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Abstract. We analyze well-known model for
wind energy input and wave-breaking absorption
in energy transfer equation via its numerical
comparison with recently developed alternative
model. The comparison is done for time and
space-independent velocity of the wind for the
waves growing along the fetch coordinate.
Significant differences have been found for
integral as well as spectral characteristics of
these models. It is shown that slight
modification of the analyzed model significantly
improves its properties and provides better
description of the physical situation.
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Introduction

The process of energy transfer between deep gravity
ocean surface waves spectral components, in the ab-
sence of the ocean currents, is described by the energy
transfer equation, or Hasselmann Equation, hereafter
HE, [Hasselmann, 1962]:

∂ε

∂t
+ ~Cg∇~rε = Stotal (1)

where ε = ε(~k ,~r , t) is the wave energy spectral density,

depending on 2D vectors ~r = (x , y) and ~k = (kx , ky ),
in real and Fourier spaces, correspondingly, and time t.
Stotal is the total source term

Stotal = Snl + Sds + Sin (2)

where Snl is nonlinear four-waves interaction term, Sds
is the wave-breaking wave energy absorption term, and
Sin is the wind energy input term.

For the last 30 years, Eq.(1) is the hull of the oper-
ational ocean wave prediction models [Tolman, 2013;
SWAN, 2015] though, there is no general agreement
on the form of Sds and Sin terms.

It was recently shown that Snl is the dominant term
in Eq.(1) [Zakharov, 2010; Zakharov and Badulin, 2011].



Therefore, the first approximation of Eq.(1) is Snl = 0,
it plays important role in the theory of weak turbulence.
It’s basic solution is the spectrum [Zakharov and Filo-
nenko, 1967]:

ε ' P1/3

ω4

where P is the energy flux to high frequencies. Since
then, its angular-dependent generalizations have been
developed [Kats and Kontorovich, 1974; Kats et al.,
1975].

The knowledge of the exact expression for nonlin-
ear interaction Snl is of little help for operational mod-
els due to its computational overhead. Instead, sim-
pler substitutes of Snl , such as DIA and the likes, are
used for real-time operational prediction. As the re-
sults, there is the need for tuning coefficient in front
of them. However, several researchers reported their
failure to reproduce the original Snl properties.

There is another negative side of such Snl deforma-
tion with even more severe consequences: due to distor-
tions of Snl as the leading term, the other source terms
Sin and Sdiss need to be distorted in a way to compen-
sate Snl deformation to reach decent approximation of
Eq.(1) in specific situation. Such manipulations lead



to the loss of physical properties and universality of the
original model.

Therefore, while Snl is rigorously analytically for-
mulated, but not used, the wind input Sin and wave-
breaking absorption term Sds are poorly formulated, in-
corporate heuristic assumptions, and include many tun-
able parameters. The development of good Sin theory
was complicated by understudied sea surface boundary
layer, uncorrelated with surface waves. The examples
of the development of various Sin terms contain plenty
of heuristic suggestions about the amplitude and an-
gular distribution of waves. As the consequence, the
local values of different parameterizations of Sin vary
up to the factor of 5 [Badulin et al., 2005; Pushkarev
and Zakharov, 2016]. The discussion and demonstra-
tion of these facts can be found in [Gagnaire-Renou et
al., 2011; Pushkarev and Zakharov, 2016].

As with Sin, there is no agreement about paramet-
rization of Sds . While the major wave energy absorp-
tion mechanism, the scientists agree on, is the wave
breaking, one can find in the literature another am-
biguous heuristic long-waves absorption mechanism as
well [Tolman and Chalikov, 1996]. Moreover, there is
no consent at the moment on the localization of the
wave-breakings in wave-number space. As far as con-



cerns operational models, the dominant part of the ab-
sorption happens in the vicinity of the spectral peak.
This fact contradicts, however, the reports that such
assumption does not satisfy the nonlinear tests of the
Eq.(1) [Pushkarev and Zakharov, 2016; Dyachenko et
al., 2015].

