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Abstract. This paper reviews the methods of
treating the results of geophysical observations
typically met in various geophysical studies. The
main emphasize is given to the sets of data on
the phenomena undergone the actions of
random factors. These data are normally
described by the distributions depending on the
nature of the processes. Among them the
magnitude of earthquakes, the diameters of
moon craters, the intensity of solar flares,
population of cities, size of aerosol and hydrosol
particles, eddies in turbulent water, the
strengths of tornadoes and hurricanes and many
other things. Irrespective of the causes for their
randomness these manifestations of planetary
activity are characterized by few distribution
functions like Gauss distribution, lognormal
distribution, gamma distribution, and algebraic
distributions. Each of these distributions
contains empirical parameters the values of
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which depend on the concrete nature of the pro-
cess. Especially interesting are so called “thick”
distributions with the algebraic tails. Possible
parametrizations of these distributions are dis-
cussed.

Introduction

The random factors playing the central role in various
geophysical processes insistently demand the applica-
tion of stochastic approaches for their study. This is
true even for phenomena describing by well based equa-
tions, because interactions between several nonlinear
processes often lead to their chaotic behavior. The ap-
proaches allowing for consideration such processes had
appeared since very long ago and have proven their use
in all cases without exception [Ding and Li, 2007; Eck-
mann and Ruelle, 1985; Van Kampen, 2007; Klyatskin,
2005; McKibben, 2011; Michael, 2012].

In this paper we discuss the geophysical phenom-
ena describing by slowly varying functions of time over
significant time intervals rather than short-period fluc-
tuations, which are in addition small (in amplitude, for
example) and from the first sight cannot noticeably af-
fect the course of the geophysical events. The most



bright example of such phenomena is well known in the
rock destruction theory, when very small and almost
imperceptible changes accumulate, and ultimately lead
to disruptions in the development of rock material and
then to complete disruption of the rock [Eckmann and
Ruelle, 1985; Michael, 2012]. Among other geophysical
phenomena it is necessary to mention one remarkable
mechanism of occurrence of earthquakes. Individual
oscillations of the plates can be small and considered
in the harmonic approximation. However, the interac-
tions between the individual modes can lead to their
merger in such a way that the energies of individual
modes are added and a principally new mode forms,
which is yet described in the harmonic approximation,
but it has the energy equal to the sum of the energies of
the merged oscillations. This merger process continues
until a single wave of very large amplitude is gener-
ated. Its energy continues to grow due to the capture
of low-energy modes, which leads to a catastrophe (an
earthquake, for example). Similar mechanism can also
be responsible for the formation of giant sea waves re-
ferred often to as the killer waves. The dynamics of
these accumulation processes depends strongly on the
distributions of the energy carriers [Bailey, 1964; Eck-
mann and Ruelle, 1985; Mazo, 2002; McKibben, 2011;



Michael, 2012].
Another example is the atmospheric aerosol and its

role as the climate formation factor [Adams and Sein-
feld, 2002; Barrett and Clement, 1991; Janson et al.,
2001; Seinfeld and Pandis, 1998].

Generally accepted evolutionary equations more or
less correctly describe the average temporal evolution of
complex geophysical structures (changes in the state of
the atmosphere, aerosol processes and climate, the de-
velopment of territorial structures, demographic struc-
tures, etc) once the transition rates between states of
the system are known. For example, the simplest bal-
ance equation with empirically introduced birth and
death rates describe the dynamics of transitions be-
tween the states with different population sizes. If,
however, we introduce the random factor that spreads
the values of the birth and death rates, the dynamic
picture can radically change.

Structure of Geophysical Data

Geophysical data are represented by numerical arrays of
dimension Ω. For example, one-dimensional arrays can
represent data on concentrations of harmful emissions
in the atmosphere or a sequence of radar signals from a



satellite at predetermined time intervals, or, for exam-
ple, randomly selected measurement times. Our idea is
that there is a certain probabilistic process behind geo-
physical data. Each data sequence is implemented with
some probability. There are several ways to process a
signal. This can be, for example, Fourier or wavelet
analysis, which allows one to select the main frequen-
cies of the signal. With this approach, it is assumed
that the signal itself is deterministic, and what we ob-
serve is a noise + signal. Our task is to try to clear
the signal from the hindrances. This is precisely the
problem that always arises in a location (sound, radio),
when the emitted signal is known, whereas the incom-
ing signal is composed of noise plus the reflected (par-
tially or completely) signal, by which we should judge
on the geophysical processes occurring far away from
the receiver. This is how objects are located by modern
positioning systems. The noise introduces an error for
reducing which it is necessary to establish the nature of
the noise. In the case of satellite sensing, several such
reasons have been established: we have elucidated the
role of Rydberg complexes formed at altitudes of 70 -
110 km in the ionosphere and the role of aerosol par-
ticles exposed to solar radiation, which leads to their
charging. The strong influence of these particles on the



state of the ionospheric plasma is beyond any doubt
[Golubkov et al., 2010; 2014].

