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Abstract. The problem of mathematical
modeling of internal gravity wave fields
generated by an unsteady perturbation source
moving in the stratified ocean of finite depth is
considered. Integral forms of the solution are
obtained in the linear approximation for a
separate wave mode, and it is shown that, at
certain generation parameters, the wave pattern
of excited internal wave fields represents
systems of hybrid wave perturbations which
simultaneously have the properties of two waves
of the following two types: annular-like
(transverse) and wedge-like (longitudinal). The
results of numerical simulations describing the
basic specific features of the phase structures
and wave patterns of the excited fields
depending on the generation parameters are
presented and discussed.

This is the e-book version of the article, published in Russian
Journal of Earth Sciences (doi:10.2205/2018ES000619). It is
generated from the original source file using LaTeX’s ebook.cls
class.

http://dx.doi.org/10.2205/2018ES000619


Introduction

An important mechanism for exciting fields of inter-
nal gravity waves in the ocean is their generation by a
source of perturbations of various physical natures, i.e.,
of the natural (moving typhoon, wind waves, flow over
irregularities of the bottom topography, variations in
the density and flow fields, leeward mountains) and an-
thropogenic (offshore technological structures, collapse
of the turbulent mixing region, underwater explosions)
origin. The system of hydrodynamic equations describ-
ing the wave perturbations of stratified media in general
form is a quite complicated mathematical problem both
in proving the existence and uniqueness theorems in ap-
propriate function classes and from the computational
standpoint. The main results of the solution of wave
generation problem can be represented in the most gen-
eral integral form, and in this case the integral solutions
require the development of numerical and asymptotic
methods for their investigation. These methods allow
to carry out a qualitative analysis and express estima-
tions of the solutions. In the framework of the linear
theory, the asymptotic methods for integral representa-
tions and approximate methods of geometric optics are
used to investigate the wave perturbations in natural



stratified media analytically [Bulatov and Vladimirov,
2012, 2015a; Massel, 2015; Mei et al., 2017; Morozov,
2018, Pedlosky, 2010; Sutherland, 2010].

To obtain a detailed description of a wide class of
physical phenomena related to the dynamics of wave
perturbations of inhomogeneous and unsteady ocean,
it is necessary to use sufficiently developed mathemat-
ical models. The fact that the structures of natural
stratified media are three-dimensional also plays an im-
portant role, and it is currently impossible to carry out
large-scale numerical experiments of three-dimensional
ocean flow simulation at large times with a sufficient
accuracy. But in several cases, a preliminary qualitative
concept of the class of wave phenomena under study
can be obtained by using simpler analytical models. In
this regard, it is worth noting the classical hydrody-
namic problems of constructing asymptotic solutions,
which describe the evolution of wave perturbations gen-
erated by sources of different nature in heavy liquids.
The solutions of such models then allow to represent
wave fields with regard to the variability and unsteadi-
ness of real hydro-physical fields in the ocean. Several
results of analysis of model linear problems describing
various regimes of excitation and propagation of wave
perturbations also underlie the nonlinear theory of gen-



eration of waves of extremely large amplitude, i.e., of
rogue-waves. This theory is currently actively devel-
oped [Mei et al., 2017; Morozov, 2018].

The simulation of the dynamics of internal gravity
waves is important because of the growing number of
offshore platforms in the oil and gas fields. Several
cases of offshore platform damage by internal waves
of large amplitude should be noted, for example, in the
Andaman Sea when, in October, 1997, one of the pillars
supporting the platform was bent by a shear flow of an
internal wave. The measurements show that the loads
caused by internal gravity waves applied to an offshore
platform bottom in the vertical direction can be 30
times greater than the loads caused by the wind waves.
The internal wave forcing results in the intensive trans-
port of sediments and the bed motions, especially in the
regions, where the influence of wind (storm) waves is
negligibly small. The internal gravity waves also accel-
erate the sediment diffusion and the sediment transport
in the marine environment. Therefore, the process of
particle transport by the flows induced by internal waves
are actively studied in different science fields related
to hydrobiology (plankton migration, benthos), ecology
(propagation of admixtures and impurities), and engi-
neering oceanology [Mei et al., 2017; Morozov, 1995,



