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Abstract. Problem of area’s zoning is very
important and is one of the main problems of
modern geographical science. Our point is to
from a modern approach, based on the machine
learning methods to provide zoning of any area.
Key ideas of this methodology, that any
distribution of factors that form any
geographical system grouped around some
clusters – unique zones that represents specific
nature conditions. Formed methodology based
on several stages – selection of data and objects
for analysis, data normalization, assessment of
predisposition of data for clustering, choosing
the optimal number of clusters, clustering and
validation of results. As an example, we tried to
zone a surface layer of the Black Sea. We find
that optimal number of unique zones is 3. Also,
we find that the key driver of zone forming is a
location of the rivers. Thus, we can say, that
applying a machine learning approach
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in area’s zoning tasks helps us increasing the
quality of nature using and decision-making pro-
cesses.

1. Introduction

The problem of zoning has always been and will be the
main problem of geographical science. In this context,
region or zone is the main territorial system, which is
always part of larger regional units. Based on this, zon-
ing is the process of identifying and studying the ob-
jectively existing territorial structure, organization, and
hierarchical subordination of physical and geographical
complexes. Zoning of any area includes several impor-
tant goals [Vinokurov et al., 2005; Zaika 2014]:

1. Finding an existing physiography complexes;

2. mapping of physiography maps;

3. deep understanding of the complex composition;

4. research of processes and factors, that are forming
complexes;

5. complex classification;

6. Finding of any interactions between factors or com-
plexes;



7. developing of physiography zoning methods.

Thus, the main goal of this paper was to form a
modern mathematical methodology, based on machine
learning methods to provide zoning of any area.

In the last years problem of area’s zoning and its
methodology was tried to solve by several authors.

For example Skrebets and Pavlova [2019] conducted
a physical and geographical zoning of the Black Sea
using correlation analysis. They used a mapping based
on relationship between phytoplankton and natural fac-
tors, that limiting its distribution. Using this approach,
they identified 5 regions that differ from each other in
quantitative way, as well as in combination of relation-
ships.

From a biological point of view, this problem was
considered by Zaika [2014]. He carried out biological
zonation of the Black Sea and also described the main
problems of its implementation. The principle of dis-
tinguishing different regions was based on quantitative
analysis of the dominant species in different regions of
the Black Sea.

The widespread use of physiographic zonation re-
ceived in landscape ecology. Vinokurov et al. [2005]
proposed a methodology and implemented the physical
and geographical zoning of Siberia. Based on various



natural features, they identified more than 100 differ-
ent regions with unique physical and geographical con-
ditions.

Tamaychuk [2017] in his paper tried analytical ap-
proach to zoning Black Sea area, based on main fac-
tors of spatial differentiation, distribution features of
environmentally significant characteristics and modern
ideas about the theory and methods of physiographic
zoning. He divided area of the Black Sea into 3 water-
provinces – North-West moderate, North-East moder-
ate and subtropical.

Mathematical approach was shown in Sovga et al.
[2005] work. They used depth, mean values of temper-
ature and salinity, differences and features in flora and
fauna as a factor. They divided area of the North-West
part of the Black Sea into 4 groups – West, Karkinitsky,
Central and Kalamitsky.

V. Agostini [Agostini et al., 2015] in her paper tried
to make a zoning of marine environment in St. Kitts
and Nevis. For her analysis, she used 37 spatial layers,
that represent different factors and fully described func-
tionality of the research area, that was divided into 3
major groups – “habitat”, “species” and “human use”.
As the result, she distinguished 4 major zones – “con-
servation”, “transportation”, “touristic” and “fishing”.



Petrov and Bobkov [2017] tried to form the concept
of hierarchical structure of large marine ecosystems in
the Arctic shelf of Russia. Based on environmental
variables, they distinguished 7 eco-regions of the Bar-
ents Sea – South-Western, Pechora Sea, Central basin
south, Central basin north, Novaya Zemlya shore, Sval-
bard Archipelago and Franz Josef Land Archipelago.

