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Abstract. Inter-well measurements are used
to reduce drilling costs with no reduce small
kimberlite body detection. The radio wave
method enables measurement of the apparent
absorption coefficient that is proportional to the
effective electrical resistance of the rock. Our
point is to build a three-dimensional model of
distribution of electrical properties of inter-well
space throughout the entire exploration region.
The measured data is distributed unevenly
because data points are grouped along the linear
clusters. The distance between neighbor points
composing a cluster is much smaller than
distance between clusters. In terms of
geostatistics, this means a significant spatial
anisotropy of data distribution that is difficult to
take into account using standard geostatistical
approach. We have shown that the problem
could be solved by methods developed within
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the theory of machine learning. To build a three-
dimensional model of attenuation coefficient we
used a modified method of k-nearest neighbors.

Introduction

Currently, deposits of diamonds directly accessible from
the surface are almost exhausted in the Western Yaku-
tia. Search for kimberlite bodies is carried out in areas
where traditional geological and geophysical studies are
ineffective [Shmakov, 2017]. For areas covered by sedi-
mentary rocks, as well as traps, the only direct method
to search for kimberlites is to run a network of borehole
measurements. To reduce the cost of work it is desired
to increase the distance between wells. However, this
increases the risk of missing small kimberlite pipes. To
avoid this, cross-well survey methods are used, in par-
ticular, radio wave methods. The radio wave scanning
technique was developed in the middle of the last cen-
tury (see, for review, [Petrovskij, [1971]) and is being
actively used today [/stratov at al., [2006]. This tech-
nique is used not only when searching for kimberlite
pipes [ Tolstov at al., 2018], ore [Kuznetsov, and
oil [Istratov at al., P000] deposits, etc., but also for
natural hazards [Cherepanov, [2017] and technological




processes monitoring [Istratov at al., [2009].

The idea of the method is to estimate the attenua-
tion of an electromagnetic wave as it passes between
two wells. The source and receiver of the electromag-
netic field is placed in adjacent wells to measure the
attenuation of the electric field amplitude. Lower rock
resistance corresponds to higher radio wave absorp-
tion. Therefore, the absorption coefficient at a fixed
frequency is proportional to the electrical conductivity
of the medium [Petrovskij, [L971]. There are two kinds
of inter-well scanning techniques. First one is named
“fan” method shown on panel A of [Figure 1] The posi-
tion of the emitter in the well varies with a given step.
At each position, the receiver fixes the amplitude of
the electric field emitted by the source. After that, the
source moves to the next position. The source also
moves throughout the entire working interval of the
well. Such a measurement scheme allows to obtain a
detailed picture of the electrical properties of the inter-
well space in the plane passing through both wells. The
joint interpretation of the set of sections obtained in
this way allows to obtain a three-dimensional image
of the electrical properties of the medium [Kuznetsov,
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Figure 1. Measurement schemes used in radio
wave research. A — fan schema, the position of the
source is fixed, the receiver moves through the entire
working range with a given step. Then the source
is shifted to the next position and the measurements
are repeated, etc. B — synchronous measurements,
the source and receiver are moved along the well at
the same time.

If fan survey was chosen n"” measurements must be
made where n is the number of stops (measurement
positions) per well. In practice the survey is often lim-
ited to synchronous dipping of the source and receiver
in the neighboring wells. In this case, the number of



measurements is equal to n, which significantly reduces
the quantity of measurements, but at the same time the
information content of performed measurements also
decreases. In fact, such measurement scheme allows
us to get only the average value of the apparent at-
tenuation coefficient corresponding to the midpoint of
the line connecting the source and receiver positions.
Thus the tomographic method becomes inapplicable.
To build a three-dimensional model of the medium,
we need to use an alternative interpolation procedure.
[Aleshin and Zhandalinov, proposed to construct
horizontal sections of the model using kriging [/saaks
and Srivastava[l989]. These parameters should lead to
an interpolation error, which is comparable to the ac-
curacy of the input data. However, while constructing
a real three-dimensional model, the direct application
of the regression methods is impossible because of the
extreme anisotropy of the distribution of input data. In
addition, even in the two-dimensional case, the solu-
tion turns out to be too smooth while our point is to
increase image contrast.