2018; Navrotsky, 2013; Vlasenko et al., 2005].
Internal waves in the ocean are three-dimensional,

hence, the analysis of two- and three-dimensional un-
steady wave motions is a very complicated problem.
A numerical code which can solve complete hydrody-
namic equations with regard to the real ocean floor re-
lief, the Earth’s rotation, and turbulent processes was
developed at the Massachusetts Institute of Technol-
ogy (USA) and was widely adopted. This numerical
model requires many computer resources, thus it can
be justified only for solving several practical problems
in oceanology. Nevertheless, even such complete mod-
els do not take into account, for example, the stable
horizontally inhomogeneous background stratification
existing in the real ocean. To take this hydro-physical
effect into account, it is necessary to introduce exter-
nal forces maintaining this stratification inhomogene-
ity, but it is rather difficult to parameterize them nu-
merically. The other currently available methods for
numerical simulation, including the methods based on
the use of supercomputers (IGW Research algorithm,
Riemann Solver algorithms for solving hyperbolic equa-
tions of shallow water, higher-order pseudo-spectral al-
gorithm for solving hydrodynamic equations HOSM) do
not always permit efficiently calculating specific phys-



ical problems of wave dynamics of the ocean and at-
mosphere with regard to their real variability, because
they are oriented at solving rather general problems, re-
quire high computational power, and do not always take
into account the physical nature of the problems under
study. In this case it significantly decreases their prac-
tical applicability, especially in computations of wave
fields in the real natural environment. Moreover, the
use of powerful numerical algorithms requires verifica-
tion and comparison with the solutions of model prob-
lems [Abdilghanie et al., 2013; Rees et al., 2012; Tiugin
et al., 2012; Vlasenko et al., 2005].

Therefore, simplified and analytical models are widely
used in the scientific research and analysis of the wave
phenomena in the real stratified ocean. In the linear
approximation, the existing approaches to the descrip-
tion of the wave pattern of excited fields of internal
waves are based on the representation of the wave fields
by Fourier integrals. As a rule, only the first wave
mode is considered, because this mode makes the ba-
sic contribution to the complete wave field [Bulatov
and Vladimirov, 2012, 2015a; Morozov, 2018].

The goal of this paper is the mathematical model-
ing of unsteady regimes of generation of internal grav-
ity wave fields generated by an unsteady perturbation



source moving in the stratified ocean of a finite depth.

1. Formulation of the Problem

In this paper, we consider the problem of mathemati-
cal modeling of internal gravity waves generated by the
motion of a point perturbation source of power Q in the
stratified ocean of depth H . We assume that the source
power harmonically depends on time Q = q exp(iωt).
The source moves with velocity V in the horizontal
negative direction along the x-axis (the z-axis is di-
rected upwards), the depth of the source is z0. The
steady-state regime of wave oscillations is considered.
In the linear formulation, assuming the Boussinesq ap-
proximation, we have the following equation, for ex-
ample, for the vertical displacement of the isopycnic
lines η(x , y , z) (lines of equal density with the same
harmonic time-dependence) [Bulatov and Vladimirov,
2012, 2015a, 2015b]

(
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is the Brunt-Väisälä buoyancy frequency which is fur-
ther assumed to be constant (ρ0(z) is the unperturbed
ocean density) and δ(x) is the Dirac delta function.

The problem of adequate and physically justified mod-
eling of natural stratified environment, i.e., the ocean,
has been studied in numerous works, because, on the
one hand, the widely used models of stratified me-
dia described in the scientific literature (N(z) =const,
the linear or another model distribution of the buoy-
ancy frequency) significantly simplify the mathemati-
cal solution of the problem, but on the other hand,
problems appear of the adequacy and physical justifi-
cation of the model representations. The model used
here is one of the most widely used models of wave
motions in the ocean, because, in certain regions of
the World Ocean (Arctic basin), this approximation
(N(z) =const) gives a good description of the real hy-
drology and it is one of the basic approximations in



real oceanographic and hydro-physical numerical simu-
lations [Bulatov and Vladimirov, 2012, 2015a; Massel,
2015; Morozov, 1995; Pisarev, 1996].

