time. In paleomagnetic
studies, this circumstance is partly overcome
through the use of the Geomagnetic Axial
Dipole (GAD) model, which however becomes
unsatisfactory when multipolar terms with
non-zero time averages are introduced. Under
these conditions, the only way to describe the
spatio-temporal evolution of the paleofield is to
investigate the temporal evolution of its
statistical characteristics. An applicable method
for such a description is the use of the Giant
Gaussian Process model which does not
determine the individual parameters but the
probabilistic compatibility of a given model with
empirical data. However, the specificity of the
data entails many technical difficulties for the
implementation of this method when applied to
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paleomagnetic and paleointensity data. An ex-
ample of such an analysis applied to the Brunhes
epoch clearly revealed the necessity of introduc-
ing the significant non-dipole terms in the ancient
geomagnetic field configuration for this epoch. In
addition, the problem of the discrepancy between
models constructed separately for paleointensity
and paleoinclination data was discovered. Hy-
potheses are to explain this discrepancy.

Introduction

First of all, the study of the Earth’s main magnetic
field requires the study of the available data. The cor-
responding theoretical descriptions may vary depending
on the time scale we are interested in. Here we address
the time scales of secular variation that exceed. Since,
at smaller time scales, the magnetic field is also not
constant in time, we assume that the value B(r, t) (of
the magnetic field at time t at a given geographical
location r is constant over smaller time scales. In prac-
tice we may set it equal to the time-average of the
observable values over some reasonably small time in-
terval. Such an approach guarantees that the annual
variation of B(r, t) is of the order of few nanoteslas



– that is negligible when compared with the precision
of paleomagnetic records. The complete description of
the Earth’s magnetic field should ideally provide (with
an appropriate precision) the vectorial value of B(r, t)
at any epoch in the past and at any geographical lo-
cation r. Unfortunately, this desirable target descrip-
tion is hampered by the fact that paleomagnetic data
rarely come as 3D vectors. Retrieved from sedimentary
and igneous rocks, paleomagnetic observations most
often comprise only directional records whereas inten-
sity records are much more seldom. Moreover, such
records are sparse in time and space. Understanding
the limitations due to the intrinsic of paleomagnetic
data is thus of utmost importance.

Mathematically speaking [Backus, 1968] the Earth’s
magnetic field can only be recovered in a unique way
if its vertical component is known everywhere at the
Earth’s surface (This follows from the uniqueness of the
harmonic magnetic potential under the external Neu-
mann boundary conditions). Unfortunately, the verti-
cal component itself is not represented in the existing
databases and can hardly be accurately recovered from
the remanent magnetization of paleomagnetic samples.
Whether we can reconstruct the vector B(r, t) from
the non-vectorial data, even assuming perfect measure-



ments, is an open question. Two cases are of the spe-
cial interest: (i) the directional-only data and (ii) the
intensity-only data. The following questions are of spe-
cial interest.

1. Assume the perfect knowledge of the directional
data at a given moment t0 from the past at any
geographical location r. In this case, to which ex-
tent can we reconstruct the vector field B(r, t0) at
any geographical location?

2. Assume the perfect knowledge of the intensity data
at a given moment t0 from the past at any geo-
graphical location r. In this case, to which extent
can we reconstruct the vector field B(r, t0) at any
geographical location?

3. How can we approximate the vector field from spa-
tially sparse data at a given moment t0?

The first two questions are known as “uniqueness
problems”; the answers however depend on the ad-
ditional constraints. For instance, for directional-only
data we need to know the number n of loci where the
field vector is known to be either zero (no direction) or
normal to the surface. The result [Hulot et al., 1997]
states that the dimension of the space of solutions can-
not exceed n− 1 in the general case. For instance, the



geomagnetic field with only two poles (say, South and
North magnetic poles) can be recovered – uniquely up
to a global numerical multiplier – from directional-only
data gathered at the Earth’s surface. Since, in case of
perfect measurements, the resulting uncertainty is an
unknown parameter, it is enough to additionally know
the single value |B(r, t0)|. In real case anyway we need
not to use the rich intensity data |B(r, t0)| for the re-
covery the full vector field.

Consider now the case of intensity-only data. This
is in some sense the complementary problem to the
directional one. G. Backus [1970] showed the absence
of uniqueness for the reconstruction, therefore we add
to the intensity data the geographical locations where
the magnetic field is tangent to the Earth’s surface (i.e.
dip-equator) as a supplementary condition. Then the
main result of [Khokhlov et al., 1997, 1999] states the
uniqueness of the reconstructed B(r, t).

The conclusion is that the non-vectorial nature of
most paleomagnetic records is not a dramatic obstacle
if one assumes a GAD field geometry, but the problem
of reconstruction still persists if one assumes a more
complex geometry [Kaiser, 2012]. However, magnetic
excursions and polarity reversals strongly suggests the
existence of short-term departures from the GAD ge-



ometry. More surprisingly, recent palaeodirectional and
paleointensity studies of the Devonian and the Edi-
acaran periods proved significantly non-dipolar geome-
try of the field on long-term time intervals. The de-
tailed description of the field structure during these
events/epochs is much more complicated than the one
produced in the framework of the GAD hypothesis and
needs to have more extensive full-vector paleomagnetic
data. But even if this condition is fulfilled, this may be
not enough as no complete theory of the uniqueness is
known yet in the general case.

The assumption of the dipolar-like structure was long
time taken for granted, in particular the documented
human history of the last millennia proved no signifi-
cant deviations from the modern structure of the main
magnetic field. This dipolar assumption gives rise to
many heuristic approximation methods to deal with ge-
ographically sparse data at a given moment. It is also
crucial to all results in reconstruction of the ancient
continents. In the following section, we will thus place
a special emphasis on the dipolar. assumption.