Fyhr et al. [2013] tried to review all of the modern
concepts and tools for Ocean zoning. Based on their
work, the most actual and commonly used tools are
Atlantis, Cumulative Impacts Assessment Tool, Inte-
grated Valuation of Ecosystem Services and Tradeoffs
(InVEST), Marine Protected Areas Decision Support
Tool (Marine Map), Marxan and Marxan with Zones,
NatureServe Vista and Zonation.

2. Clustering as Physiographic Zoning

Method

Clustering is a task of dividing the entire dataset into
separate groups of homogenous objects, that are similar
to each other, but have distinct difference between this
separate groups [Aleshin and Malygin, 2019]. Cluster-



ing algorithms are divided in two groups – hierarchical
and iterative.

I. Hierarchical – consistently build clusters from al-
ready found clusters.

1. Agglomerative (unifying) – start with individual el-
ements, and then combine them;

2. separation – start with one cluster, and then – di-
vide them;

II. Non-hierarchical – optimize a certain objective
function.

1. Graph theory algorithms;

2. EM algorithm;

3. K -means algorithm (k-means clustering);

4. fuzzy algorithms.

Any clustering algorithm can be considered effective
if the compactness hypothesis is satisfied [Shi and Hor-
vath, 2006].

Physiographic zoning using clustering method is car-
ried out in several stages:

1. Selection of data and objects for analysis;

2. data normalization;



3. assessment of predisposition of data for clustering;

4. choosing the optimal number of clusters;

5. clustering and validation of results.

Formally, almost all clustering tasks come down to
this form. Let X be the set of objects, Y is the set
of numbers (names, labels) of clusters. The distance
function between objects is specified as ρ(x , x ′) [Collins
et al., 2002]. There is a finite training set of objects
Xm = x1, ..., xn ∈ X . So, the main goal of cluster-
ing is to divide dataset into several disjoint subsets.
These subsets called clusters and consist from objects,
that are closed to the ρ-metric. Objects from different
clusters were significantly different. For every object
xi ∈ Xm assigned the number of cluster yi [Marron et
al., 2014].

2.1. Data Normalization

Data normalization is one of the feature transformation
operations that is performed during their generation at
the data preparation stage. In case of machine learning,
normalization is a procedure for preprocessing input in-
formation (training, test and validation samples, as well
as real data), in which the values of the attributes in



the input vector are reduced to a certain specified range
of values, for example: [0...1] or [−1...1].

The importance of data normalization comes from
the nature of algorithms and models in machine learn-
ing. The values of raw data can vary in a very wide
range and differ from each other by several orders [Ry-
bkina et al., 2018]. The work of such machine learning
models like neural networks or Kohonen self-organizing
maps with not normalized data will be incorrect – dif-
ference between attribute’s values can cause instability
of the model, that will lead to worth learning results
and slowing the modelling process. Also, some para-
metric machine learning models require symmetric and
unimodal data distribution. After normalization, all the
numerical values of the input attributes will be reduced
to the same amount – a certain narrow range [Criminisi
et al., 2012].

There are many ways to normalize feature values in
order to scale them to a single range and use them
in various machine learning models. Depending on
the function used, they can be divided into two large
groups: linear and non-linear [Tealab et al., 2017].
With nonlinear normalization, the calculated ratios use
the functions of the logistic sigmoid or hyperbolic tan-
gent. In linear normalization, the change of variables is



carried out proportionally, according to a linear law.
The most common methods for data normalization

are:
Minimax – linear data transformation in the range

[0..1], where the minimum and maximum scalable val-
ues correspond to 0 and 1, respectively:

Xnorm =
X − Xmin

Xmax − Xmin

Z -scaling based on the mean and standard deviation:
dividing the difference between the variable and the it
means by the standard deviation:

z =
x − µ
σ

Decimal scaling – performed by removing the decimal
separator of the variable value [Seber and Lee, 2003].