Function η(x , y , z) is related to the vertical compo-
nent of velocity w(x , y , z) as follows:

w(x , y , z) =
(

iω + V
∂

∂x

)
η(x , y , z)

[Bulatov and Vladimirov, 2015b]. We use the “rigid
lid” boundary condition

η = 0 at z = 0,−H (2)

In the dimensionless coordinates

x∗ = xπ/H , y∗ = yπ/H , z∗ = zπ/H

η∗ = ηH2V /qπ2, ω∗ = ω/N , t∗ = tN

Eq. (1) and boundary conditions (2) become (index
“*” is omitted)
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η = 0 at z = 0,−π (3)

where c = NH/π is the maximum group velocity of
internal gravity waves in a layer of stratified medium of
thickness H , M = V /c . The simplest case (M > 1)
is considered in [Bulatov and Vladimirov, 2015b]. It is
shown that at a far distance from the oscillating source
of perturbations, the excited fields form only a system
of wedge-like (longitudinal) waves located inside the
corresponding wave fronts. In this paper, we consider
a more complicated case: M < 1.

2. Integral Forms of the Solution

We seek the solution of problem (3) in the form of the
Fourier integral

η(x , y , z) =

1

4π2

∞∫
−∞

dv

∞∫
−∞

ϕ(µ, v , z) exp(−i(µx + vy))dµ

Then, for determining function ϕ(µ, v , z), we have the
boundary-value problem (k2 = µ2 + v 2)
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, ϕ = 0 at z = 0,−π (4)

The solution of problem (4) can be represented as a
sum of vertical modes

ϕ(µ, v , z) =

∞∑
n=1

ϕn(µ, v , z) =

∞∑
n=1

Bn(µ, v) cos nz0 sin nz

Bn(µ, v) =

2ni

π(ω − µM)

1

k2((ω − µM)−2 − 1)− n2

i.e., as a series in eigen functions of the homogeneous
boundary-value problem (4). As a result, the solution



of problem (3) becomes

η(x , y , z) =

∞∑
n=1

ηn(x , y) cos nz0 sin nz

ηn(x , y) =

1

4π2
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dv
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Bn(µ, v) exp(−i(µx + vy))dµ (5)

In the expression for function Bn(µ, v), we equate the
denominator to zero to obtain the dispersion relation
between the horizontal components µ and v of wave
vector k , which can be represented as

Fn(µ, v ,ω, M) = 0

Fn(µ, v ,ω, M) ≡

(µM − ω)2 − k2(k2 + n2)−2, n = 1, 2, ...

Further, we consider the first mode (index n = 1 is
omitted), M = 0.4, and the unsteady regimes of inter-
nal wave generation corresponding to different values



of ω. The frequency range is divided into four inter-
vals as follows: 1) 0 < ω < ω1; 2) ω1 < ω < ω2;
3) ω2 < ω < 1; 4) ω > 1. Frequency ω1 is determined
by the system of equations

F (µ, 0,ω, M) = 0

∂F (µ, 0,ω, M)

∂µ
= 0, µ < 0

whose solution gives ω1 = 0.309. Frequency ω2 is
determined by the system of equations

F (µ, v ,ω, M) = 0

∂F (µ, v ,ω, M)

∂µ
= 0

∂2F (µ, 0,ω, M)

∂µ2
= 0

whose solution is ω2 = 0.370. Further, the numerical
computations are carried out for the following frequen-
cies of the perturbation source oscillations: ω = 0.30
(the first interval), ω = 0.32 (the second interval),
ω = 0.66 (the third interval), and ω = 1.12 (the



fourth interval). Figure 1 shows the dispersion rela-
tions for these four values of ω. In the first interval,
the dispersion curve consists of two unclosed branches
and one closed branch. In the second, third, and fourth
intervals, there are two unclosed branches. The closed
dispersion curves are associated with annular (trans-
verse) waves, and the unclosed dispersion curves are
associated with wedge-like waves (longitudinal waves
inside the Kelvin wedge).