Next, there is another type of geophysical signals
when the characteristics of the signal generator are not
known, and the task of processing is to extract the
maximum information from the signal. For example, it
may be a signal from extraterrestrial civilizations. Then
we can expect to find a dominant signal in it and try
to filter it out. It is possible to imagine another situa-
tion where the signal does not contain a dominant at
all. Attempts to apply some averaging procedures to ir-
regular signal turn out completely unsuccessful [Bailey,
1964; Mazo, 2002]. As an example, the noises from
ther Universe can be mentioned. The question is, then
what to do with such signals?

Our probabilistic concept assumes that a stochastic
signal is described by the probability of its implementa-
tion. For definiteness, we consider a stationary signal
with a random amplitude and introduce a probability
to find the given amplitude in the signal. Our task is to
find this probability from the measurement data, which
are represented by a set of points belonging to signals
in a given amplitude interval. As the interval narrows
and the measurement time lengthens, such a procedure
allows one to calculate the density of the distribution



of measurements. However, due to lack of data (and
often measurement time), this procedure is low produc-
tive. Therefore, it is more progressive to use cumulative
distributions, i.e., to calculate the number of measure-
ments with an amplitude above a given one. Now, to
calculate the distribution density, a discrete mathemat-
ical analysis apparatus is required, since we will have to
differentiate a function defined on a discrete set.

As an example, we consider an aerosol counter that
determines the concentration of dispersed impurities in
atmospheric air [Julanov et al., 1983; Zagaynov et al.,
1989]. In this counter, each particle enters a count-
able volume illuminated by a laser beam. The signal
scattered from the beam is read by the photomultiplier.
This counter can determine the concentration of par-
ticles, provided that the speed of pumping air through
the counting volume is known, and the particles fall
into the counting volume one at a time. But a single
count cannot be guaranteed, particles in the counting
volume can fall in two, three, etc. This means that the
counter will underestimate the counted concentration
of particles. Now the signal (response from the sam-
ples) will have a different amplitude depending on the
number of particles falling into the counting volume
. Thus, a typical task arises of analyzing a stochastic



signal. This task is complicated by the fact that the
aerosol impurity may contain particles of different sizes
(polydisperse aerosol). Then the problem of analysis
is complicated, but still possible (see refs [Adams and
Seinfeld, 2002; Barrett and Clement, 1991; Julanov
et al., 1984; 1986; Janson et al., 2001; Leyvraz, 2003;
Lushnikov and Kagan, 2016; Seinfeld and Pandis, 1998;
Schmeltzer et al., 1999]

Basic Equations

In what follows we will use the examples adopted from
the physics of dispersed particles. We consider the sys-
tems comprising the set of particles of different sizes
and will explain the basic idea of the stochastic ap-
proach.

Particle Size Distributions

The particle size distributions play the central role in
physics and chemistry of atmospheric aerosol, although
a direct observation of the distributions are possible
only in principle. Practically what we really measure is
just a response of an instrument to a given particle size
distribution,



P(x) =

∫
R(x , a)f (a)da (1)

Here f (a) is the particle size distribution (normally a is
the particle radius), P(x) is the reading of the instru-
ment measuring the property of aerosol x , and R(x , a)
is referred to as the linear response function of the in-
strument. For example, P(x) can be the optical signal
from an aerosol particle in the sensing volume of an
optical particle counter, the penetration of the aerosol
through the diffusion battery (in this case x is the
length of the battery), or something else. The func-
tion f (a) cannot depend on the dimensional variable
a alone. The particle size is measured in some natu-
ral units as . In this case the distribution is a function
of a/as and depends on some other dimensionless pa-
rameters or groups. The particle size distribution is
normalized as follows:

∞∫
0

f (a/as)
da

as
= 1. (2)

The length as is a parameter of a distribution. Although
the aerosol particle size distribution is so elusive charac-
teristic of the aerosol, it is still convenient to introduce



it because all properties of aerosols can be unified in
this way.

