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Abstract. The Novorossiysk bora is being
studied for the first time as a phenomenon of
flowing around real low mountains using a
nonlinear analytical two-dimensional model. The
vertical unboundness of the atmosphere is taken
into account in a three-layer representation,
characteristic features of the relief shape are
considered exactly, the kinematics and the
dynamics of the interaction of flows in different
layers are considered approximately. The role of
the magnitude of the flow velocity with its
characteristic hydrostatic stability is being
investigated for the first time in a wide range. It
has been shown for the first time that
disturbances over real low mountains can remain
significant at altitudes of 30 km; Long’s
resonance effects in the troposphere are
excluded; the dependence of the disturbances on
the velocity has a decreasing character only on
average, and for some velocity values it
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has a wave character. The conditions for the
appearance of rotors in the flow and degree of
their stability in the presence of stratification are
being discussed.

1. Introduction

The work continues to study disturbances that occur
in the atmosphere when flowing around mountains of
real form based on analytical modelling. A non-linear
stationary two-dimensional meso-scale open model is
used: velocity disturbances are considered without sim-
plifications, Coriolis forces are not considered, the ver-
tical unboundness of the atmosphere is considered in
a three-layer version, in which the lower layer repre-
sents the troposphere, and the other two- the influence
of the upper atmosphere [Kozhevnikov, 1999, 2019].
The validity of this approach is confirmed by the works
[Gutman, 1969; Kozhevnikov, 1970, 1999, 2019; Long,
1955]. The aim of the work is to study not only gen-
eral properties of disturbances, but their local features,
leading to catastrophic destruction during a bore in the
area of Novorossiysk city. In this case the experience
of using the model for other mountain areas is consid-
ered [Berzegova and Bedanokov, 2018; Berzegova et



al., 2017; Bedanokov et al., 2018; Kozhevnikov, 2019;
Kozhevnikov and Bedanokov, 1993, 1998; Kozhevnikov
and Pavlenko, 1993]. The dependence of disturbances
on the properties of an incident flow is being studied
for the first time in a wide range of its changes.

Analysis of the work [Bedanokov et al., 2018] showed
that when conducting similar studies, numerical mod-
els are also used [Durran, 1986; Efimov and Barabanov,
2013; Gavrikov and Ivanov, 2015; Lin, 2007; Toropov
et al., 2013; Toropov and Shestakova, 2014; Shes-
takova et al., 2015]. They take into account more
physical factors than in analytical models, but this is
done through the use of a number of parametric ratios.
The derivatives in the equations here are replaced by
finite differences, the problem of reliable accounting of
the initial and boundary conditions is also complicated.
It turns out that, despite many advantages, it is always
difficult to determine uncertainty that approximations
bring to the results when analyzing the results of the
use of such models. Hence, when studying the prob-
lem posed, it is necessary to use both analytical and
numerical modelling methods.



2. The Mathematical Model

The simulation of the mountain flow was carried out
on the basis of the solution of the Helmholtz equation
for disturbance stream function [Kozhevnikov, 1999,
2019]:

∇2ψ′ + K 2ψ′ = 0, ψ′ = ψ − ψ0

ψ0 = −Uz , K =
N

U
= 2πλ−1

c (1)

N2 =
g

Θ

dΘ̄

dz
=

g(γa − γ)

T1
, γ = −dT̄

dz

λc = 2π
U

N
, Θ = T

(p0

p

)(k−1)/k
,

∇2 =
∂2

∂x2
+

∂2

∂z2
(2)

where ψ, ψ′, ψ0 stream function, its disturbances and
its values in an undisturbed incident flow in front of the
mountains, where U velocity and γ gradient are given.
Besides, here: x , z are horizontal and vertical coordi-
nates in the considered vertical plane, N is Brent-Väisäl



wave frequency, λc is Lira wave scale [Lyra, 1943], Θ
is a potential temperature, γ, γa are vertical and dry
adiabatic temperature gradients, T is temperature, T1

representative (average) temperature of a layer, g is
gravity acceleration, k is relation of specific thermal
capacities. The values characterizing the parameters
of the incident flow in front of the mountains are high-
lighted with an over-line. Temperature disturbances
T ′(x , z) are calculated by the formula:

T ′ =
(γa − γ)ψ′

U
(3)