Due to the above mentioned facts, the operational
models obey dozens of tuning parameters. Therefore,
there is the emerging feeling that the new generation
of statistical justified approaches to waves modeling
should be developed.

Recently, the new ZRP approach to the formula-
tion of Sin and Sds balanced terms has been offered
by Zakharov et al. [2017]. It does not use turbulent
layer analytical theory, or precise measurement of the
boundary layer. Instead, it is based on the existence of
two-parameter automodel solutions of the Eq.(1) and
their restriction to the one-parameter automodel solu-
tion through experimental data. This solution can be
written as:

ε = χp+qF (ωχq) (3)

10q − 2p = 1, q =
1

2 + s
(4)



p = 1, q = 3/10, s = 4/3

E (χ) = E0χ
p

< ω(χ) >= ω0χ
−q (5)

where E (χ) and < ω(χ) > are the full wave energy of
waves and the average frequency, as the dimensionless
coordinate χ = xg/U2 functions, where x is the reg-
ular dimensional coordinate in meters of the fetch, U
is the wind velocity and g is gravitational acceleration;
s = 4/3 is the power of exponent for Sin = ωs+1 de-
pendence on frequency ω; E0 and ω0 are the constant
coefficients.

Later, we will compare ZRP approach [Zakharov et
al., 2017] with M1 and M2 approaches. M1 approach
uses Sin and Sds based on [Donelan et al., 2012]. M2
approach is the “artificial” one, using the properties of
ZRP and M1 approaches.

Let us note that ZRP and M1 approaches use differ-
ent physics: ZRP model presumes the dominance of the
nonlinear interactions and the flux of the energy from
the spectral peak area toward the absorption area of
big wave numbers, whereas M1, as shows the numer-
ical simulation, absorbs the vast portion of the wave



energy in the area of the intermediate wave numbers,
nearer the area of the spectral peak.

That leads to substantial discrepancy in full wave
energy and average frequency dependencies on the co-
ordinate of the fetch, as well as the difference in the
wave energy spectra.

The simulations of the “artificial” M2 approach ex-
hibits the improvements of the properties of M1 ap-
proach toward better automodel behavior as well as
wave energy spectrum properties, and advice the usage
of high wave-numbers wave energy absorption mecha-
nism in Eq.(1).

Below, we explain the above mentioned approaches
and present the supportive evidence for our vision of
the studied subject.

The models formulation and numerical

approach

The numerical model used the stationary case of Eq.(1):

1

2

ω

k
cos θ

∂ε

∂x
= Snl + Swind + Sdiss (6)

It is well-known that numerical solution of Eq.(6) is
complicated by the presence of the singularity in the



form of cos θ, turning to 0 in the case of θ = ±π/2,
which was historically resolved [Banner and Young, 1975]
via limitation of the Fourier space domain to the an-
gular spread of −60◦ < θ < 60◦, and zeroing out the
remaining part. Such approach allows to avoid the di-
vision of the right hand side of Eq.(6) by 0 at ±π/2.
Due to the assumption of major amount of waves prop-
agating in the wind direction, this approach looks sen-
sible. In our simulation, we used the angular spread of
−90◦ < θ < 90◦.

WRT (Webb-Resio-Tracy) method [Tracy and Resio,
1982] has been applied for the calcualation of Snl part in
its original exact formulation. It used 71 logarithmically
placed frequency points in the range 0.1 Hz < f <
2.0 Hz and 36 uniformly positioned angular points in
the range 0 < θ < 2π. We used time-independent
spatial step of 1 m or 2 meters to advance explicitly in
real space with the accuracy of first order.

Initial conditions were chosen in the form of homo-
geneous low-level white noise distribution of energy in
Fourier space ε(ω, θ) = 10−6 m4. The permanent
wind with the velocity of 10 m/sec was supposed to be
blowing away from the coast line.