Global Descriptions and the Regional Data:

The GAD Hypothesis and the Stationar-

ity Assumptions

From the seventeenth century the magnetic field at the
surface of the Earth is approximated by a magnetic
dipole placed at the Earth’s center and tilted on the
order of ten degrees with respect to the rotational axis
of the Earth. The quality of such approximation can
be measured in average over the surface and provide
roughly 80 percents of the real Earth’s magnetic field
there. The dipole axis intersects the Earth’s surface
at two points, referred to as the geomagnetic poles –
they are differ in general from loci where the real field
vector B(r, t) is normal to the surface. The quality of
such a dipolar approximation and the direction of the
dipolar axis are both non-constant in time – these are
the known facts about the observable modern secular
variations of the Earth’s magnetic field. The rather
strong assumption is that the similar approximation is
valid for almost all time periods in the Earth’s history,
i.e. any measured paleomagnetic direction or intensity
value must be considered as the remanence of the an-
cient magnetic field with approximately similar struc-



ture (except for the value of the tilting angle φ). In
particular we have the dispersion of geomagnetic poles
at the Earth’s surface Another very strong assumption
is that the corresponding probability density function
is bimodal with with maxima at the geographic poles.
Moreover, paleomagnetists widely believe in the rota-
tional symmetry of this probability density function.

In particular, if we consider the expectancy of unit
vectors that correspond to the geomagnetic poles dis-
tributed in the northern (southern) hemisphere then the
expectancy vector is aligned to the rotational axis of the
Earth. Let this be a weak form of the famous Geocen-
tric Axial Dipole hypothesis which actually claims much
more: the time-averaged geomagnetic field is that of
a geocentric axial dipole [Merrill et al., 1998]. Neither
the weak form nor the strong form of the GAD state-
ment say nothing about the scale of the time-averaging,
it is widely believed (after [Hospers, 1954]) that sev-
eral thousands of years would be enough to provide the
good fit. However the realness of this depends upon the
hypothesis related to the value of the tilting angle and
the rate of secular variations at all scales. In the more
rigorous fashion we have to assume something about
the stationarity of the corresponding random process
of paleosecular variation (PSV) and the time-scale of



its autocorrelation function. Indeed the rate of con-
vergence of the arithmetical averages to expectancy is
subjected to the properties of the correlation function.
It is not at all traditional to incorporate these statistical
considerations to paleomagnetic studies. As a result a
lot of heuristic arguments related to the structure of
the ancient magnetic field coexist even though being
even in a disagreement with each other.

The problem of GAD consistency obviously persists
especially for the poor and small datasets related to the
deep past (say a billion year-old records, see [Meert,
2009]), however even for the more recent times the
corresponding arguments are highly suspicious. Indeed,
the approximation of the geomagnetic poles scattering
that resulted from the VGP transformation of the pale-
omagnetic directional data has no definitive precision,
since the latter depends upon the unknown tilting an-
gle φ used in the dipolar approximation. This does
not mean that we must reject the GAD but a certain
refinement of it is needed.

Before all we have to set the appropriate language of
the descriptions and this would be of course the spectral
representation of the Earth’s main magnetic field (in
magnetostatic approximation) at any given moment t
of time – that is the linear combination of the gradients



of the spherical harmonic functions endowed with the
the time-dependent coefficients (usually referenced as
gaussian coefficients). In literature the traditional for-
mula of this linear combination is using the magnetic
potential in the spherical coordinate system (r , θ,ϕ)
(distance from the Earth’s center, colatitude and lon-
gitude):

B (r , θ,ϕ, t) = −∇
[

a

∞∑
l=1

l∑
m=0

(
a

r
)l+1(gm

l (t) cos mϕ +

hml (t) sin mϕ)Pm
l (cos θ)

]
(1)

where gm
l (t) and hml (t) are the time-varying coeffi-

cients (gaussian coefficients), a denotes Earth’s radius,
Pm
l is for Legendre polynomial function. Therefore the

problem of reconstruction of the magnetic field is equal
to the problem of reconstruction at a time t (with a
suitable precision) all gaussian coefficients from the pa-
leomagnetic data that is sparse both spatially and in
time. Unfortunately as a general rule the reconstruc-
tion of spectra from unevenly sampled data is not ro-
bust and in general has very poor precision (for instance
this are well known facts for the Fourier spectrum of a
real-valued function). Even though the problem of re-



covering gaussian coefficients from paleomagnetic data
is highly nontrivial one can test the compatibility of
GAD and paleomagnetic data. Indeed the dipolar ap-
proximation means that the magnetic field computed
from the magnetic potential 1 with g l

k(t) = hlk(t) = 0,
k > 1 provides the good approximation of the real pa-
leomagnetic data. Such a test was implemented sev-
eral times on the timescale 0–5 Ma (where the con-
tinental drift is small): the world-wide paleomagnetic
poles (recovered by VGP-transform of the normal and
reversed paleomagnetic data) for this time span show
the scatter around the geomagnetic poles see [Cox and
Doell, 1960; Merrill et al., 1998] – this indicates sup-
port for GAD at least for its weakest form. Even for
the weakest form some departures from the For the
strong form of GAD we need the convergency rate of
the time-averaged magnetic field – no exact global test
is known yet because the accurate recovery of the time-
dependency of gaussian coefficients is hardly achiev-
able. For older than a few Ma past time the conti-
nental drift is not negligible but the position of an-
cient continents are usually determined by invoking the
GAD: therefore the only argument in support of GAD
is the absence of contradiction while positioning the
extended regions of the continents during various geo-



logical epochs. Again here we use only the weak form
of GAD.