In some cases the distribution function can be found
theoretically on solving dynamic equations governing
the time evolution of the particle size distribution, but
the methods for analyzing these equations are not yet
reliable, not mentioning the information on the coeffi-
cients entering them. This is the reason why the phe-
nomenological distributions are so widely spread.

The Master Equation

In various geophysical problems it is principally impos-
sible to exclude the influence of random factors. This
means that we have to operate with the probability of
finding the system in a given state, rather than average
time (or ensemble) characteristics of the state. Mean-
while, ordinary considerations always ignore the devia-
tions from the average picture and operate only with
the average characteristics or lower moments. This fact
means that it is necessary to elaborate the efficient
methods for consideration of random processes in geo-
physical systems. For example, global disasters such as
earthquakes, tsunamis, tornadoes, epidemics, environ-
mental disasters, etc. result from a coherent interplay



of random factors. In such cases, the mathematical de-
scription should rely upon other principles than those
widely adopted in modern geophysics. Specifically, we
refuse of the description of the state of the system in
terms of time dependent average distributions and ap-
ply the description in terms of the occupation numbers.
We exemplify our idea by considering the set of parti-
cles of different size.

Q = n1, n2 ... ng ...

The set changes through time t. For applications how-
ever it is enough to have the average spectrum,

n̄g (t) =
∑
ng

ng (Q)W (Q, t)∆(ng − ng (Q))

where W (n1, n2 ...) is the probability of realization of
the given set, ng (Q) denotes the number of the g–
objects in the realization Q, ∆ stands for the Kroneker
delta symbol. Of course, it is much more convenient
to deal with the average spectrum depending on one
variable. The problem is then from where to get the
probability W (Q, t)?

The dynamics of the system depends on the rates
of transitions between the states Q. Let us assume



that these rates are known and that they depend on
the couple of the states Q+ and Q. The development
of the system is then given by the time sequence

Q+ → Q → Q−,

i.e., the system jumps from the point of the phase space
Q+ to point Q, the to Q− etc. It is possible to write
down the equation (the Master equation) governing the
the time evolution of the probability W (Q, t).

∂W (Q,t)
∂t =

∑
Q+

A(Q+,Q)W (Q+, t)−

W (Q, t)
∑
Q−

A(Q,Q−)
(3)

The first term on the right–hand side of this equation
is just the rate of transitions from all possible states Q+

to the state Q, the second term is responsible for the
losses of the probability because of the jumps to all
accessible states Q−.

Examples of Distributions

We demonstrate first the ideology of the mean field
approach, The simplest example is the point moving



along x axis with the velocity v(t). Let the average
velocity be v̄ and otherwise the function v(t) is ran-
dom. Then the natural desire comes up to write the
equation of motion in the form,

dx̄

dt
= v̄

and to solve it,

x̄(t) = v̄ t

The result can be compared to the exact solution,

x(t) =

t∫
0

v(t ′)dt ′

It is clear that the average x̄ can deviate from exact
solution very strongly.

Another example operates with the birth-death pro-
cess. We consider the evolution of the total size n(t) of
population in a town. Let us introduce birth and death
rates (α and β respectively). Then for the average size
n̄(t) we can write the equation,



dn̄

dt
= αn̄ − βn̄.

The solution to this equation is well known,

n̄(t) = n̄0e
µt ,

where µ = α−β is the difference between fertility and
mortality. If µ > 0 the population grows, otherwise
(µ < 0) it diminishes. At µ = 0 the population does
not change and remain equal to n0 – its initial size.

Now let us introduce a random factor. We assume
that µ is distributed over the Gauss low,

W (µ) =

√
a

π
e−aµ

2

Here a is a constant. Let us calculate the average size,

n̄(t) = n0

√
a

π

∞∫
−∞

e−aµ
2+µtdµ (4)

On integrating over µ yields,

n̄(t) = exp(t2/2
√
a)



We see that the random factor decisively changes the
result. The population grows even if the mortality ex-
ceeds the fertility.