In practice, minimax and Z -scaling have similar ar-
eas of applicability and are often interchangeable. How-
ever, in calculating the distances between points or vec-
tors in most cases, Z -scaling is used, while minimax is
useful for visualization.



2.2. Assessment of Predisposition of Data for
Clustering

One of the most common problem of unsupervised ma-
chine learning is that clustering will form groups, even
if the analyzed dataset is a completely random struc-
ture. That’s why the first validation task that should
be applied even before clustering is to assess the overall
predisposition of the available data to cluster tendency
[Sivogolovko and Thalheim, 2013].

There are two common indicators, that can show us
cluster tendency – Hopkins statistics and Visual Assess-
ment of cluster Tendency or “VAT diagram”.

To calculate Hopkins statistics, we need to create
B pseudo-datasets, randomly generated based on the
distribution with the same standard deviation as the
original dataset. For each observation i from n, the
average distance to k nearest neighbors is calculated as
follows: wi between real observations and qi between
generated observations and their closest real neighbors
[Keller et al., 1985; Sivogolovko and Thalheim, 2013].
Then the Hopkins statistics calculates as follows:

Hind = Hind =

∑
n wi∑

n qi +
∑

n wi



If Hind > 0.5, then it will correspond to the null hypoth-
esis that qi and wi are similar and values are distributed
randomly and uniformly. If Hind < 0.25 this indicates
that a dataset has a tendency to data grouping.

For visual assessment of clustering tendency, the best
way is to using VAT diagram. VAT algorithm consists
of:

1. Compute the dissimilarity matrix between the ob-
jects in the data set using the Euclidean distance
measure;

2. reorder the dissimilarity matrix so that similar ob-
jects are close to one another. This process creates
an ordered dissimilarity matrix;

3. the ordered dissimilarity matrix is displayed as an
ordered dissimilarity image, which is the visual out-
put of VAT.

The VAT detects the clustering tendency in a visual
form by counting the number of square shaped dark
blocks along the diagonal in a VAT image [Sivogolovko
and Thalheim, 2013].



2.3. Choosing the Optimal Number of Clusters

At this moment there’s two main ways to choose an op-
timal number of clusters – “elbow” method and using
of gap statistics [Chapelle et al., 2006].

The “elbow” method – considered the pattern of
variation in the dispersion of Wtotal with increasing in
number of groups k [Tomar et al., 2018]. Combining
all of the founded observations in one group, we’ll have
the biggest intraclass dispersion, that will decrease to
0 when k → n. The point, when this decreasing of
dispersion will be slowing down, called “elbow” [Seber
and Lee, 2003; Thiery et al., 2006].

An alternative to the “elbow” method is using gap
statistics, which are generated based on resampling and
Monte-Carlo simulation processes. For example, let
E ∗n log(W ∗

k ) denotes the valuation of average disper-
sion W ∗

k , obtained by bootstrap method, when k clus-
ters are formed by several random objects f from the
original dataset of n size. Then gap statistics will be
calculated as follows:

Gapn(k) = E ∗n log(W ∗
k )− log(Wk)

Gapn(k) determines the deviation of the observed dis-
persion Wn from its expected value, if the original data



formed only one cluster.

2.4. Validation of Clustering Results

Currently, there are several ways to validate the results
of clustering:

1. External validation – comparing the results of clus-
ter analysis with already known validation dataset;

2. relative validation – evaluating the structure of formed
clusters by changing the algorithm parameters;

3. internal validation – obtaining internal information
of clustering process;

4. assessment of the clustering stability using resam-
pling.

The most widespread indexes are silhouette index
and Calinski-Harabasz index [Sivogolovko and Thal-
heim, 2013].

One of the approaches to validate the results of clus-
tering is the Calinski-Harabasz index.