Velocity components are defined by the derivatives of
ψ vertically and horizontally. Ratios (1)–(3) are ob-
tained from a system of well-known nonlinear equa-
tions of state, motion, continuity, and thermodynamics
using assumptions about adiabaticity, incompressibility,
absence of viscosity and Coriolis forces. Nonlinearity of
the velocity field is considered due to some particular
case [Gutman, 1969; Kozhevnikov, 1999]:

U = const, γ = const

As the model is two-dimensional, the streamlined re-
lief should have a cylindrical character, and its shape
should be defined by a profile in a vertical plane (x , z),



oriented towards the incident flow. The model consid-
ers the specified shape of the contour interval within
the accuracy of ten meters. The conditions of kine-
matic and dynamic conjugation of flows on the inter-
faces of the layers are linearized (set on fixed horizon-
tals) [Kozhevnikov, 1999; Kozhevnikov and Bedanokov,
1993]. The model makes it possible to vary the param-
eters of the problem smoothly, while U is assigned with
the same value in all layers, and γ is assigned with dif-
ferent ones. The previous experience of using the model
has shown that disturbances primarily depend on the λc
scale, and according to (2) it directly depends on U and
less on γ. At this stage, it has been decided to carry
out basic calculations for 11 options for setting the λc
scale in the troposphere and for one option for setting
layer-by-layer values (bottom up j = 1, 2, 3):

λc = 3, 4, 5, 6, 6.66, 7, 7.5, 7.8, 9.5, 10, 12.2 km,

γj = 6, 0, 3 grad/km (4)

Further, the values of λc are assigned in km, and that
of γ in grad/km. The assigned values of λc variations
correspond to U variations in the range from 6 to 24.4
m/s. The greatest values of U in (4), for sure, are of
little practical value, but they are important for the-



oretical reasons. The heights of the interfaces have
been assigned with values of 10 and 18 km, the cal-
culations have been carried out to the height of 30
km. At λc variation, Long’s conclusion [Long, 1955]
has been taken into account that in closed models the
solution loses its meaning when a half of λc fits into
the vertical thickness of the flow a whole number of
times. It has been shown in [Kozhevnikov, 1970, 1999]
that this effect is determined by the excitation of a
resonance in the considered liquid layer. In order to
quantify the presence of this effect in the troposphere,
a provision has been made to include λc the values of
λc = 4, 5, 6.66 and 10 in (4), at which 1/2 of λc fits
into the troposphere thickness 5, 4, 3, 2 times.

Theoretically, the entire half-space in the vertical
plane, bounded from below by the relief section, is con-
sidered. The calculations were carried out vertically up
to 30, horizontally in the range −30 < x < +40 km.
It was taken into account that the inflowing stream
at infinity in front of the mountains is not disturbed.
The classical conditions of dynamics and kinematics
were realized on the interfaces of the layers and on the
streamlined surface of the earth. In this case: a) the
conditions on the interface were linearized, since they
were placed on the horizontals, the height of which is



determined in the flowing stream; b) the conditions on
the ground are fulfilled with the required accuracy (in
accordance with today’s practice requirements). In the
upper layer, the assumption was used that the wave
energy of disturbances propagates only upward. In the
leeward region beyond the mountains, no restrictions
were imposed.

To take into account the dependence on the hori-
zontal coordinate, the Fourier method is used in the
solution (1). Spectral composition of wave compo-
nents of the solution depends on all the parameters
of the problem, but primarily on λc and the shape of
the streamlined mountains. The solution has the form
of complex functionals, that include integrals over the
horizontal coordinate and wave numbers. In the lat-
ter case, wavelengths greater than 3 km were taken
into account. It is important that when the position
of the calculation point in space and the parameters
of the problem change, the result changes smoothly,
singularity-free. The computational grid steps for cal-
culating the field make 50 m and 250 m along x and
z , respectively, which ensures a high quality of spatial
resolution.



Figure 1. Isohypses of the heights of the map of the district
of Novorossiysk (isohypses are given at the bottom left with a
step of 75 m). D01 = 37.7, S01 = 42.5 – longitude and latitude
of the starting point of the coordinate system (degrees). The
vertical axis is oriented along the meridian.