Our next example is a particle jumping over 1D lat-
tice. The probability per unit time for a jump between
neighboring sites is 1/τ . Then according to our ideol-
ogy we can write,

dW

dt
=

1

τ
(Wn−1 −Wn)

where τ has the meaning of average time of a single
jump. The Laplace transform wn(p) =

∫∞
0 Wn(t)e−pt

is determined by the set of algebraic equations,

pwn −Wn(0) =
1

τ
(wn−1 − wn) (5)

where Wn(0) is the initial probability for the particle to
occur at the site n. We assume that Wn(0) = δn,0,
i.e., the particle is initially located at the origin of co-
ordinate. The set Eq. (5) is then readily solved,

wn(p) = (p + 1/τ)n

On inverting this we find,



Wn(t) =
(t/τ)n

n!
e−t/τ

This is the Poisson distribution that emerges instead of
Wn(t) = ∆(n − n0(t)). Here n0(t)1/τ is the average
velocity of the particle and ∆(i − k) stands for the
Kroneker delta (∆(0) = 1 and ∆(x) = 0 at x 6= 0).

Lognormal Distribution

The lognormal distribution looks as follows,

fL(a) =
1√

2π(a/as) lnσ
exp

[
− 1

2 ln2 σ
ln2 a

as

]
(6)

Here a is the particle radius. This distribution depends
on two parameters: as and σ, where as is the charac-
teristic particle radius and σ (σ > 1) is the width of
the distribution. Equation (6) is known as the lognor-
mal distribution. It is important to emphasize that it
is not derived from theoretical considerations. Rather,
it is introduced by hands. The function fL(a) is shown
in Figure 1 for different σ.



Figure 1. Shown is the lognormal distributions
with σ = 1.5 (curve 1), σ = 2 (curve 2), and σ = 2.5
(curve 3). The parameter σ defines the width of the
distribution. The dimensionless size is defined as a/as



Generalized Gamma Distribution

This size distribution is given by the formula:

fG (a) =

(
a

as

)k
j

Γ((k + 1)/j)
exp[−(a/as)j ]

Here Γ(x) is the Euler gamma–function. The distri-
bution fG depends on three parameters, rs , k and j .
Figure 2 displays the generalized gamma-distribution
for three sets of its parameters.

Once the particle size distributions are known, it is
easy to derive the distribution over the values depend-
ing only on the particle size;

f (ψ0) =

∫
δ(ψ0 − ψ(a))f (a)

da

as

Here δ(x) is the Dirac delta function. For example,
if we wish to derive the distribution over the particle
masses, then ψ(a) = (4πa3/3)ρ , where ρ is the den-
sity of the particle material. Of course, the properties
of aerosols depend not only on their size distributions.
The shape of aerosol particles and their composition
are important factors.



Figure 2. Shown is the gamma–distributions with
three sets of parameters i. k = 1, j = 2, ii. k =
2, j = 1, and iii. k = 5, j = 2 (curves 1, 2, and
3 respectively). These parameters define the shape
of the distribution. Again, the dimensionless size is
defined as a/as



Lognormal distribution often applies in approximate
calculations of important particle formation processes
like condensation and coagulation [Barrett and Clement,
1991; Friedlander, 2000; Janson et al., 2001; Seinfeld
and Pandis, 1998].

Scaling and Algebraic Distributions

The distribution fλ(x) possessing the property

fλ(ax) = aλfλ(x)

is referred to as the scaling invariant one. The reasons
for this are apparent: if we change the scale of f then
the distribution preserves its shape but just acquires
the multiplier a−λ. Indeed, f (x/a) = a−λf (x). The
general solution to this equation is,

f (x) = Ax−λ

It is seen that this distribution cannot be normalized to
1 at λ ≥ 1, because the respective integral diverges.
In order to avoid this difficulty a modified distributions
is introduced,

f (x) = Ax−λe−γx
−σ

(7)



with σ > 0 and

A−1 = γ(λ+σ+1)/2σ−1Γ(λ + 1/σ)

The exponential multiplier kills the singularity of f (x)
at small x . An example of such. distribution is shown
in Figure 3 Of course, another suitable function can be
used instead of the exponent.

The Student distribution is well known to all who
deal with the statistical treatment of the result. This
distribution looks as follows,

f (x) =
2√

πB(1/2, n/2)

(
1 +

x2

n

)−(n+1)/2

It reveals the algebraic behavior at large x . Here B(x , y)
is the Euler beta function. Figure 4 displays the Stu-
dent distribution for n = 3.

Extended Poisson’s Distribution

Here we consider the simplest process that generates
the Poisson distribution. The example given below is
adopted from the demography but many similar pro-
cesses are met in the geophysics.