Let d
2

is the mean square distance between elements

in clustering variety and d
2
ci – mean square distance be-

tween elements in cluster ci . Then the distance inside
groups will be:



WGSS =
1

2

c∑
i=1

(nci − 1)d
2
ci

and the distance between groups will be:

BGSS =
1

2

(
(c − 1) d

2
+ (N − c) Ac

)
where ac = Ac/d

2
– is weighted mean difference of

distances between cluster centers and a mutual variety
center. Then the Calinski-Harabasz index will be:

VRC =
BGSS/(c − 1)

WGSS/(N − c)
=

d
2

+ [(N − c)/(c − 1)]Ac

d
2 − Ac

=

1 + [(N − c)/(c − 1)]ac
1− ac

where ac = Ac/d
2
. We can see, that if the all dis-

tances between points are similar, then ac = 0 and



VRC = 1. ac = 1 characterize the prefect clustering.
The maximum value of corresponds to optimal cluster’s
structure.

Another approach to validate the clustering results
is using the silhouette index. Its values shows the de-
gree of similarity between object and cluster that he
belongs to, compared to another clusters [Shi and Hor-
vath, 2006; Soliman et al., 2017].

Silhouette of every cluster estimates as follows: let
object xj corresponds to cluster cp. Denote the mean
distance from this object to other objects from this
cluster cp as apj and the mean distance from this object
xj to objects from another cluster as cq, q 6= p as dq,j .
Let bpj = minq 6=p dqj . This value means the measure of
dissimilarity of single object with objects from nearest
cluster. Thus, the silhouette of every single element of
cluster calculates as:

Sxj =
bpj − apj

max(apj , bpj)

The highest values of Sxj corresponds to better affil-
iation of element xj to cluster p. The evaluation of
all cluster structure provided by averaging the value by
elements:



SWC =
1

N

N∑
j=1

Sxj

Better clustering characterized by bigger values of ,
that achieved when the distance inside cluster apj is
small and the distance between objects from neighbor-
ing clusters bpj is big.

3. Black Sea Surface Physiographic Zon-

ing

3.1. Research Area

The Black Sea is an inland sea, that belongs to the
basin of the Atlantic Ocean. Its maximum depth reaches
the mark of 2258 meters (Figure 1) [Barratt, 1993].
The total area of the Black Sea is 420,325 km2, and
with the Sea of Azov – 462,000 km2 [Murray, 2005].

The average seasonal cycle of geostrophic circulation
of the Black Sea [Ivanov and Belokopytov, 2011]:

• From January to March – a single cyclonic rotation
with a center in the eastern part of the sea, the
western circulation is weakly expressed;
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• from April to May – a single cyclonic rotation with
a center in the western part of the sea, the eastern
cycle is weakly expressed;

• from June to July – two cycles, the western more
intense;

• from August to September – two cycles, the east-
ern one is more intense;

• from October to December – two cycles of equal
intensity.

About 80% of the river flow is concentrated in the
northwestern part of the Black Sea. The Caucasian
rivers contribute about 13% of the water balance, while
the runoff from Turkeys rivers is about 7% [Ghervas
2017]. The contribution of the Crimean rivers a is in-
significant [Belokopytov and Shokurova, 2005].

The biggest river, that flows into the Black Sea is
Danube. The Danube usually brings about 203 km3 of
freshwater into North-Western part of the Black Sea,
decreasing the level of salinity there. Another big river,
that flows into Black Sea is Dnieper from Ukrainian part
and Rioni from Georgian [Ozsoy and Unluata, 1997].



3.2. Data

We used the monthly averaged data from Copernicus
Marine Environmental Monitoring Service (CMEMS) –
Black Sea Reanalysis, which are based on 5 compo-
nents:

1. Ocean model – Hydrodynamic model, which is a
part of the NEMO (Nucleus for European Mod-
elling of the Ocean) project;

2. scheme of data assimilation (OceanVar) for tem-
perature and salinity profiles, satellite data for sea
surface temperature, sea level anomalies etc.;

3. assimilated data – in-situ data for environmental
variables;

4. recovery scheme for environmental variables;

5. basic large-scale adjustments.