3. The Model Application

3.1. Relief

The relief of Novorossiysk outskirts is illustrated by the
isohypses of heights presented in Figure 1. For their



construction, data obtained on the basis of the digital
terrain model ETOPO2 (Digital relief model ETOPO2
[Electronic resource], Access mode: http://www.ngdc.
noaa.gov/mgg/global/relief/ETOPO2/, free) were ta-
ken. We used an array of heights with a latitude and
longitude resolution of 30 seconds (about 0.9 in lati-
tude and 0.7 km in longitude). The mountains here
are represented, on average, by two ranges parallel to
the coast. The position of the coastal range is shown
in the figure by a hatched line, and the direction of
the vertical plane of modeling by a continuous one.
The latter is perpendicular to the set of the hills and
coincides with the direction of the northeast winds at
bore. To highlight two-dimensional features of the re-
lief, a special processing program for the specified ar-
ray has been created. At first, changes in the altitudes
have been determined, which define two-dimensional
features of the h(x) relief along 10 sections in the
vertical modeling plane, shifted from each other by
0.9 km. The characteristics of the dominant ridges
and hollows of the mountains have been considered as
defining features. This principle has been used suc-
cessfully in [Bedanokov et al., 2018; Berzegova and
Bedanokov, 2018; Berzegova et al., 2017; Elansky et
al., 2003; Kozhevnikov, 1999, 2019; Kozhevnikov and

http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/
http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/


Figure 2. Graphical representations of reliefs ch, sr , iskV ,
iskN .

Pavlenko, 1993; Kozhevnikov and Bedanokov, 1993,
1998; Kozhevnikov et al., 1986, 2017].

The obtained h(x) arrays have been used to deter-
mine the averaged sectional shape of the sr relief. The
obtained averaged sr profile is shown in Figure 2 solid
bold line. To identify the effect of changes in the shape
of the relief on the disturbances, an h(x) array was also



considered in which the main heights differed noticeably
from the heights of sr . We will call it quotient and de-
note as ch. An important feature of these sections is
the presence of two dominant ranges and a deep hollow
between them. To assess the impact of these particular
features, two artificial reliefs with one dominant range
have been created.

We will designate them as iskV and iskN . Important
characteristics of all sections are given in Table 1.

They have the same area (with an accuracy of 7.6%)
and the steepness of the leeward slope of the coastal
range is almost the same.

3.2. Disturbances

3.2.1. First of all, 44 variants of flow have been cal-
culated and analyzed in accordance with (4). In the
analysis, two figures were considered each time – for
heights up to 30 and 12 km and −30 < x < +40 km.
Some of the results are illustrated in Figure 3–Figure 6.
Figure 3 shows the field of trajectories of air particles
in the entire range of heights at minimal λc . Trajec-
tories are identified by the values of their heights in z0

incident flow (in km). The main movement is directed
from left to right. The horizontal disturbance area has
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Figure 3. The trajectories of air particles in the flow around
the middle relief for λc = 3, U = 6, γj = 6, 0, 3. The Figure
shows the values of z0 for some of the important trajectories.
The profile of the relief is painted over. The coordinate grid is
given by thin dashed lines.

a length of about 30 km, 20 of them are downstream
from the top of the mountains. Figure 4 illustrates in
detail the area of the greatest disturbances. Here are
the trajectories of movement and T ′ isolines; the val-
ues of the latter are listed in zVT1 and zVT2 sets and
in figure captions. Minimal T ′s in the sets character-



Figure 4. Disturbances for the same variant as in Figure 2,
in more detail. T ′ trajectories and isolines are presented with
values given in the sets of zVT1 = −[1.2 1.5 2.2 2.8 3.1] and
zVT2 = [1.3 1.6 2 2.2 2.6 3 3.2].

ize disturbances at the boundaries of the corresponding
areas. The isolines zVT2 are drawn in fine lines, and
zVT1 ones are drawn in bold lines.

3.2.2. When comparing the results for sr and ch



Figure 5. Flow over a medium relief at λc = 5, U = 10,
γj = 6, 0, 3. T ′ trajectories and isolines are presented with
values given in the sets of zVT1 = −[2.4 2.9 3.4 3.7] and
zVT2 = [2.2 2.7 3.2 3.5].

reliefs, it has been established that the trajectory fields
do not differ qualitatively. This has made it possible
to investigate the basic properties of disturbances by
analyzing the results for sr only.