The quantitative analysis of dipolar approximation
therefore is not at all trivial and known attempts need
some additional statistical settings and constraints; we
consider the example of such a statistical approach be-
low in more general fashion.

Even though the direct spectral transform of paleo-
magnetic data to the set of gaussian coefficients can-
not be directly applied because of the sparse uneven
distribution of the data one can apply mild conditions
and consider certain finite approximations of the gaus-
sian coefficients. The corresponding approach after the
seminal papers [Bloxham, 1987; Bloxham et al., 1989]
is implemented in sequence of geomagnetic models of
Holocene, see the latest model in [Constable et al.,
2016]. The idea is to find the truncated sequence of
gaussian coefficients by means of the least square es-
timator of the differences between paleomagnetic data
and the model field. The continuous in time functions
g l
k(t), hlk(t) are defined using finite set of nodes and the

corresponding set of cubic B-splines. The robustness
test of this construction in [Licht et al., 2013] show the
wide enough error bars so this type of modelling pro-
vides valuable approximations of gaussian coefficients



only for a few initial indices also with the very poor
time resolution for times older than 1500 BC. No ar-
gument in support of GAD follow from such a model
moreover these computations show the presence of the
non-dipolar terms.

The conclusion therefore is that the geomagnetic
field during the stable polarity epoch likely may have
time-averages that are significantly distinct from the
pure dipole aligned to the rotational axe of the Earth.
This imply the study of the explicit description of the
time-average geomagnetic field (i.e. averaged over the
given time interval) together with the description of the
deviations (paleosecular variations) from this average –
these are so-called TAF and PSV studies, for the mod-
ern state of this research see [Johnson and McFadden,
2015]. We wouldn’t repeat here the known facts from
numerous TAF and PSV publications here, instead we
recall the ordinary statistical approach and will describe
below the corresponding implementation of it for GGP
geomagnetic model.



What Can the Non-Parametric Statistics

Do?

We recall the well-known Mathematical Statistics con-
struction that is key important for our paleomagnetic
field studies. A standard statistical procedure tests
the relationship between two statistical data sets, or
a data set and synthetic data drawn from an idealized
model. Such an idealized model typically describes the
distribution laws of the random values involved, the
non-parametric test then measures the probability to
get the observed data in assumption that this theo-
retical laws are valid. For the statistical test we need
the data records that we may assume statistically inde-
pendent and obey the fixed theoretical distribution, for
instance, the Kolmogorov–Smirnov test (KS-test) and
the Anderson–Darling test (AD-test). For the most
simple and robust case these two tests rely on the fact
that, if a given data set {xi}, i = 1, ... N is compat-
ible with a uniform distribution over [0, 1], its empiri-
cal cumulative distribution function (cdf) FN(x) should
fluctuate within known limits about the theoretical cdf
value F (x) = x . The tested hypothesis should then be
rejected if the empirical cdf FN(x) departs too far from
the function y = x and the measure of such a depar-



ture is the probability of the corresponding distance for
the idealized dataset. The KS-test and AD-test differ
in a way chosen to assess the distance ‖FN(x) − x‖
over [0, 1]:

1. the KS-test uses for the ‖FN(x) − x‖ the maxi-
mum value MN of |FN(x) − x | over [0, 1], and is
therefore most sensitive to departures of the {xi}
from a uniform distribution towards the middle of
the segment [0, 1];

2. the AD-test uses for the ‖FN(x)− x‖ the integral
quantity

N

∫ 1

0
(FN(x)− x)2 [x(1− x)]−1 dx

Because of the weight [x(1 − x)]−1, it is much more
sensitive to the behaviour of {xi} at both extremes of
the segment [0, 1].

Note, that the quantitative result of these test is al-
ways the probability p to observe from the ideal dataset
(that obey the uniform law) the distances that are equal
the quantity computed for the real data. As a common
rule for the natural sciences we declare the incompati-
bility of the real data and the theoretical law when this



probability p is less than some threshold (the given level
of consistency), usually 0.05. In brief: we reject those
theories that explain the real case as somewhat almost
not real! The non-parametric test do not insist on the
“proof” of the theory, we stay with conclusion “not
enough arguments found in the dataset to reject this
theory”, however this conclusion is strongly meaningful
when we consider the big datasets.

Coming back to the PSV and TAF studies we may try
to implement this approach providing we have the ex-
plicit theory for the paleomagnetic observables such as
directions or intensities. Such a theory was suggested
in [Constable and Parker, 1988] and is known as the
Giant Gaussian Process or just GGP-model. Moreover
this GGP-model defines the special transformation of
the paleomagnetic data that converts it into the (pre-
sumably uniformly distributed at [0, 1]) sequences {xi},
i = 1, ... N – therefore KS- and AD-tests are applicable
without any significant changes.

GGP-Approach in the Magnetic Field Modelling

The basic assumption of the GGP model claims that
at times of stable polarity, the (finitely dimensional)
vector with the components g l

k(t), hlk(t), l ≤ k ≤ M



{
g(t),h(t)

}
=
{

g 0
1 (t), g 1

1 (t), h1
1(t), g 0

2 (t), ...

gM
M (t), hMM (t)

}
M � 1

is a single realization of a stationary random vectorial
process. According to the general Kolmogorov consis-
tency theorem (also independently discovered by British
mathematician Percy John Daniell) [Tao, 2011] a suit-
able family of the probability distributions at any fi-
nite set t1, t2, ... tM will define the random process. In
particular, if all such distributions are multidimensional
normal (i.e. have Gauss probability densities), the ran-
dom process called Gaussian process (do not confuse
this with the name of spectral coefficients g l

k(t), hlk(t))
and, therefore the explicit formula of the multidimen-
sional probability densities needs only knowledge of ex-
pectations and covariation functions.