One possible alternative is to use machine learning
methods. In this case, the interpolation procedure is
based on a specific analysis of the source data, which
is called training. In machine learning, our task can



be classified as the analysis of ordered data. The tradi-
tional approach is to build models based on deep neural
network architectures, for example, convolutional or re-
current [Nikolenko at al., 2018]. However, the data we
have is not enough for quality training of such models.
We used the simplest implementation of the k-Nearest
Neighbors algorithm (abbreviated kNN). This is known
as simple but effective method of data analysis. The
kNN method belongs to the class of so-called lazy algo-
rithms. Such algorithms do not require a long prelimi-
nary training. The decision rules are based on calculat-
ing the distances between the data objects [Zhuravlev
et al.,[2006]. Actually, training is reduced to the calcu-
lation of the distance matrix from a given point to all
input data.

Methods

In this work, we use the data of ALROSA company
(http:/ /www.alrosa.ru). Synchronous inter-well radio
wave measurement was performed at one of sites in
Yakutia. We are unable to use additional data related
to the site. Therefore, we restricted our effort to the
construction of a three-dimensional model of conduc-
tive properties. In later parts, we will discuss only model
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of spatial distribution of the apparent absorption coeffi-
cient of the medium between the wells. To analyze the
inter-well measurement data, it is necessary to select a
model of the propagation of the electric field emitted
by the source. Since our data is obtained from syn-
chronous measurements we can estimate only the av-
erage value of the absorption coefficient of the medium
along the straight line connecting the source and the re-
ceiver. Therefore, we confine ourselves to the simplest
model of wave propagation, described by the formula
of the radiation field of an electric dipole in a homoge-
neous isotropic medium

E = Eyexp(—q/R)/Rsiné.

Here, E is the polar component of the electric field,
Eg is the amplitude of the emitted wave, R is the dis-
tance between the source and receiver positions. With
synchronous measurements, the source and receiver are
placed approximately at the same depth, so the polar
angle can be set equal to w/2. Then the absorption
coefficient is

g=—In(RE/E).

Let @ = {qn} denote the set of input data: the
values of the apparent damping factor measured at N



points with coordinates 7, = {xp, ¥n, zn}. Here, the
x, y coordinates determine the position of a point in
the horizontal plane, z is the depth measured from sea
level. In the kNN algorithm, the value of g at an ar-
bitrary point ¥ = {x, y, z} should be calculated by the
formula

K K
()= w(FF)a Y we=1 (1)
k=1 k=1

the summation is over K point closest to r. The num-
ber K is a free parameter of the algorithm (hyperparam-
eter), which requires additional determination. Instead
of the number of neighbors, the radius of the sphere
with center at the point 7 is used as the hyperparam-
eter and all points inside the sphere are considered as
neighbors. It is natural to choose the Euclidean metric
as the distance between points:

R (71, 72) = \/(Xl — X2)2 + (y1 — y2)2 + (21 — 22)2.
(2)
The weight function wy (7, k) depends on the distance
between the current point r to the corresponding point
with a given value. As a weight function, a value in-
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Figure 2. The effect of the scale factor A on the
nearest point selection. Anisotropy of data distribu-
tion leads to nearest neighbors are within the same
measurement group for any point (A). Scaling the
horizontal axes corrects this situation (B).

versely proportional to the distance is usually used:
Wi (F, Fk) i l/R (F, Fk) .

Without taking into account the spatial location of the
points of weight are the same for all members of wy =
1/K.