Data from this model have a high level of correla-
tion with in-situ data, that increasing with depth. For
example, the accuracy of temperatures spatial distribu-
tion in the Black Sea at depth of 30 m about ±1.5◦C,
at the depth of 70 m it decreases to ±0.3◦C and at the
depth of 1100 m is about ±0.04◦C (Table 1).



The quality of the model data, as well as the model
itself, improve with increasing of in-situ observations
numbers.

For Black Sea surface physiographic zoning we used
6 environmental parameters – sea surface temperature,
sea surface salinity, dissolved oxygen level, PO4 and
NO3 content and primary production level.

Table 1. Estimated Data Accuracy Results for
Temperature and Salinity. From Left Side in Each
Row – for 1995–2015 Data. From Right – for
2005–2015

Feature BIAS v4 DMS v4

SST (◦C) −0.07/− 0.07 0.58/0.59
T (◦C) 0–100 m −0.02/0.025 0.87/0.74
T (◦C) 100–300 m −0.03/− 0.003 0.15/0.09
T (◦C) 300–800 m −0.02/− 0.02 0.11/0.05
S (psu) 0–100 m −0.014/0.002 0.33/0.26
S (psu) 100–300 m −0.006/0.009 0.19/0.15
S (psu) 300–800 m −0.005/− 0.002 0.05/0.03



Figure 2. Determining an optimal number of k by
elbow-method.

3.3. Results

To understand, does dataset has a tendency to form
clusters, we calculated a Hopkins index using the R-
package “clustertend”. It was equal to 0.0194, that
means that this dataset can form clusters.

To estimate an optimal number of clusters, we used
the R-package “factoextra”. Results shown in Figure 2.

As we can see at the Figure 2, the elbow of our



curve is located at 3, thus we can distinguish 3 com-
pletely different zones in the surface waters of the Black
Sea (Figure 3, Figure 4). Allocation of this zones due
equally to all of analyzed factors, except dissolved oxy-
gen.

Based on statistical analysis all of these factors di-
vided in two groups. First – phosphates concentration,
primary production and chlorophyll-α, which are deriva-
tives from each other – the amount of phosphates im-
pacts on amount of primary production and amount
of primary production impacts on amount of produced
chlorophyll-α. Second are temperature, salinity and ni-
trates concentration.

Studying water objects, it’s important to know a
seasonal variability of zones, because of its very high
change capability in time. Comparing with land, water
systems aren’t stable for long period of time and spatial
distribution of factors can vary from season to season.

Generally, as we can see in figure, main reasons of
zoning pattern forming are quantitative and qualitative
characteristics on flows.

In winter season, there is a clear divide of the Black
Sea from west to east. A significant role in this process
is played by the interaction of the Black Sea with the
Sea of Marmara, river flows in the northwest of the
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Black Sea and in the Caucasus and, in some cases,
areas near the Southern coast of Crimea and the Kerch
Peninsula due to the activity of currents from the Sea
of Azov.

In spring season, the divide of the Black Sea occurs
from north to south. In this case, a significant im-
pact on this process is exerted by the significant flow
of such rivers as the Dniester, Danube and Dnieper in
the north-west of the Black Sea and the influx of wa-
ter from the Sea of Marmara. Due to the interaction
between two water masses radically different in their
characteristics, it forms an intermediate zone between
them, covering an area from the Kerch Strait to the
Danube Delta.

In the summer, due to the nature of the internal
currents in the Black Sea and changes in the volume of
river flow, more saline water from the Sea of Marmara
reaches the Danube. In spatial terms, the pattern of
zones distribution in the Black Sea is similar to the
winter one, in which they are located from east to west.
The formation of the intermediate second zone is most
likely due to the interaction with more fresh and cold
water coming from the Sea of Azov.

In autumn, the formation of more fresh and colder
waters off the coast of Turkey is observed, which is due



to the significant flow of the rivers of the Turkish coast.
The distribution pattern is more similar to the spring
one, with significantly increased in size zone 1.

Annual zoning of the Black Sea is presented on fi-
gref4.