In other words, the GGP model assumes that the
temporal evolution of the geomagnetic field during a
given long period of time (say, for instance, between
two reversals) can be described in terms of statistical
fluctuations of the field about a mean field.

Because of representation (1) and the stationarity
condition the temporal evolution can be described in



terms of fluctuations of the random vector {g,h} (made
of coefficients g = {g 0

1 , g 1
1 , ... , gm

l ...}, h = {h1
1, h1

2, ... , hml ...})
about some average model {E (g), E (h)}. Assuming
that these fluctuations can be described in terms of a
short term memory stationary random Gaussian process
(which is consistent with both historical geomagnetic
and archeomagnetic variations – see e.g. [Hongre et al.,
1998; Hulot and Le Mouël, 1994]), and that any two
paleomagnetic observations are always separated by a
period of time larger than the memory (short memory is
described in terms of rapidly decreasing autocovariation
functions) of the process (memory is of the order of a
couple centuries), each paleomagnetic data can then be
viewed as a local (both in time and space) independent
realization of a random Gaussian drawing. Describing
the paleomagnetic field in terms of generalized GGP
simply consists in identifying the first and the second
moments of the Gaussian statistics of k best predict-
ing the observed statistics for the paleomagnetic data.
The mean and fluctuating fields are then characterized

by the expectations E (g j
i ), E (hlk) and the covariance

matrix.
This description of the paleomagnetic field general-

izes the original GGP of [Constable and Parker, 1988]
which was build upon two additional important simpli-



fying assumptions: first, that the gaussian coefficients
could be considered as being independent from one an-
other, and second, that all Gauss coefficients sharing
the same degree n, would share the same variance σn.
In other words, the original GGP further assumed that

cov(hji , hlk) = cov(g j
i , g l

k) = δikδjlσ
2
k

cov(g j
i , hlk) ≡ 0

After the studies [Constable and Johnson, 1999; John-
son and Constable, 1997] of the past 5 Ma all recent
TAF models for that period include some amount of
anisotropy of the fluctuating field. This is indeed the
refinement of the GAD conjecture for the given epoch
of stable polarity; at a larger scale of several such
epochs testing the GAD conjecture rely on the GGP-
parameters at smaller scales.

At present all gaussian coefficients are usually as-
sumed to be mutually independent i.e. the autoco-
variance matrix C(0) is diagonal. There exist several
candidates (that differed in their statistical parameters)
to be the best GGP-model and it is worth to compare
them using the mentioned above non-parametric statis-
tical approach and various types of paleomagnetic data:



intensity-only data, directional data and available col-
lections of 3D paleomagnetic measurements. Below
we explain the necessary transformations of the cor-
responding types of data in order to apply KS- and
AD-tests.

But Why the GGP Model?

We have shown above, that the GGP model for the past
geomagnetic field has at least clear statistical structure:
for a given set of parameters (expectations and covaria-
tion matrices) the testing process of this set against the
real data looks like as the routine non-parametric sta-
tistical test. This contrast with those approaches that
use the GAD hypothesis: for instance computations
with VADM and VGP-transform are in fact nonlinear
on g l

k(t), hlk(t) and therefore shadow in an uncontrolled
way the non-dipole content in the geomagnetic data.
Such a convenience of the statistical methods within
GGP-approach is already sufficient argument but there
is more fundamental consideration in support of GGP-
approach in geomagnetic modelling: namely the study
of the computational numerical solutions of so-called
geodynamo differential equations. It appears reason-
able (see e.g. [Bouligand et al., 2016]) to conduct



the GGP simple tests using the modern calculations of
the numerical geodynamo models: series of such cal-
culations was carried out in the past two decades in a
number of studies (the detailed review see [Christensen,
2011]).

In general a statistical analysis can only be correctly
conducted when based on the ensemble of the solu-
tions; meanwhile, the corresponding geodynamo data
are unavailable for us as of now. Generally speaking,
the appearance of non-Gaussian distributions in turbu-
lent dynamical systems was noted in the analysis of the
properties of fluid dynamic equations a fairly long time
ago. The refined analysis of the hydrodynamic empir-
ical data also showed that the corresponding distribu-
tions are similar to the Laplace distribution. The idea
to interpret the statistical properties of these data in
terms of mixtures of Gaussian laws emerged in the ar-
ticle [Barndorff-Nielsen, 1979]. Computational geody-
namo models are also considered for turbulent regimes
and, thus, the effects we observe in the numerical geo-
dynamo solutions reasonably well agree with the prop-
erties of the data that were previously yielded by the
physical experiments with turbulent systems; hence,
these effects cannot be attributed to purely compu-
tational artifacts.



The cases when the geodynamo parameters corre-
spond, in the context of the up-to-date notions, to the
parameters of the magnetic field of the Earth are par-
ticularly interesting. In these cases, the key interest lies
in the statistical characteristics of the time-dependent
coefficients g l

k(t), hlk(t), primarily in respect of eluci-
dating the validity conditions of the GGP hypothesis.
However, all hypotheses cannot be tested correctly and
correct statistical estimates cannot be obtained with
a single numerical solution; this can only be achieved
with an ensemble of solutions (that are sufficiently ex-
tensive for statistics) with different initial conditions.
As is well known, the substitution of ensemble statis-
tics to time statistics is only possible when a random
process is stationary and ergodic. In practice, the sta-
tionarity and ergodicity of data are frequently assumed
without reasonable grounds for this; however, this as-
sumption is not always true and its violation can result
in the unexpected consequences.