The distribution of data obtained by the radio wave
scanning method is strongly anisotropic. The depth
step is 5 m with a well length of the order of 500 m while
the distance between the nearest wells is approximately

200 m (see|Figure 2)). We cannot use classical methods



of geostatistics [/saaks and Srivastava, to build a
three-dimensional model of the media. Moreover, the
application of the method of nearest neighbors also re-
quires its modification. To reduce the difference in hor-
izontal and vertical scales, we will redefine the metric
by entering a dimensionless scale factor A:

R(A. )=

\/(X1 = %) N2+ (= y)? N+ (21— 2)° (3)

One can expect that a proper choice of the parame-
ter value would compensate the anisotropy of the data,
but we have no criterion for making this choice. There-
fore, the scale factor, along with the number of neigh-
bors K, is another hyperparameter of the problem. We
used the cross-validation to determine the hyperparam-
eters. This approach, along with the hold-out method,
is standard in machine learning theory. The source data
is divided into M groups (M = 5), each of these groups
is used for testing. In our case, to estimate the quality
of the solution, the total rms value of the difference
between the deferred values of the observed data, cal-
culated from the remaining data using the formula ({1)
with the metric ([3), is used:




M
KK, A) =1/M Y slM(K,A)

m=1
™MK, \) =
N/M N/M )
1—Z(q§m) r,,KA)/Z( )
i=1
N/M

(m)
= q;

Interpolant q(7j; K, A) is calculated by the formula (1)
using the metric but the holdout data are not taken
into account. A coefficient of determination was cal-
culated on a 25 by 25 grid with a unit step for both
parameters. The result of the calculations is shown in
[Figure 3 The coefficient distribution has the shape
that is typical for multi-parameter optimization prob-
lem. To select the hyperparameter values we have fixed
the level 0.7 on the determination coefficient map. It
approximately corresponds to the 80-percent correla-
tion between the model and the input data. Intersec-
tion of the median of the triangle, which is formed by
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Figure 3. The determination coefficient distribu-
tion calculated on the grid of parameters. An ac-
ceptable values of the hyperparameters corresponds

to area where determination coefficient value exceeds
level 0.7. To build the model, the values deter-

mined by the intersection point of the median and
hypotenuse of the triangle formed by the axes of co-
ordinates and the straight line approximating the level
0.7 are chosen.
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the coordinate axes and the straight line approximation
of the 0.70 level of the determination coefficient to se-
lect of the hyperparameter values equal K = 11 and
A =10 m.

Since the values of the hyperparameters are deter-
mined we can construct the attenuation coefficient im-
age. The calculation of horizontal and vertical cross-
sections is implemented in the Python programming
language (https://www.python.org) using the Scikit-
learn package collection (https://scikit-learn.org)).

[Figure 4] shows one vertical and two horizontal cross-
sections of the model. It can be seen that the model
constructed allows to localize objects whose horizontal
size are significantly smaller than the distance between
the wells. As an example, the areas of high attenuation
coefficient values located at a depth of -560 m and
horizontal coordinates X = 2950, X = 4750 and X =
5150 meters can be cited. Their positions are indicated
by the corresponding dashed lines on panels A and C,
Figure 4

For clarity, the shows the vertical cross-
sections corresponding to these lines, on which the cor-
responding areas are also clearly visible.
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Conclusions

Inter-well synchronous survey data can be used to con-
struct a three-dimensional model of inter-well medium
conductivity using the kNN method. The strong ani-
sotropy of the input data can be reduced by modifying
the spatial metric, which determines the distance be-
tween the data. This can be achieved by introducing
a scaling factor that scales in the horizontal direction.
The approach used makes it possible to obtain a fairly
contrasting image of inhomogeneous areas. In particu-
lar, it gives the possibility to make the outlining of areas
with linear size smaller than the distance between the
wells. The model building process does not depend on
the physical model used to interpret the measurement.
Refining the model of the physics of wave propaga-
tion between wells will improve the quality of image
construction without the change in image construction
procedure. Of course, the model can be improved by
drawing additional data (geological, seismic, magnetic)
for their joint interpretation.