ZRP model

For the wind input term Sin, the recently developed
through automodel approach, ZRP wind input term has
been utilized [Zakharov et al., 2017; Pushkarev and
Zakharov, 2016]:

SZRP
in (ω, θ) = γ(ω, θ) · ε(ω, θ) (7)

γ(ω, θ) =


0.05

ρa
ρw
ω

(
ω

ω0

)4/3

q(θ) for

fmin 6 f 6 fd , ω = 2πf

0 otherwise

(8)

q(θ) =

{
cos 2θ for −π/4 6 θ 6 π/4
0 otherwise

(9)

ω0 =
g

U
,
ρa
ρw

= 1.3 · 10−3

U = 10 m/sec is the velocity of wind at 10 meters
height above the water surface, ρa and ρw are the den-
sities of air and water, fmin = 0.1 Hz and fd = 1.1
Hz.

As far as concerns the wave-breaking absorption func-
tion in ZRP model, it was used in the “implicit” way.



It was simulated via extension of the wave energy spec-
trum from ωd by the law A(ωd) · ω−5, which is known
as Phillips law [Phillips, 1966]. Due to the fact that
this function decays more rapidly than equilibrium law
ω−4, it provides short-wave energy absorption, for wave
energy cascade, arriving to that region due to nonlinear
four-waves interactions.

There is no need to know the value of the coefficient
A(ωd) before ω−5 in the explicit form. It is automati-
cally dynamically determined through the requirement
of the wave energy spectrum to be continuous at ωd on
every discrete time step. Or, saying the same things the
other way, the Phillips spectrum beginning point has to
be the same as the ending frequency point fd ' 1.1 Hz
of the spectrum, which is subject to change at every
time step.

M1 approach

The well-known M1 model [Donelan et al., 2012] will be
concisely outlined in this section for reader convenience.

The wind input source is defined by

SM1
in = A1(Uλ/2 cos θ− c)|Uλ/2 cos θ− c |kω

g

ρa
ρw
ε(k , θ)

(10)



where θ is the angle between wind direction and wave
vector k , A1 = 0.11 is known as the sheltering coef-
ficient, Uλ/2 is the wind velocity at one half of wave-
length above the surface, assuming the logarithmic pro-
file

Uλ/2 =
U∗
κ

ln
z

z0

where U∗ is the friction velocity, κ = 0.41 is Von Kar-
man constant, z = 1

2λ is the elevation equal to a fixed

fraction 1
2 of the spectral peak wavelength λ = 2π/kp,

where kp is the spectral peak wave-number. z0 =
αCu

2
∗/g is the surface roughness, where Charnock con-

stant αC = 0.015 [Charnock, 1955].
The absorption is described by “spilling breakers”

function [Donelan et al., 2012]

SM1
sb = −A2

[
1 + A3MSM2(k , θ)

]2×

× [B(k , θ)]2.53 ω(k)ε(k , θ) (11)

where

MSM2(k , θ) =

∫ k

0
p2ε(p, θ)dp

is the Mean Square Slope (MSS) in the direction θ of



all waves longer than
2π

k
, B(k , θ) = k4ε(k , θ) is the

degree of saturation, A2 = 46.665, A3 = 240.

Difficulties of M1 approach numerical simulation

Analytical formulation of M1 approach itself, without
getting into physical details of its justification, is diffi-
cult for numerical simulation in the straighforward man-
ner, when the wave energy dissipation Eq.(11) is con-
sidered as the part of the “whole” Stot source function
Eq.(2).

The reason is connected with the “degree of satu-
ration” B(k , θ) = k4ε(k , θ), which was constructed in
the assumption of fast enough decay of the spectrum
ε(k , θ) as the function of wave number k . Numerical
simulation of waves turbulence excitation, which starts
from the low level of “seeding waves”, exites initial
wave spectrum in high frequencies domain, where there
is no fast decaying spectrum yet – it appears at later
stages of the spectral evolution, following the spectral
maximum down-shift.