3.2.3. The areas of T ′ are arranged in a certain



order in space in the form of oval spots and they show
that disturbances are not just wave-like, but form pe-
culiar repeating structures [Kozhevnikov, 1999, 2019].
Spots of a different T ′ sign are located in different
height ranges, repeating with a period close to λc . At
fixed heights, the location of spots downstream repeats
periodically, but with a period that may differ signifi-
cantly from λc . In [Bedanokov et al., 2018; Berze-
gova and Bedanokov, 2018; Berzegova et al., 2017;
Kozhevnikov, 1999, 2019; Kozhevnikov and Pavlenko,
1993; Kozhevnikov and Bedanokov, 1993, 1998; Kozhe-
vnikov et al., 1986] attention has already been paid to
the fact that not only the λc scale manifests itself in
disturbances, but so does the scale of change in the
shape of the relief. The results of this research, con-
firm the abovementioned facts and draw attention to
the following. 1) The scale of the mountain shape can
directly manifest itself in the field of trajectories: in
Figure 3 trajectories with z0 = 1.25 and 2.75 follow
closely the shape of the mountains – the first one in
an inverted form, the second – directly. 2) Areas of
abrupt accumulation of trajectories – jet streams – ap-
pear periodically over the mountains. 3) The presence
of two rather distant from each other ranges gives rise
to two almost independent disturbance systems over



the mountains.

3.2.4. The fields of T ′ have made it possible to
establish that the initial hydrostatic stability over the
mountains varies slightly. Calculations for λc = 3 have
shown that in the area of T ′ > 0 above the lee slope of
the mountains (Figure 4, the area of the point of x =
1.7, z = 1.2 km), γ gradient increases by 15% slightly
higher above the center compared to the background
value and becomes 6.9, and slightly lower it decreases
by 30% and equals to 4.2. It is obvious that in other
cases these changes are less.

3.2.5. According to Figure 2, Figure 3 the rotors
appear above the mountains with a value of λc = 3,
i.e. in [Long, 1955] the area where air particles move
either vertically or even towards the main flow. In
[Kozhevnikov, 1963, 1965, 1968, 1999, 2019; Mailes,
1968], when discussing this problem, the reciprocal of
the internal Froude number is being considered, in which
the maximum height of hm mountain is used as the
scale. In accordance with [Lin, 2007], we call it dimen-
sionless mountain height and define it as the relations
of:

ζ = F−1
i =

Nhm
U

= 2π
hm
λc

(5)



In this research the specified parameters vary within:

0.87 < Fi < 3.59, 1.14 < ζ < 0.28

Figure 4 represents disturbance pattern for λc = 5,
that is considered to be typical for the atmosphere.
A comparison of the presented trajectory fields shows
the extent at which disturbances attenuate when λc
increases. At λc = 3 the rotors are observed over
the leeward slopes of both ranges and they periodically
repeat at all considered heights, i.e. up to 30 km. In
Figure 4 the rotors are visible only in the area behind
the last range along the stream and not in the first
height range, but in the second one. With values of
λc > 5 the rotors are missing.

Therefore, in accordance with (5), rotors appear at
ζ values equal to or greater than 0.69, or Fi values less
than or equal to 1.45. In [Kozhevnikov, 1963, 1965,
1968, 1999; Mailes, 1968] for a semicircle mountain
with a height of 1 km, the critical value of ζ lay in
the range of 1.27–1.5. In our case, the relief has a
height of hm = 0.548 km and is much longer. In accor-
dance with (5), the critical value of ζ should lie in the
range of ζ = (1.27− 1.5)× 0.548 = (0.69− 0.72) due
to reducing the height. This means that the critical



value of ζ depends primarily on hm. In [Kozhevnikov,
1965, 1999; Kozhevnikov and Pavlenko, 1993] it has
been concluded that the intensity of the disturbances
depend on the characteristics of the shape of the moun-
tains in order of importance: the height, the steepness
of the leeward slope, the sectional area. The sectional
area in our case was significantly larger than the area of
the semicircle. Hence, the steepness of the investigated
mountains affected the disturbances in the same way
as the steepness of the semicircle mountain. A num-
ber of authors believe that determined critical values
of ζ can be used as a sign of a “wave breaking” pro-
cess beginning. In [Shestakova et al., 2015; Toropov
and Shestakova, 2014; Toropov et al., 2013] some of
the obtained results are also interpreted as a predic-
tion of the effect of “breaking” of waves, that is, the
transformation of the laminar wave flow into a purely
turbulent one. However, this is done without convinc-
ing evidence. In [Efimov and Barabanov, 2013] the
proximity of the slope of isolines of the potential tem-
perature to the vertical is used as a criterion for “wave
breaking”. Although this approach qualitatively coin-
cides with the above reasoning about the rotors, it does
not give quantitative ratios. For now, we can’t say how
obtained estimates of the critical value of ζ are applica-