Acknowledgments. This work was supported by budget projects
of the Schmidt Institute of Physics of the Earth, Russian Academy
of Sciences, and the Laverov Federal Center for Integrated Arctic



Research, Russian Academy of Sciences (project number AAAA-
A18-118012490072-7).

References

Aleshin, . M., V. M. Zhandalinov (2009), Application of interpo-
lation procedures for presentation of data electromagnetic wave
lightning, Russ. J. Earth Sci., 11, no. 1, p. 1-4, |Crossref

Cherepanov, A. O. (2017), Multi-frequency radio wave measure-
ments in wells to monitor the process of thawing MMP (example
of the Russkoe oil field, Western Siberia), KRAUNZ Bulletin.
Series: Earth Science, 4, p. 118-123 (in Russian).

Isaaks, E. H., R. M. Srivastava (1989), Applied Geostatistics, 589
pp., Oxford University Press, New York.

Istratov, V. A., M. G. Lysov, I. V. Chibrikin, et al. (2000), Ra-
dio wave geointroscopy (RWGI) of inter-well space in oil fields,
Geophysics, Special issue, p. 59-68 (in Russian).

Istratov, V. A., A. V. Skrinnik, S. O. Perekalin (2006), New equip-
ment for radio wave geointoscopy of rocks in the interwell space
“RWGI-2005", Instruments and systems for exploration geo-
physics, no. 1, p. 37-43 (in Russian).

Istratov, V. A., A. V. Kolbenkov, E. V. Perekalin, S. O. Lyax
(2009), Radio wave monitoring method of technological pro-
cesses in the interwell space, KRAUNZ Bulletin. Series: Earth
Science, 14, p. 59-68 (in Russian).

Kevorkyanc, S. S., V. Y. Abramov, Y. D. Kovalev (2005), Well
radio wave complex for searching for kimberlite pipes in Western


https://doi.org/10.2205/2009ES000430

Yakutia, Geophysics, 3, p. 56—64 (in Russian).

Kuznetsov, N. M. (2008), Experience of the radiowave geoin-
troscopy of the interwell space for the exploration of a gold-
copper deposit, Exploration and protection of mineral resources,
no. 12, p. 27-29 (in Russian).

Kuznetsov, N. M. (2012), The 3D method of processing the data
of radio wave scanning of the interwell space, KRAUNZ Bulletin.
Series: Earth Science, no. 1, p. 240-246 (in Russian).

Nikolenko, S. I., A. A. Kadurin, E. O. Arxangel'skaya (2018), Deep
learning, 479 pp., Piter, St. Petersburg (in Russian).

Petrovskij, A. D. (1971), Radio wave methods in underground
geophysics, 224 pp., Nedra, Moscow (in Russian).

Tolstov, A. V., N. N. Zinchuk, I. V. Serov (2018), Main results
of research and experimental-methodical works of “ALROSA”
(PJSC), Efficiency of geological exploration for diamonds: fore-
casting and resource, methodical, innovative and technological
ways to increase it, p. 12-30, "ALROSA" company, Mirny.

Shmakov, I. I. (2018), Problems of scientific support in exploration
for diamonds, Geology and minerageny of northern Eurasia. Ma-
terials of the meeting dedicated to the 60-th anniversary of the
Institute of Geology and Geophysics of the Siberian Branch of
the Academy of Sciences of the USSR, p. 265, Sobolev Insti-
tute of geology and mineralogy SB RAS, Novosibirsk, Russia
(in Russian).

Zhuravlev, Yu. I, V. V. Ryazanov, O. V. Sen'ko (2006), Recog-
nition. Mathematical methods. Software system. Practical
applications., 159 pp., Fazis, Moscow (in Russian).




	Introduction
	Methods
	Conclusions
	References