The residue theorem is used to calculate the inner
integral in (5) at the poles of the integrand and the
direction of bypassing the poles is determined by the
perturbation method. In this case, in the first, third,
and fourth intervals, it is convenient to calculate the
inner integral in (5) over integration variable µ, and in
the second interval, over variable v . Then, in each of
the four intervals, the determined dispersion curve is
associated with its own single integral. For example,
in the third interval and in the lower branch of the
dispersion curve (Figure 1c), the corresponding single
integral (with regard to the harmonic time dependence)
becomes

J =
1

2π
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A(v) cos(µ(v)x + vy − ωt)dv
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A(v) =
M

2
×

(µM − ω)2

µ(v)ω + Mv 2 + µ(v)(µ(v)M − ω)3
(6)

where µ(v) is the lower branch of the dispersion curve
in Figure 1c.

3. Phase Structure and Wave Patterns

The phase structure of the elevation field of gener-
ated internal waves for different generation regimes is
completely determined by single integrals of form (6)
(the other unsteady generation regimes corresponding
to different values of ω are studied similarly). We de-
note the phase by Φ = µ(v)x + vy − ωt and use the
phase stationary condition µ′(v) = −y/x to obtain a
family of constant phase line for different values of Φ
with parameter v in the form

x =
Φ + ωt

µ(v)− vµ′(v)



y =
µ′(v)(Φ + ωt)

vµ′(v)− µ(v)

Figure 2–Figure 9 show the results of calculations for
the phase structures and wave pattern of the excited
internal wave fields at t = 0. Solid lines in Figure 2,
Figure 4, Figure 6, and Figure 8 show the values of
phase Φ multiple of 2π. The dashed lines in Figure 2,
Figure 6, and Figure 8 show the wave front determined
by equation y = µ′(v∗)/x , where v∗ is a root of equa-
tion µ∗(v) = 0; in this case, the negative root of this
equation is associated with the front line in the upper
half-plane, and the positive roots, with the front line
in the lower half-plane. The dashed-dotted line in Fig-
ure 6 indicates the crest of the wave with zero phase Φ;
the equation of this line is y = µ′(v 0)/x , where v 0 is
a root of equation µ′(v) = y/x . Figure 2 presents the
phase patterns corresponding to the lower and closed
branches of the dispersion curve for the first interval.
Figure 3 shows the complete wave pattern which is the
sum of two corresponding single integrals. It should be
noted that the Kelvin wave wedge determined by the
upper branches of all dispersion curves (Figure 1) has a
very small half-opening angle (of the order of 10) and
the wave amplitude determined by these branches is
several times smaller than the amplitudes of the waves



Figure 2. Phase structure for first interval: a –
wedge-like (longitudinal) waves, b – annular-like (trans-
verse) waves.



Figure 3. Wave pattern for first interval: sum of wedge-
like (longitudinal) and annular-like (transverse) waves.



Figure 4. Phase structure for second interval.



Figure 5. Wave pattern for second interval.



Figure 6. Phase structure for third interval.



corresponding to the lower branches of the dispersion
curves. Figure 4 and Figure 5 show the phase struc-
ture and the wave pattern corresponding to the lower
branch of the dispersion curve for the second interval.
In this generation regime, the complete field is a hybrid
system of waves of the following two types: annular-
like (transverse) and wedge-like (longitudinal). Since
the amplitude of the perturbation source is unsteady,
not only annular-like (transverse) waves propagating di-
rectly from the source appear, but hybrid internal waves
propagating upstream from the source are also gener-
ated. In this case, there is an upstream wave front
which is indicated by the dotted line in Figure 4. The
dashed line in Figure 4 is the crest of the wave with
phase Φ = 0, the phase of the annular crests and the
longitudinal crests to the left of the dashed line in Fig-
ure 4 is Φ > 0, and the phase of the longitudinal crests
to the right of the dashed line is Φ < 0. Figure 6,
Figure 7, Figure 8, and Figure 9 show the phase struc-
ture and the wave pattern corresponding to the lower
branch of the dispersion curve for the third and fourth
intervals.