The Malthus balance (the birth-death process n −
1 → n → n1) is so primitive that nobody suspects



Figure 3. An example of the distribution with the
algebraic tail given by Eq. (6) The dimensionless size
is defined as a/as



Figure 4. The example of the Student distribu-
tion. The parameters are shown in the figure. The
dimensionless size is defined as a/as



that something unusual can stay behind. To our great
surprise, it is not so, and an alternative consideration
starting with the same idea that the change in popula-
tion size comes from the difference between the birth
and the death rates leads to rather unusual probability
distribution of the sizes, although from the first sight,
nothing except for the Poisson distribution is expected.
The reality, however, occurs more complex.

First of all, let us formulate the balance equation
for the probability w(n, t) to find n individuals in the
population at time t assuming the rates of the birth–
death process to be linear in n. This equation claims,

dw(n,t)
dt = κ[(n − 1)w(n − 1, t)− nw(n, t)]−

λ[(n + 1)w(n + 1, t)− nw(n, t)].
(8)

The right–hand side (RHS) of this equation describes
the jumps n−1 −→ n (the birth process) and n+1 −→
n (the death process) that change the population size
by ±1 respectively.

In order to solve Eq. (8) we introduce the generating
function for w(n, t),

F (z , t) =

∞∑
n=0

w(n, t)zn.



On multiplying both sides of Eq. (4) by zn and sum-
ming over all n yield the first–order partial differential
equation for F (z , t),

∂F

∂t
= (z − 1)(κz − λ)

∂F

∂z
. (9)

It is easy to check that the general solution to Eq. (6)
has the form:

F (z , t) = ψ

(
1− z

λ− κz e
µt

)
. (10)

The function ψ should be determined from the initial
condition F (z , 0) = F0(z) or

F0(z) = ψ

(
1− z

λ− κz

)
.

We introduce z(ξ) as the solution to the equation ξ =
(1− z)/(λ− κz). Hence,

z(ξ) =
1− λξ
1− κξ

and

ψ(ξ) = F0

(
1− λξ
1− κξ

)
. (11)



On substituting ξ = [(1 − z)/(λ − κz)]eµt from
Eq.(10) into Eq. (11) finally yields,

F (z , t) = F0

(
λ− κz − λ(1− z)eµt

λ− κz − κ(1− z)eµt

)
.

For further analysis it is more convenient to have the
generating function F (z , t) in the form:

F (z , t) = F0

A +
Qz

1− z

z0

 . (12)

Here

A =
λ(eµt − 1)

κeµt − λ , Q =
µ2eµt

(κeµt − λ)2
,

and

z0 =
κeµt − λ
κ(eµt − 1)

It is important to note that above three functions
are always positive because sgn(eµt−1) = sgn(κeµt−
λ) = sgn(κ − λ). Here sgn(x) = 1 at positive x and
sgn(x) = −1 otherwise.



It is easy to find two first moments of w(n, t). On
differentiating Eq. (6) once over z and putting z = 1 re-
produce Eq. (11) for n̄(t) =

∑
n nw(n, t) = ∂zF (1, t).

Repeating this operation gives the closed equation for
∂2
zzF |z=1 = Φ2(t) =

∑
n(n2 − n)w(n, t),

dΦ2

dt
= 2µΦ2 + 2κn̄.

The solution to this equation is,

Φ2(t) =

(
Φ2,0

n̄2
0

+
2κ
µn̄0

)
n̄2(t)− 2κ

µ
n̄(t). (13)

Let us analyze the initial Poisson’s distribution. In
this case Φ2,0 = n̄2

0. We calculate the difference ∆ =

n2(t) − n̄2(t). This difference is readily found from
Eq. (13),

∆(t) = n̄(t)

[
1 +

2κ
µ

(eµt − 1)

]
.

It is interesting to note that ∆(t) grows linearly with
time as µ −→ 0, ∆(t) = n0(1 + 2κt), whereas the
total population size does not change.