Therefore, due to the presence of fast growing fac-
tor ω21.24 in Eq.(11), the numerical simulation of M1
model exhibits “blow-up” instabilities right on its start
from low-level “seeding waves” conditions.



In this relation, another interpretation of the nonlin-
ear absorption function Eq.(11) happenes to be effec-
tive in this case: it is possible to solve analytically the
absorptional part of Eq.(1)

1

2

g cos θ

ω

∂ε

∂x
= SM1

sb

on each spatial integration step h in the adiabatic ap-
proximation, presuming that MMS variation is slower
in space, than spectral wave energy density ε:

εn+1 =

εn/

[
1 + 2.52A2

[
1 + MSM2

]2 2ω

g cos θ
hε2.53

n

]1/2.53

where n is the numerical integration enumeration index
and h is the spatial integration step.

Such interpretation of Sds warrants instability-free
algorithm of numerical integration in the “division by
processes” of the right-hand side approach [Fedorenko,
1994].

M2 approach

The M2 approach was developed to check what effect
will be produced with substitution of the nonlinear ab-
sorption function of M1 approach by simple “implicit”



absorption function, described above. It was supposed
that the wind source function Eq.(10), subject the an-
gle and frequency restrictions of Eqs.(8) – (9), will re-
main the same as in M1 approach.

Simply said, the M2 is analogous to ZRP up to the
replacement of Eq.(7) by Eq.(10).

Numerical results

The full wave system energy is presented on Figure 1
as the function of spatial coordinate for all three ap-
proaches: ZRP, M1 and M2. One can note that ZRP
curve reproduces automodel law Eq.(3), correspond-
ing to the index value p = 1, which is known to cor-
respond to more than a dozen of field experiments,
mentioned and processed in [Badulin et al., 2007], and
hence should be used as the reference point.

The appropriate values of automodel powers p for
ZRP, M1 and M2 approaches can be seen on Figure 2.
Whereas ZRP approach shows asymptotic merger with
automodel theoretical prediction p = 1, M1 approach
fails to do that. M2 approach converges as well, but
to another power value p ' 0.5 with sluggish rate.
That examination shows automodel tendencies in ZRP
and M2 approaches. One can notice quite good ac-



Figure 1. Non-dimensional wave energy Eg2/U4

as the function of non-dimensional coordinate of the
fetch xg/U2 for wind velocity U = 10 m/sec. Solid
line – ZRP approach, dotted line - automodel solution
with the fitting coefficient: 2.9 ·10−7xg/U2 ; dashed
line - M1 approach; dash-dotted line - M2 approach.



Figure 2. Energy local power function index p =
d lnE
d ln x as the function of non-dimensional coordinate

xg/U2 for wind velocity U = 10 m/sec. Theoretical
value of index p = 1 - thick horizontal solid line.
Solid line - ZRP approach; dashed line - M1 approach;
dash-dotted line - M2 approach.



cordance between ZRP and M1 approaches for wave
energy behavior on Figure 1 for “experimental” dimen-
sional distances up to ∼ 20 km, which confirms M1
merits.

Figure 3 presents average frequency dependencies
on the coordinate for three considered approaches and
demonstrates its 25% scatter for the distances, exceed-
ing 20 km.

Figure 4 shows the dependencies similar to auto-
model law Eq.(5): ZRP model demonstrates automodel
behavior, exhibiting asymptotic evolution to the theo-
retically predicted power q = 0.3, although M1 and
M2 approaches have more sluggish evolution to the
dissimilar value q ' 0.2 with better quality of con-
vergence for M2 approach. The undulations observed
in the evolution of q on that graph could be connected
with discrete wave-numbers, used in the modeling due
to sharp spectral peak perpetual shift amid neighboring
frequency point, i.e. spectral peak motion in a sort of
“hit and miss” manner.