We describe the qualitative evolution of the wave
patterns of the excited fields (corresponding to the
lower branches of the dispersion curves) depending on



Figure 7. Wave pattern for third interval.



Figure 8. Phase structure for fourth interval.



Figure 9. Wave pattern for fourth interval.



the frequency ω of the perturbation source oscillations.
At 0 < ω < ω1, the wave pattern consists of waves
of the following two types: wedge-like (longitudinal)
and annular-like (transverse); in this case, the annular-
like (transverse) waves propagate directly from the per-
turbation source, including the upstream direction. At
ω1 < ω < ω2, the lower and closed branches of the dis-
persion curves merge and form a unique Ω-like curve.
In this case, the half-opening angle of the wave wedge
in the wave pattern is greater than π/2, and the wave
pattern is a system of hybrid waves, i.e., the proper-
ties of the waves correspond both to the annular-like
(transverse) and wedge-like (longitudinal) waves. At
ω2 < ω < 1, the lower branch of the dispersion curve
becomes a single-valued function intersecting the ab-
scissa axis, the half-opening angle of the wave wedge
is less than π/2, and the wave pattern contains only
wedge-like (longitudinal) waves. At ω2 < ω < 1, the
lower branch of the dispersion curve is completely in the
upper half-plane and the corresponding phase struc-
ture consists of curvilinear triangles embedded in the
wave wedge so that their bases face the origin. At
ω2 < ω < 1, the vertices of the triangles embedded
in the wave wedge face the origin. In the generation
intervals ω2 < ω < 1 the wave pattern consists only of



a system of wedge-like (longitudinal) waves.

Conclusions

Thus, the results of mathematical simulation of un-
steady generation regimes show that, at certain gener-
ation regimes, the fields of internal gravity waves ex-
cited by an unsteady source moving in the stratified
ocean of a finite depth present a hybrid system of waves
of the following two types: annular-like (transverse)
and wedge-like (longitudinal). Since the perturbation
source is unsteady, not only annular-like wave propagat-
ing directly from the source appears, but hybrid internal
waves propagating upstream from the source are also
generated.

The qualitative pattern of wave fields at a far dis-
tance from the pulsing perturbation source is signifi-
cantly more complicated compared to the case of wave
generation by a moving stationary perturbation source,
when the wave fronts of separate modes, starting from
the first, successively arrive to a fixed observation point.
First, at some parameters of the source motion (veloc-
ity, pulsation frequency), the annular waves can first
arrive to the fixed observation point, and the number
of arriving waves is always finite. Second, unlike the



case of internal gravity wave generation by a stationary
perturbation source, the front of the wave mode other
than the first mode but with the greatest half-opening
angle of the Kelvin wedge can first arrive at the obser-
vation point before the front of the first mode, then
the front of the second mode arrives, and so on in suc-
cession. The number of the wave mode which is the
first to arrive to the fixed observation point depends
on the velocity of the perturbation source motion, the
frequency of its pulsation, and the Brunt-Väisälä fre-
quency. The number of wedge-like wave modes with
the half-opening angle of the Kelvin wedge greater than
the half-opening angle of the Kelvin wedge of the first
mode is finite. At large numbers of modes, the half-
opening angle of the Kelvin wave wedge decreases with
the number of the mode similarly to the case of internal
wave generation by a stationary perturbation source.

The results of the mathematical simulation of in-
ternal gravity wave fields allow us to efficiently analyze
the main amplitude-phase characteristics of the excited
wave fields and, in addition, a qualitative investigation
of the obtained solutions is possible, which is important
for the express estimation of the wave field character-
istics in full-scale observations in the ocean and for
the well-posed statement of more complicated mathe-



matical models of the wave dynamics of real stratified
media. In conclusion, we note that similar wave pat-
terns can be observed in remote sensing, observation,
and measurements of internal gravity waves excited by
various perturbation sources in the natural (ocean, the
Earth atmosphere) and artificially stratified media.
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