For instance, in [Khokhlov et al., 2017] we studied
the numerical solutions of [Lhuillier et al., 2013] with
a resolution up to the spherical harmonics of order 44,
which guaranteed the ratio of the minimal-to-maximal
amplitudes of the spatial spectrum (averaged over the
volume of the liquid core). The total volume of the ob-



tained data contains 2,676,712 time points correspond-
ing to the time interval of 33.45 Ma (It is worth to
mention also the early attempt [Bouligand et al., 2005]
to test the GGP approach related to the numerical so-
lutions of the early Earth-like model of [Glatzmaier et
al., 1999]).

We analyzed the statistics for coefficients g l
k(t), hlk(t)

on the intervals of constant polarity. The direct tests
of the distribution parameters at reasonable time-scales
show the zero-valued expectations for the coefficients
of degree > 1, however, this may reveal just the na-
ture of the particular computational geodynamo model
but may be not relevant to real paleomagnetic data.
Though the short memory statement seems with the
high confidence to be true, there is also a feature that
is for the first glance incompatible with the GGP-model
statements.

Namely, we constructed the distribution histograms
of the coefficients (based on the 2,323,995 data points
of the time series) up to the degree n ≤ 12. These
histograms (see for instance Figure 1 left) turned out
to be noticeably different from the Gaussian and, more-
over, the obtained shapes were much better described
by the Laplace distribution formula y(x) = const ×
exp(−|bx |). On the other hand, from the GGP descrip-



tion, it follows that the corresponding g l
n(t), hln(t), dis-

tributions should be Gaussian and, hence, the appear-
ance of non-Gaussian forms in the numerical solution
of a particular geodynamo not only raises the question
of GGP applicability limits but also challenges some es-
timates associated with the statistical processing of the
magnetic data.

It should be born in mind that the shape of the his-
togram depends on the amount of data and the way
they are binned. In the case of the applicability of sta-
tistical methods the shape of the histogram stabilizes
as the amount of the data increases. When instead of
an ensemble of independent realizations there is only a
single realization of a certain random process, for the
applicability of the statistics, it is required that the sta-
tistical properties of the data be the same irrespective
of the time interval selected for the study. In formal
language this property is termed the stationarity of the
process and, of course, it is by no means always the
case in practice. The statistical estimates based on
short segments are usually inaccurate and may only de-
scribe the general properties of the distribution. With
the increase of the segment, in the case of a stationary
process, the corresponding pattern of the distribution
becomes more refined; therefore, generally speaking,



the characteristic of the stationary behavior for a sin-
gle realization refers to a certain (particular) length of
the time segment. Similarly, in a study of an ensemble
of realizations on a fixed time segment, statistical esti-
mates will require a large number of such realizations.

Therefore, we recovered from these numerical so-
lutions that we must be careful when speaking about
the stationary character of the geodynamo model and
therefore geomagnetic field. For instance, Figure 1 on
the right, shows a histogram for coefficient h2

2 for a rel-
atively short segment of the solution containing data
samples at successive time points. This shape of the
histogram on a semilog scale is reasonably accurately
described by the convex curve close to the parabola.
Hence, albeit, with some caution, we may speak of the
Gaussian character of the process at reasonable time-
scales (in geomagnetic units spanning ≈ 100, 000 years
and therefore consistent with the time of the constant
polarity) while the larger time intervals must be consid-
ered as the union of several stable processes however
differ in their parameters. In such conditions the stabi-
lization of the histogram about the non-Gaussian form
with the increase of the analyzed time interval suggests
that the randomization model (hence a non-gaussian
model that is also referred to as a mixture of distri-
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butions, see [Barndorff-Nielsen, 1979]) is much more
suitable here.

The study of the time evolution of coefficients g l
k(t),

hlk(t) in the geodynamo solutions [Lhuillier et al., 2013]
shows that the secular variations on short time seg-
ments and those on intervals that are long in terms of
the distribution of the probable values are dissimilar.
Specifically, on short segments, the GGP model can be
(with a certain degree of caution) assumed to be valid;
i.e., secular variations can be considered as a station-
ary Gaussian process (although, strictly speaking, we
should ascertain that a mixed multivariate distribution
is also Gaussian). A sufficiently long time interval is
however subdivided into several segments so that the
parameters of the corresponding stationary Gaussian
processes on these segments differ. Hence, the statis-
tics of the global behavior of the process of secular
variations will differ from the local statistics, which is
reflected, e.g., in the form of the histograms for g l

k(t)

and hlk(t). A refined description of the global behavior
of secular variations can be given in terms of the mix-
ture of several Gaussian stationary processes, which can
be informally described as switching between different
modes of behavior. This property is by no means new
for dynamical systems since it accompanies the fairly



common phenomenon of intermittence in the observed
solutions [Frisch, 1995]. The particular numerical geo-
dynamo solutions [Lhuillier et al., 2013] were obtained
in a model setting with particular parameters; there-
fore, the type of the observed intermittence (and even
its probable absence) also depends on these parame-
ters. The question on whether intermittence exists, and
if so, which particular intermittence exists in the mag-
netism of the real Earth remains unclear. The answer
to this question can be obtained by two approaches: by
accumulating representative and accurate data for the
intervals of stable polarity in the geological history of
the Earth or by studying the question about the cor-
respondence of these types of parameters to the real
conditions in the liquid core of the Earth. As of now,
the second approach appears to be more realistic, in
terms of the available possibilities.

We may conclude that the GGP is indeed a good
candidate to model the real geomagnetic field.