Zone 1.

Located in the North-West part of the Black Sea. Flows
from Danube, Dniester, Dnieper and Southern Bug
completely equal of 3/4 of a total flow into the Black
Sea. Dominated northern and north-western winds helps
in spreading of matters, endured by rivers. The main
feature of this part of the sea is an active interaction
of fresh water from rivers with salty water from south
of the Black Sea. Near the shore water salinity reaches
values about 7−8±. Temperature of water surface, as
a salinity, increasing from shore to open sea. Temper-
ature differences reaches 1.5–2.0◦C. Bioproductivity of
this zone is quite high, mainly cause of active flowing
rivers matter and fresh water. But local hydrophysical
and hydrochemical conditions condition high variability
of bioproductivity with fishkills.



Zone 2.

Basically, forming of this zone determined by interac-
tions between 1-st and 3-rd zones, where as a results
of Black Sea currents and flows from big rivers, cold
fresh water from the coastal areas mixed up with more
cold and salty water from central part of the Black Sea.
Located in the north-west part of the Black Sea, near
the Crimean-Caucasus shore of Russia, Georgian and
Turkey coasts. Biggest rivers here are Rioni, Tuapse,
Kizilirmak, Yesilirmak and Inguri. Like the zone 1, lo-
cation of the zone 2 is due to the flows from rivers. But
cause of lower levels of flow amount, compared with the
zone 1, their impact on water of the Black Sea is quite
lower, but noticeable. Values of salinity here doesn’t
differ from the central part (1 − 2± fresher), same as
a temperature.

Zone 3.

Natural conditions of this zone are a common to the
Black Sea. The area of this zone is the biggest. Lo-
cated in the south and central part of the Black Sea and
near the Kerch Strait. Salinity here is a quite high –
19− 20±, and reaches 24± near the Bosporus Strait.
The impact of the Sea of Azov is quite low, due to



specificity of Azov currents. Amount of phosphates
and nitrates is low due to lack of any big rivers, which
are the main sources of their presence in the sea water.
As a result, concentrations of chlorophyll-α is quite low
too.

4. Conclusions

Thus, the methodological approach, showed in this pa-
per, helps us to use it fully in zoning tasks to pro-
vide distinguishing from them completely different ar-
eas, that aren’t similar. As we can see, the main ad-
vantages of this approach are lack of subjectivity that
is inherent to humans, high level of analysis accuracy,
possibility of constant model’s modification by adding
new in-situ data or by modifying the algorithm itself.
Also, it should be noted, that the indisputable advan-
tage of this approach is the ability to use it in any kind
of territory, both in size and in properties.

As we talk about disadvantages of this approach,
we should note a strong dependency from input data
quality and data normalization, which in some cases
can lead to significant distortion in the analysis results.
The same we can say about data size. With signifi-
cant amount of data, it may be difficult to conduct the



research, which leads to completely change the used al-
gorithm or to significant reduction in data size and, as
a result, to simplification of the model and distortion of
the real results. Generally, we should note, that using
of this approach is justified in most cases, but the need
of improvement and further optimization of it doesn’t
disappear.

Obtained results helps us to understand that apply-
ing of this approach can helps us to go away from ana-
lytical and empirical zoning approaches to have a math
basis, uniformity of calculations and process automa-
tization. Conducted as an example of this approach
application, Black Sea physiographic zoning generally
is quite similar with previous works. It was determined,
that the most optimal number of the dissimilar groups,
based on analyzed factors is 3. Generally, their spa-
tial location based on places where rivers flows into the
Black Sea, and as a result more comfortable for dif-
ferent flora and fauna. For example, the conditions,
that formed in the second area is quite comfortable for
spawning of many commercial fishes, Like Liza haema-
tocheilus, Engraulis encragicolus, Liza aurata, Mugil
cephalus, etc. Thus, applying a machine learning ap-
proach in area’s zoning tasks helps us to increase the
quality of nature using and decision-making process.
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