Of great interest is thus to find the time depen-
dence of the distribution explicitly. To this end we
apply Eq. (12) to the function



F0(z) = e n̄0(z−1). (14)

This initial generating function corresponds to the Pois-
son distribution Eq. (1)

The size distribution w(n, t) is expressed through the
contour integral of F (z , t),

w(n, t) =
1

2πi

∮
F (z , t)

zn+1
dz . (15)

The integration goes counterclockwise along the con-
tour surrounding the origin of coordinates in the com-
plex plane z . On applying Eq. (4) to F0(z) given by
Eq. (14) and substituting the result into Eq. (15) yield,

w(n, t) =
1

2πi
e−n̄0a(t)

∮
exp

 n̄0zQ(t)

1− z

z0

 dz

zn+1
,

(16)
where

a(t) = [A(t)− 1] =
µeµt

κeµt − λ .

The function a(t) ≥ 0.



The integration in Eq. (16) is readily performed to
give

1

2πi

∮
exp

 n̄0zQ(t)

1− z

z0

 dz

zn+1
= Ln(n̄0Qz0), (17)

where Ln(x) are the polynomials of the n–th order that
can be expressed through Laguerre’s polynomials Ln(x)
as follows:

Ln(x) = Ln(−z0n̄0Q)− Ln−1(−z0n̄0Q),

where

Ls(x) =
ex

s!

d s

dx s
x se−x .

In deriving Eq. (17) we used the fact that

(1− z)−1 exp(xz/(z − 1)) =

∞∑
n=1

Ln(x)zn

is the generating function for the Laguerre polynomials
Ls(x) [Lushnikov and Kagan, 2016].



From Eqs (16) and (17) we finally have,

w(n, t) = e−n̄0az−n0 Ln(n̄0Qz0).

Normal Distribution

Let us consider a collection of sites occupied by n1, n2 ... nG
elements These occupation numbers are considered as
random variables. Let the total number of the elements
is fixed and equal to K . Let us try to find the prob-
ability to find W (n) the probability to have exactly n
units in one of the site.

W (n) =
∑

∆(n1 + n2 + ... ng − K ) (18)

where ∆(k) = 1 at k = 0 and ∆(k) = 0 otherwise.
The summation on the right-hand side of Eq. (18)

goes over all sites except the site with number k . Of
course, the final result is independent of k . We apply
the integral representation of ∆(k).

∆(k) =
1

2πi

∮
dz

zk+1



where the integration contour surrounds the point z =
0 and the integration goes in the counterclockwise di-
rection. Then we have instead of Eq. (18),

W (n) =
1

2πi

∮ ∏ dz

zk+1
=

1

2πi

∮
dz

zK+1
FK (z)

(19)
where

F (z) =
1

2πi

∮
dz

f (z)

At large N the integral in Eq. (19) can be evaluated
by the saddle point method. the result has the well
familiar form:

W (n) =
1√

2πσ2
exp

(
−(x − x0)2

2σ

)
Tht normal distribution is shown in Figure 5.

Scaling Distributions

Let us consider the distributions evolving with time. A
simplest example is the diffusion of aerosol particles in



Figure 5. This figure displays the normal distribu-
tion for three sets of parameters. The dimensionless
size is defined as a/as



the atmosphere. This process is governed by the well–
known diffusion equation,

∂W

∂t
= D

∂2W

∂x2
(20)

Here t is time, x is the spatial coordinate of particle,
D is the diffusivity of the particle. The solution to this
equation should depend a dimensionless group com-
posed the values entering the diffusion equation. The
only dimensionless combination composed of time, co-
ordinate, and the diffusivity is ζ = x2/Dt. Therefore

W (x , t) = f (x2/Dt) (21)

The function f (ζ) can be found by substituting Eq. (21)
into Eq. (20). The final answer is,

f (ζ) =
1√
2πζ

eζ
2/2. (22)

A hundred years ago Smoluchowski (see [Friedlan-
der, 2000]) formulated his salient equation that de-
scribes the coagulation process in aerosols. Since then
the Smoluchowski approach found wide applications in
numerous areas of physics, chemistry, economy, epi-
demiology, and many other branches of science [Adams
and Seinfeld, 2002; Janson et al., 2001; Leyvraz, 2003;



Pruppacher and Klett, 2006; Schmeltzer et al., 1999;
Seinfeld and Pandis, 1998; Seinfeld, 2008].

From the first sight the coagulation process looks
rather offenceless, a system of M monomeric objects
begins to evolve by pair coalescence of g– and l–mers
according to the scheme,

(g) + (l) −→ (g + l).