GGP and the Full-Vector Paleomagnetic

Data

The local magnetic field probability distribution func-
tion can easily be derived from the formula for magnetic



potential: obviously the local pdf is Gaussian. When
the data is vectorial, vector errors can first be con-
sidered as independent gaussian vectorial increments
added to the error-free vector value. As explained in,
e.g., [Constable and Parker, 1988] the 1 formula implies
that vector samples x = (x1, x2, x3) of the modelled
field at a given site (i.e. location r , θ,ϕ) at the Earth’s
surface will behave as if drawn from a 3D Gaussian dis-
tribution defined by a mean vector m = (m1, m2, m3)
(in local cartesian coordinates) and a covariance matrix
Cov(x, x) =

[
cov(xi , xj)

]
, the details of which depend

on the site location, the mean field Gauss coefficients
{gm

l , hml } and the covariance matrix Cov(k, k) of the
GGP model (see, e.g., [Khokhlov et al., 2001, 2006]
for detailed formulae, which need not be made explicit
here).

In principle, testing whether a GGP model is compat-
ible with paleomagnetic data simply consists in testing
such pdfs against data at each site where data have
been collected. But these data are often sparse and
only relatively few data can be tested against the cor-
responding distribution for a given site. In addition,
these data are always measured and archived with some
information about their errors, and this too needs to be
taken into account.



When the data is vectorial, dealing with such is-
sues is relatively straightforward. Vector errors can
first be considered as independent gaussian vectorial
increments added to the error-free vector value. The
corresponding 3D-Gaussian error pdf can then be con-
volved with the 3D-Gaussian pdf to produce yet another
3D-Gaussian pdf to be tested against the data from a
given site. At such a single site, and for such a classi-
cal comparison, numerous statistical tests are available
[Press et al., 2002]. Simultaneously testing data from
different sites (to test the regional or global compati-
bility of a GGP model against such data, assuming the
data from different sites are independent) is then also
possible. It just requires some preliminary data trans-
formation to ensure that the local pdfs are reduced to
a common standard isotropic 3D-Gaussian distribution.
This transformation is a linear coordinate change in the
local (site) cartesian frame. Regional or global tests can
then easily be performed by comparing the transformed
data against the common 3D-Gaussian pdf, again us-
ing standard tests. This possibility, however, is linked
to the fact that all local data satisfy 3D-Gaussian pdfs.

Unfortunately, only a small part of palaeomagnetic
records are 3D-vectorial but most of them are directional-
only and some – are intensity-only.



GGP and the Intensity-Only Paleomag-

netic Data: Uniformization

In this section we follow our paper [Khokhlov and Shcherbakov,
2015]. The GGP-model prescribes all statistical char-
acteristics of the model data B(r , θ,ϕ) at a given site
r , θ,ϕ, note, that |B| has the distribution of length of
the 3D-Gaussian vector and by no means is Gaussian –
we denote the corresponding model probability density
function as f|B|(x). For each value b the probability
u(b) = P {|B| < b} is the left u(b) - quantile of ran-
dom |B| value. On the other hand at the same site we
may compare this theoretical quantile with the relative
number of those bi from real paleointensity data {bi}
that are smaller than b, i.e. we compare the theoreti-
cal quantile with empirical quantile. When the model
is true then the empirical quantile should be close to
the theoretical one; that is the empirical cumulative
distribution function (cdf) of {u(bi)} is close to the di-
agonal. In other words the set {u(bi)} would be close
to uniformly distributed points at [0, 1]. We call uni-
formization the transformation bi 7→ u(bi) = ui be-
cause after this we expect the uniform population {ui}
in case of compatibility between the GGP-model and
initial data. For scalar random populations this ap-



proach is classical. In the more general case of several
sites we start from GGP-model and produce local sta-
tistical behaviours at each site and deduce a local, re-
gional or global measure of the adequacy of the model
to the data. To test this final data set against a uniform
distribution over [0, 1], we relied on two different tests
already mentioned above: the KS-test and AD-test.

In practice, for each of the uniformized data set {ui}
we had to test, we computed the merit values MN and
IN , together with the probabilities P(MN) and P(IN) for
the null hypothesis to have produced such large, or even
larger, values for respectively MN and IN . Whenever
P(MN) and P(IN) were found to take values very close
to 0 (typically 0.05 or less), the null hypothesis had
to be rejected and the GGP model under consideration
had to be considered incompatible with the data-set at
this level of confidence.

For the uniformization transform the declared mea-
surement error should be taken into account. In the
error-free case we have for u(b) and the model proba-
bility density f|B|(s)

u(b) = P {|B| < b} =

∫ b

−∞
f|B|(s)ds



and in presence of unbiased error α having pdf gα we
must substitute the probability density function f|B|
with the convolution f|B| ∗ gα. The explicit analytic
cumbersome expression for f|B| in a given geographi-
cal location exists, but the use of it is not that easy
(see Appendix in [Khokhlov and Shcherbakov, 2015]),
in practice, therefore, we may use a Monte Carlo ap-
proach to synthesize a large number of model data with
a declared error and compute with the necessary accu-
racy the uniformization bi 7→ ui .

GGP and the Inclination-Only Paleomag-

netic Data

Similar reasoning can be applied also for the inclination-
only paleomagnetic data providing the locations of ge-
ographical locations are known – this is rarely the case
for the records older than 5 Ma because of the conti-
nental drift impact. In general we may apply the non-
parametric test to 1D paleomagnetic data and more-
over we may use simultaneously the different types of
1D data providing that these records are independent.