ble to determine the beginning of the rotor “breaking”
process in the nature. In [Long, 1955] Long proposed
to consider the appearance of rotors as a sign of the loss
of the model representativeness. However, his experi-
ments proved that developed rotor circulations existed
stably, and this meant that the real stability of fluid
motions could significantly increase in the presence of
density stratification in it. In [Kuttner, 1958] the fact
of the frequent and stable existence of such rotors in
nature was established. In [Kozhevnikov, 2019] a com-
parison of the calculations for this model with direct
measurements has shown that the stability of rotor cir-
culations is rather underestimated. It is quite possible
to assume that, in the areas of rotor prediction, such
variants are possible, as: a steady laminar flow, appear-
ance of local sources of turbulence, a complete “wave
breaking”.

3.2.6. Earlier in [Bedanokov et al., 2018; Berze-
gova and Bedanokov, 2018; Berzegova et al., 2017;
Kozhevnikov, 1963, 1965, 1968, 1999, 2019], it was
found using a number of examples that the intensity
of perturbations decreases with increasing of λc . This
property will be called the smoothing regularity. Fig-
ure 3–Figure 5 shows this trend by the example of two
values of λc . The analysis of the results obtained for



the entire range (4) has revealed that if the distur-
bances in the leeward region depend on λc linearly,
then the dependence over the mountains is more com-
plex and it can be, for example, illustrated by maxi-
mum values of the range of vertical displacements of
∆(ψ′/U) trajectories from the original levels of z0 and
with extreme values of T ′ (in degrees). These depen-
dences are shown in Table 2, where the lines from top
to bottom show the values: λc , z0 for trajectories with
maximum displacements, ∆(ψ′/U), extreme T ′ (in de-
grees). We can see that the amplitudes of ∆(ψ′/U)
begin to decrease at λc equal and larger than 4 above
the mountains. However, a little further the trend
changes, and all the amplitudes of the displacements
begin to increase in the range of changes from 7.8 to
9.5. Specifically, at λc = 9.5 the maximum of ampli-
tudes returns to the level that occurred at λc = 6.66. If
the increase of continues, the previous smoothing trend
restores. The disturbances T ′ demonstrate a similar
dependence. The ψ field at λc = 12.2 has the form
of classical waves everywhere, the amplitude of which
does not exceed 0.5 km, and the length is close to the
value of λc . The physical meaning of this regularity is
not yet completely clear.

Apparently, the linear dependence is determined by
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the fact that the increase of λc is associated, fore-
most, with an increase in U speed and, therefore, a
decrease in the time of interaction of the moving at-
mosphere with the uneven ground, i.e. with a decrease
in the energy effect of the relief on the flow (see [Gill,
1986], Vol.1, i.8.8). Deviation from linearity is appar-
ently determined by the processes of energy interaction
between the selected layers, and they have to be inves-
tigated yet.

3.2.7. Additional calculations have been carried out
for 2 variants of the flowing in order to estimate how
much the results can change if γ gradients differ from
the values provided for in (4). Here, the scale values
of λ1 have been set the same and they are equal to
5, and γ values in the troposphere different by +/ −
1 degrees/km as compared to the former γ = 6. The
corresponding values of U became equal to 8.7 and
11.1.

Comparison of the obtained results with the previous
one (Figure 5) has shown that the fields of ψ in the tro-
posphere in 3 variants are almost the same. It turns out
that the results obtained for the troposphere by setting
(4) are valuable not only for situations with a gradient
of γ1 = 6, but also for the cases when this gradient
is different from that indicated by 1–2 degrees/km, i.e.



for a wider range of stability values of the incident flow.

3.2.8. The range (4) included λc values at which,
according to Long [Kozhevnikov, 1970, 1999; Long,
1955], one would expect resonance excitation in the
troposphere. It was established that there was no no-
ticeable increase in disturbances at such values of λc .
Consequently, with typical changes in the stability from
the troposphere to the stratosphere, the reflection of
wave energy from the upper layers downwards is always
partial, and therefore, according to Long, resonance ef-
fects in the troposphere are excluded.

3.2.9. Comparison of the results for sr and iskV at
λc = 5 has shown that the presence of a hollow be-
tween two ridges leads to a noticeable increase in distur-
bances in the most noticeable crests of waves over the
mountains and at the beginning of the leeward zone.
The trajectory with z0 = 7.5 has the range of verti-
cal displacement 38% more than in case of one spinal
relief.