And there is not a problem to write down the kinetic
equation governing the process, everyone can do it,

dcg
dt

= I +
1

2

g∫
0

K (g − l , l)cg−lcldl−

cg

∞∫
l=0

K (g , l)cldl . (23)

This is the famous Smoluchowski’s equation. Here the
coagulation kernel K (g , l) is the transition rate for the
process given by Eq. (22) which is assumed to br a
homogeneous function of its arguments K (ag , al) =
aλK (g , l). The first term on the right–hand side (RHS)
of Eq. (2) describes the gain in the g–mer concentra-
tion cg (t) due to coalescence of (g − l)– and l–mers,



while the second one is responsible for the losses of
g–mers due to their sticking to all other particles. In
what follows we will use the dimensionless version of
this equation, i.e., all concentrations are measured in
units of the initial monomer concentration c0 and the
time in units of 1/c0K (1, 1). More details can be found
in the review article [Leyvraz, 2003].

Here we consider a stationary version of this equa-
tion: we put ∂tc = 0 and, in addition, consider a sim-
plified version of the kernel K (g , l) = gαlα. In this
case Eq. (23) can be solved exactly. The result is,

cg = Ag3/2+α

where A is a constant.

Random Factors and Distributions

The random factors can affect the geophysical pro-
cesses and change the shapes of the distribution. Here
we consider two examples.

Birth–Death Process

Let the population growth is governed by the Malthus
equation .



dn

dt
= κn − λn = µn

with n(t) being the mean population size at time t, κ
and λ are the birth and death rates respectively and
µ = κ − λ being the growth rate coefficient. The
population size grows at µ > 0 or falls at µ < 0)

n = n0e
µt

Let us assume now that the rate coefficient is a random
value distributed over the Gauss law

W (µ) = A exp[−a(µ− µ0)2]

where A =
√
π/a is the normalization coefficient and

a is a dispersion parameter The distribution W (µ) is
normalized to 1, i.e.,.∫ ∞

−∞
W (µ)dµ = 1

We average n(t) over the distribution W and find,

n̄(t) = An0

∫ ∞
−∞

W (µ)eµtdµ = n0e
µ0tet

2/4a



Hence, irrespective of the value of mean fertility the
population swiftly grows The distribution function for
n can also be readily found. It is,

w(n, t) =

√
π

a

∫ ∞
−∞

W (µ)δ(n − n0e
µt)dµ

The integration gives the lognormal distribution

w(n, t) =

√
π

a

1

tn
exp
[
− a

t2
ln2(n/n0)

]
Logistic Model

Let us consider now the logistic growth

dn

dt
= κn − βn2 − λn = µn − βn2

It is readily seen that the average population size

n

µ− βn
= Ceµt

or

n(t) =
n0e

x

1 + βn0tF (x)



where

F (x) =
ex − 1

x
x = µt

Now let us average this over the Gauss distribution
centered at µ = µ0.

n(t) =
n0e

µt

1 + βn0
1−exp(µt)

µ

=
n0e

µt

1 + βn0tF (µt)

where F (x) = (1− ex)/x . On averaging this gives,

n̄(t) = n0

∫
W (µ)

eµt

1 + βn0tF (µt)
dt

For the logistic law the result is more complicated
than in the case of the Malthus distribution

w(n) =

∫
W (µ)δ

[
n − n0e

µt

1 + βn0tF (µt)

]
dµ

Time dependence of the population size is shown in
Figure 6.



Figure 6. Time dependence of the size in the case
of logistic distribution. The parameters are shown in
the figure.



Conclusion

We have presented several types of probability distri-
butions widely used in geophysics (and not only) We
have classified the geophysical random processes into
two groups. The first group operates with random pro-
cesses having a dominant structure i.e.,those including
a deterministic process possessing all the feature of the
whole process. In this case the task of the statisti-
cal study can be reduced to the search of this domi-
nant process and the study the respective deterministic
model underlying it. The randomness in this case re-
veals itself as corrections to the dominant process and
plays the minor role. The example of such process is
the waves on the oceanic surface or mountains on the
Earth surface.

More sophisticated tasks appear in the cases where
the dominant absents. The simplest example is the ran-
dom walks of a billiard ball. Its coordinate of its stops
cannot be predicted, neither its associated with some
regular trajectories. It is clear that when such situations
emerge we should attack it by using the probabilistic
approaches

In both these cases the description goes in terms of
the distributions. Sometimes these distribution can be



found theoretically. If not, then we can chose a dis-
tribution from our collection and to try to match its
parameters in such a way that the average characteris-
tics would be reproduced.
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