GGP and the Directional-Only Paleomag-

netic Data: Uniformizations

The directional-only data no longer consist of x =
(x1, x2, x3) local cartesian coordinate values but of unit
vectors u = x/|x|. Local non-parametric tests against
a GGP-model require the explicit form of the local prob-
ability density function predicted by the GGP model in
terms of the directional vector u on the unit sphere S2.
Note that this Angular Gaussian distribution s(u) thus
results from integration over all lengths ρ of the 3D-
gaussian distribution. As shown by [Khokhlov et al.,
2006] (see also [Bingham, 1983] for series expansions
in the case of an Angular Gaussian distribution cor-
responding to an isotropic 3D-Gaussian distribution),
this indeed gives the explicit formula for the Angular
Gaussian distribution. Errors in paleomagnetic direc-
tional measurements are commonly treated as Fisherian
(Tauxe, L., et al., 2018. Essentials of Paleomagnetism,
5th Web Edition. http://ltauxe.github.io/Essentials-
of-Paleomagneti sm/WebBook3.html). To test a given
GGP-model against a given directional data set with as-
sociated errors, one thus has to convolve a Fisher dis-
tribution with the local Angular Gaussian distribution,
details see [Khokhlov et al., 2006]. He uniformizing

http://ltauxe.github.io/Essentials-of-Paleomagnetism/WebBook3.html
http://ltauxe.github.io/Essentials-of-Paleomagnetism/WebBook3.html


transformation of the directional data however is not
as simple as in the case of vectorial or 1D data, see
details in [Khokhlov and Hulot, 2013; Khokhlov et al.,
2006]. The final simultaneous tests of the uniformized
directional data from one or several different sites by
means of mentioned above non-parametric AD- and
KS-tests are arranged exactly as before.

Taking advantage of the 2D nature of the unit vec-
tor u ∈ S2 we may apply even more sophisticated uni-
formization procedure that transforms the directional
measurements {u1,u2, ...} to the vectors in [0, 1] ×
[0, 1] ⊂ R2 so that the statistical compatibility of di-
rectional measurements with the given GGP-model is
equivalent to the statistical compatibility of the popu-
lation {(t1, s1), (t2, s2), ...} with a uniform distribution
in the unit square [0, 1]× [0, 1]. In that case, both KS-
and AD-tests are applicable together with less known
additional empirical and approximate tests [Khokhlov
and Hulot, 2013].



Some Problems: The Intensity-Only Data

and GGP-Models

Assume we are given the particular set k of GGP-model
parameters and the paleomagnetic database. We may
preselect N paleomagnetic records from this database
to have them uncorrelated and then using the described
above procedure of uniformization (that is based on pa-
rameters k) transform them into the population {xi},
i = 1, ... N from [0, 1]. After that KS-test and AD-
test produce the corresponding confidence values 0 <
pKS < 1 and 0 < pAD < 1 such that we may reject
the hypothesis of uniformity for {xi} with confidence
1 − p = 1 − min (pKS, pAD). The natural science pre-
scribe the ultimate rejection when p < 0.05, otherwise
we should consider the population {xi}, i = 1, ... N to
be compatible with the uniform distribution over [0, 1]
and therefore the set of parameters k is compatible
with the real data. Trying several different sets of pa-
rameters we may select those that are compatible with
the given paleomagnetic dataset. It comes out that
for the existing databases for the Brunhes chron there
are not that many admissible sets at least if we vary
only E (g 0

2 ) and E (g 0
3 ). Moreover, we may take into



account for each admissible parameter set
{
k̃
}

its cor-

responding p̃-value and assume that the admissible set

of parameters
{
k̃
}

is better than the admissible set{
k̂
}

if p̃ > p̂.

We started this research of databases by using the
databases of paleomagnetic directions [Cromwell et al.,
2018; Johnson et al., 2008; Quidelleur et al., 1994]), re-
sults were partly published [Khokhlov and Hulot, 2013;
Khokhlov et al., 2006] or presented at AGU [Hulot et
al., 2012; Khokhlov et al., 2013] – in all those cases
shown are the compatibilities only for GGP-models with
statistically noticable non-zero expectations of non-dipole
terms. Recently we published [Shcherbakov et al., 2019]
the similar research that uses Brunhes chron intensity
records: that is an attempt to recover the directional
features of the ancient field from only field intensi-
ties. For our analysis, we use the world palaeointensity
database http://wwwbrk.adm.yar.ru/palmag/database.html
maintained by the Geophysical Observatory “Borok”
that includes practically all known published paleoin-
tensity results. The result of [Shcherbakov et al., 2019]
shown on left on Figure 2 crudely speaking does not
contradict but not in a perfect agreement with the re-

http://wwwbrk.adm.yar.ru/palmag/database.html


sults [Hulot et al., 2012; Khokhlov et al., 2013]. More-
over, comparing results for the paleoinclinational and
paleointensity data, we see that no bright areas in the
left and right figures on Figure 2, corresponding high
probabilities of their occurrence, fit each other all over
the diagrams. It means that the results that use the
intensity-only records differ radically from those that
use paleoinclinations from the same database, see right
plot on Figure 2 right.

Finding the reasons for this discrepancy is beyond
the scope of this paper, because even a thorough sta-
tistical analysis provides only a formal assessment of
the validity of the hypothesis, which is tested on data
from a catalogue. In other words, it is a discrepancy
is not explained in the GGP model. However, since
the discussion of this problem is of great interest for
paleomagnetism and rock magnetism, we present our
current view on this issue below.

Differences between the results for paleointensity and
paleoinclination are due to a significant underestima-
tion of paleointensity in high latitudes, both in the
northern and southern hemispheres [Shcherbakov et al.,
2019]. A possible explanation is based on the influence
of a significant quadrupole term. A similar observation
was recently made by [Muxworthy, 2017].
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Processing the database we see that the VADM val-
ues obtained for the low-latitudes sites are systemati-
cally higher than the values for the high-latitude sites so
that the mean VADM values for these distributions are
8.02 and 6.7, respectively. It is intuitively clear that the
difference between these values is too large to assume
the data for latitudes > 45◦ and < 45◦ to be generated
by a random process corresponding to the axial dipole
hypothesis in which case the mean VADM values should
not depend on the latitude of their determination. This
consideration is also supported by the outcome of the
KS-test which shows that the probability of this event
is in this case close to zero.