Additionally, this trajectory acquires a completely ro-
tor character. Comparing the data for the iskV and
iskN reliefs, one can see how the range of the trajectory
displacement decreases by about 28% as the mountain
height decreases. It has been estimated that the max-



imum range of vertical displacements of air particles
in the troposphere is related to the maximum height.
According to [Kozhevnikov, 1999], at λc = 5.1 the in-
dicated range above the mountains of the Crimea has
been 3.6 in fractions of height. According to the re-
sults of this research, it has been for a smaller value of
λc : 2.8 is for an average relief (Figure 4), 1.1 is for
iskV relief, 0.4 is for iskN relief. Once again it is con-
firmed that the intensity of the disturbances primarily
depends on the height of the mountains and secondly
on their shape.

3.2.10. The simulation results presented in Figure 3
and Figure 6 show that the intensity of disturbances in
the upper layers is very high and it weakens slowly with
height. The amplitudes of vertical displacements of air
particles at altitudes of 20–30 km are typically close to
hm. It has been shown for the first time for relatively
low mountains, i.e. occurring quite often on the earth.

In 5 out of 11 analyzed variants, orographic waves
are developed in all upper layers and at both interfaces.
In 2 cases the waves are developed in the 3rd layer and
at the 2nd interface. In 4 cases, the waves are almost
undeveloped in the upper layers and at both interfaces.
It has been established that in each upper layer the am-
plitudes of the waves are determined primarily by the



Figure 6. Trajectories of air particles in the upper layers of
the flow around the middle relief for the options: a) λc = 5,
U = 10.01, γj = 6, 0, 3 (thin lines); b) λc = 5, U = 11.11,
γj = 5, 0, 3 (bold dotted line). Trajectories with z0 = 10(0.5)30
are presented.

disturbance at its lower boundary, i.e. in each over-
lying layer the air stream flows around a sort of “its
own mountain”. The height of such “mountains” on
the surfaces of the interface becomes noticeable when
in the underlying layer the height of the upper bound-



ary of the latter coincides with the level of maximum
amplitudes due to the periodicity of vertical changes.

The results of additional calculations analyzed par-
tially in p. 2.7 have shown that the intensity of dis-
turbances in the upper layers depends on the level of
reflection of wave energy at the interfaces of the layers.
Figure 6 shows the trajectories of movement in layers
2 and 3 in variants that differ only in values of in the
troposphere: a thin continuous line for γ = 6 and a
thick dashed line for γ = 5.

We can see that the disturbances in the upper lay-
ers in the second case have increased by no less than
two times. Here, the scale of λc , although it has in-
creased slightly everywhere, hasn’t noticeably changed
the nature of the disturbances, in particular, the tra-
jectories in the tropopause area have remained almost
unchanged and have been slightly disturbed. In the
variant with smaller γ disturbances in the upper layers
have increased, apparently, due to a decrease in the
wave energy reflection at the tropopause (the gradient
changed less during the transition from the troposphere
to the stratosphere).

3.2.11. The disturbances quickly become wavelike
in the lower layers of the troposphere in the leeward
region, as they move away from the mountains, and



the waves abate slowly along the flow. These results
are of only qualitative interest, since viscous forces have
not been considered in the model. When λc increases,
these properties almost do not change, only the height
and wavelength change. In particular, the following
has been established. Wave amplitudes at altitudes of
about 0.5 km at λc = 3 are noticeable at distances
from mountains up to 27 km and are degenerated at
large values of the Lyra scale. At altitudes of 1 km they
are noticeable: up to 31 km at λc = 3, up to 28 km
at λc = 5, up to 20 km at λc = 6 and further they
become trivial.

4. Significant Results

It was shown for the first time that, when flowing
around, real mountains of small height very strongly
disturb the atmosphere not only at all levels in the tro-
posphere, but also at altitudes of the order of 30 km.
This result is important because it is widely believed in
the literature that the vertical scale of the Novorossiysk
pine forest is limited to one two kilometers. For the first
time, the dependence of perturbations on the proper-
ties of a leaking stream in a wide range of its prop-
erties is investigated. For the first time, it has been



quantitatively shown that Long resonance is excluded
in the troposphere, since the reflection of wave energy
from the upper layers is not complete. It is shown that
the previously approximately formulated regularity of
smoothing disturbances with an increase in the wave
scale is fulfilled only on average for Novorossiysk boron
and deviations from it can be noticeable.
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