The check of calculated “magic number” (10q −
2p) (see Eq.(4)) is presented on Figure 5. It exhibits
asymptotic convergence of ZRP model to the target
value of 1, while M1 and M2 models converge to the
slightly lower values 0.8 ÷ 0.9 somewhat slower along



Figure 3. Non-dimensional average frequency, de-
pending on the non-dimensional coordinate, calcu-

lated as < f >= 1
2π

∫
ωndωdθ∫
ndωdθ

, where n(ω, θ) = ε(ω,θ)
ω

is the spectrum of the wave action, for wind velocity
10 m/sec (solid line). The dash-dotted line is the

automodel dependence 3.4 ·
(
xg
U2

)−0.3
with the fitting

coefficient in front of it; dashed line - M1 approach;
dash-dotted line – M2 approach.



Figure 4. Local average frequency index −q =
d ln<ω>
d ln x as the function of non-dimensional coordi-

nate xg/U2 for U = 10 m/sec. ZRP approach -
solid line; dashed line - M1 approach; dash-dotted
line - M2 approach. Thick horizontal solid line - tar-
get value of the automodel index q = 0.3.



Figure 5. ”Magic number” 10q−2p depending on
non-dimensional coordinate xg/U2 for wind velocity
U = 10 m/sec. ZRP approach - solid line; dashed
line - M1 approach; dash-dotted line - M2 approach.
Thick horizontal solid line - automodel destination
value 10q − 2p = 1.



the real space coordinate. Particularly obvious in M1
and M2 approaches oscillations can be explained by
Fourier space discreteness, discussed above.

Angular averaged wave energy spectrum decimal log-
arithm for ZRP approach is shown on Figure 6 as the
function of frequency decimal logarithm for x ' 20 km.
One can distinguish its following parts:

• the spectral peak

• the inertial band close to ω−4 stretching from the
spectral peak area to the start of the ”implicit”
wave energy absorption at fd = 1.1 Hz

• high-frequency tail f −5, beginning from fd = 1.1
Hz

Angular averaged wave energy spectrum decimal log-
arithm for M1 approach is shown on Figure 7 as the de-
pendence on the frequency decimal logarithm, for the
coordinate value x ' 20 km. It can be seen that no any
part of the spectral tail can be approximated by ∼ ω−4

fitting. The single domain, which could be fitted by
power function, is f > 1.1 Hz, with ∼ ω−8.4 spectral
dependence. Such rapidly decaying spectra, however,
were never seen in the natural experiments.

Angular averaged wave energy spectrum decimal log-
arithm, depending on the frequency, for M1 approach,



Figure 6. Angular averaged wave energy spectrum
decimal logarithm depending on the frequency deci-
mal logarithm for wind velocity U = 10 m/sec. ZRP
approach – solid line. The fittings ∼ f −4 and ∼ f −5

– dashed and dash-dotted lines, correspondingly.



Figure 7. Angular averaged wave energy spec-
trum decimal depending on the frequency decimal
logarithm for wind velocity U = 10 m/sec. M1 ap-
proach - solid line. The fittings ∼ f −4, ∼ f −5 and
∼ f −8.4 - dashed, dash-dotted and dotted lines cor-
respondingly.



Figure 8. Angular averaged wave energy spec-
trum decimal logarithm depending on the frequency
for wind velocity U = 10 m/sec. M1 approach - solid
line, fitting ∼ 10−3.3f - dashed line.



is shown on Figure 8, for the coordinate value x ' 20
km. The spectral domain 0.5 Hz < f < 1.2 Hz can
be fitted by ∼ 10−3.3f , which has never been seen in
the natural experiments either.

Appearance of both exponential and power-like spec-
tra for intermediate and high frequency ranges, corre-
spondingly, for M1 approach, finds its explanation from
Figure 9. It shows that significant part of the wave
breaking absorption is localized in the area of the in-
termediate frequencies, right adjacent to the spectral
peak area. Such localization of the wave-breaking ab-
sorption causes exponential decay at the intermediate
frequencies of the spectral tail.