We note by the way that a mirror explanation of
this effect by the overestimation of the paleointensity
at high latitudes is also probable; however, for definite-
ness, we hold the first concept. At the same time, the
behavior of paleoinclinations is free of these peculiar-
ities (remember that the statistical tests from above
never give unique GGP-model, but only help to ex-
clude those GGP-models that are incompatible with the
data).

This naturally raises the question about a discrepant
behavior of the paleointensity and paleoinclination data.
There are two probable explanations.



1. The GGP model misses some peculiarities in the
configuration of the geomagnetic field that cause
the field to differ statistically from the dipole and
have a strong latitudinal dependence, whereas the
distribution of the angle parameters remains close
to the dipole and the role of the nondipole compo-
nents is insignificant.

2. The empirical data contain many incorrect deter-
minations and therefore strongly distort the true
pattern of the behavior of the geomagnetic field in
the Brunhes.

The first variant calls for seeking a new model de-
scribing the geometry of the geomagnetic field in the
past geological epochs and secular variations of the
field, which would be able to explain the mentioned
peculiarities in the distributions of the paleointensity
and paleoinclinations. Clearly, this task requires much
effort and goes far beyond the scope of this paper.
However, we note one important point: the specifics
of the spatiotemporal distribution of the field can be
due to the nonstationarity of the geodynamo process.
Indeed, according to [Bouligand et al., 2016; Khokhlov
et al., 2017], secular variation can be considered as a
stationary Gaussian process (as required by the GGP-



model) only on a relatively short time interval because
on sufficiently long intervals, the nonstationarity of the
generation processes of the geomagnetic field becomes
apparent. As was shown by the analysis of the statis-
tical characteristics of the geomagnetic field generated
in the numerical geodynamo models [Khokhlov et al.,
2017], secular variations should rather be described in
terms of the intermittence when the generation pro-
cess is subdivided into the segments with a duration of
about 100 ka because the parameters of the respective
stationary Gaussian processes differ on these segments.
However, the GGP scheme, generally speaking, ignores
intermittence providing stationary distributions of the
coefficients on all the time intervals despite the fact
that the parameters can (and most likely do) vary.

At the same time, it must be recognized that in any
case there will be serious doubt that we will manage to
obtain the desired result in this way because both the
intensity and the angular components of the field are
derived from the same potential and are therefore cor-
related with each other. Hence, we can barely imagine
a geometry of the field in which the distribution of the
intensities across the globe would strongly differ from
dipole while the distribution of the angular elements
remain close to dipole (see notes on uniqueness from



above).
In our opinion, a much more probable cause of the

discussed controversy lies in the artifacts associated
with erroneous determinations of the paleointensity [Khokhlov
and Shcherbakov, 2015]. We are speaking here of
paleointensity because the determinations of paleodi-
rections, particularly from young rocks, are much less
prone to the risk of obtaining a wrong result. Here we
primarily need to mention the risk of misidentifying the
nature of remanent magnetization (NRM). The point
is that for the correct paleointensity determination by
the Thellier method it is necessary that a rock carry
thermoremanent magnetization (TRM). However, as
hypothesized in [Draeger et al., 2006; Smirnov et al.,
2005], TRM can have a similar temperature stability
and, hence, close spectra of the blocking tempera-
tures with chemical remanent magnetization (CRM).
This hypothesis was subsequently supported in [Gri-
bov et al., 2017; Shcherbakov et al., 2017], where it
was shown by the experiments and calculations that,
when applied to CRM, the Thellier method yields un-
derestimated the intensity value. All these points al-
low us to associate the phenomenon of underestimat-
ing VADM with the fact that NRM was misidentified as
TRM, whereas the tested rocks actually carried CRM.



This interpretation was suggested in [Khokhlov and
Shcherbakov, 2015] where, based on the analysis sim-
ilar to the one described here, the presence of more
than 40 underestimated VADM values for the Brunhes
in the WDB were pointed out.

However, here we should make a reservation that
TCRM could be yet a reliable source of palaeomagnetic
information, providing unbiased palaeointensity deter-
minations if TCRM was acquired during oxy-exsolution
of TM grains below Curie temperature [Shcherbakov et
al., 2019].

Thus, it must be recognized that as of now we can-
not offer a self-consistent reasonable explanation for
the discussed peculiarities of the Brunhes distribution
of paleointensities, and this problem remains an enigma
to be solved by future research studies. Undoubtedly,
its solution is vitally important and highly relevant for
the interpretation of the paleointensity data in all the
geological epochs. Developing a technique for the joint
analysis of the paleodirections and paleointensities in-
stead of analyzing them separately could be a possible
way of solving this problem.



Conclusions

1. The applicability of the Geocentric Axial Dipole ap-
proximation to the description of the spatio-temporal
configuration of the ancient geomagnetic field is in
general doubtful and often needs to be refined in
terms of the Giant Gaussian Process.

2. The main difference between the traditional and
GGP approaches for the description of paleomag-
netic and paleointensity data is the statistical na-
ture of the GGP, when not the single values of pa-
rameters are estimated, but the probability of their
joint ability to fit the real data.

3. Applying the GGP modelling to paleointensity and
paleoinclination data from the Brunhes epoch re-
vealed a puzzling situation where paleointensity and
paleoinclination data are compatible with statisti-
cally distinct GGP models. We believe that the im-
possibility to select unique GGP parameters com-
patible with both these data sets indicates that
either that the process of PSV is too far from sta-
tionarity at a given time scale, or that systematic
errors are present in the datasets.
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