Angular averaged wave energy spectrum decimal log-
arithm, depending on the frequency decimal logarithm,
for M2 approach, at the coordinate x ' 20 km, is
shown on Figure 10. As in ZRP approach, one can
distinguish the following parts:

• the spectral peak

• the inertial band close to ω−4, stretching from the
spectral peak area to the start of the “implicit”
absorption fd = 1.1 Hz

• high-frequency tail f −5, beginning from fd = 1.1
Hz



Figure 9. Angular averaged wave energy wind
input < Sin >= 1

2π

∫
γin(ω, θ) ε(ω, θ)dθ (dotted

line), wave breaking energy absorption < Sdiss >=
1
2π

∫
γdiss(ω, θ) ε(ω, θ)dθ (dashed line) and angular

averaged spectrum < ε >= 1
2π

∫
ε(ω, θ)dθ (solid

line) depending on the frequency f (solid line).



Figure 10. Angular averaged wave energy spec-
trum decimal logarithm depending on the frequency
decimal logarithm for wind velocity U = 10 m/sec.
M2 approach - solid line. The fittings ∼ f −4 and
∼ f −5 - dashed and dash-dotted lines correspond-
ingly.



That observation confirms the concept of nonlinear
interaction domination in the hierarchy of the source
terms in Eq.(1), which exhibits itself in the formation
of ω−4 spectral tail in the inertial frequencies range,
stretching from the spectral peak area up to the begin-
ning of the absorption range fd = 1.1 Hz.

Conclusions

M. Donelan set of wind input and nonlinear wave-break-
ing absorption (cited as M1 approach) is one of the
well-known and widely cited models, applied to the
wave energy transfer equation. We performed numeri-
cal comparison of M1 approach with recently developed
ZRP approach and “artificial” M2 approach (which is,
in fact, the modified M1 approach) for stationary ver-
sion of energy transfer Eq.(1), describing wind waves
excitation off the shore line.

ZRP and M1 approaches use different methods for
their derivation: ZRP uses the automodel solutions of
HE together with experimental data, while M1 applies
purely experimental observations for its composition.
The “artificial” M2 approach integrates the properties
of ZRP as well as M1 one.

The comparison shows that there is substantial dis-



crepancy between ZRP and M1 approaches. Whereas
ZRP model exhibits automodel properties, which are
the hallmarks of the nonlinearity, M1 approach demon-
strates just a few of them, with slow asymptotic ap-
proach to the theoretically predicted values.

In addition, ZRP and M2 exhibit power-like ω−4

spectra, whereas M1 possesses exponentially decaying
behavior in the intermediate frequencies range. The
reason of exponential tail appearance is dissimilarity
in wave energy absorption localization: while ZRP ap-
proach relies of high-frequency absorption, M1 model
utilizes intermediate wave numbers wave energy ab-
sorption. Also, ZRP approach replicates the full wave
energy and the average frequency actions of experimen-
tally gathered data.

It is quite interesting, that M2 “artificial” approach
enhances automodel properties of M1, i.e. full wave
energy, average frequency indices, “magic numbers”
as the functions of coordinate automodel behavior, as
well as the properties of angular integrated spectra, like
∼ ω−4 spectral tails. This observation evidences the
fact that the substitution of the quite complex nonlinear
wave-breaking absorption in M1 approach by fairly sim-
ple “implicit” absorption ω−5 for high wave-numbers
spectral tail improves the quality of M1 approach, pro-



vided that the wind wave energy input sheltering coef-
ficient is re-tuned.

Outlined research leads to the conjecture that the
wide class of source terms, utilized in ensemble with
exact expression for nonlinear interaction source term
Snl and “implicit” high frequency wave-breaking ab-
sorption, results in better consistency with theoretically
forecasted automodel properties of the energy transfer
equation, spectral shapes and data of the field experi-
ments.
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