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The problem of mathematical modeling of internal gravity wave fields
generated by an unsteady perturbation source moving in the stratified ocean
of finite depth is considered. Integral forms of the solution are obtained in
the linear approximation for a separate wave mode, and it is shown that, at
certain generation parameters, the wave pattern of excited internal wave fields
represents systems of hybrid wave perturbations which simultaneously have the
properties of two waves of the following two types: annular-like (transverse)
and wedge-like (longitudinal). The results of numerical simulations describing
the basic specific features of the phase structures and wave patterns of the
excited fields depending on the generation parameters are presented and
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Introduction

An important mechanism for exciting fields of
internal gravity waves in the ocean is their genera-
tion by a source of perturbations of various physical
natures, i.e., of the natural (moving typhoon, wind
waves, flow over irregularities of the bottom to-
pography, variations in the density and flow fields,
leeward mountains) and anthropogenic (offshore
technological structures, collapse of the turbulent
mixing region, underwater explosions) origin. The
system of hydrodynamic equations describing the
wave perturbations of stratified media in general
form is a quite complicated mathematical problem
both in proving the existence and uniqueness the-
orems in appropriate function classes and from the
computational standpoint. The main results of the
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solution of wave generation problem can be repre-
sented in the most general integral form, and in
this case the integral solutions require the devel-
opment of numerical and asymptotic methods for
their investigation. These methods allow to carry
out a qualitative analysis and express estimations
of the solutions. In the framework of the linear
theory, the asymptotic methods for integral repre-
sentations and approximate methods of geometric
optics are used to investigate the wave perturba-
tions in natural stratified media analytically [Bu-
latov and Vladimirov, 2012, 2015a; Massel, 2015;
Mei et al., 2017; Morozov, 2018, Pedlosky, 2010;
Sutherland, 2010].

To obtain a detailed description of a wide class
of physical phenomena related to the dynamics
of wave perturbations of inhomogeneous and un-
steady ocean, it is necessary to use sufficiently de-
veloped mathematical models. The fact that the
structures of natural stratified media are three-
dimensional also plays an important role, and it is
currently impossible to carry out large-scale numer-
ical experiments of three-dimensional ocean flow

ES2004 1 of 9



ES2004 bulatov and vladimirov: unsteady regimes ES2004

simulation at large times with a sufficient accuracy.
But in several cases, a preliminary qualitative con-
cept of the class of wave phenomena under study
can be obtained by using simpler analytical models.
In this regard, it is worth noting the classical hy-
drodynamic problems of constructing asymptotic
solutions, which describe the evolution of wave per-
turbations generated by sources of different nature
in heavy liquids. The solutions of such models then
allow to represent wave fields with regard to the
variability and unsteadiness of real hydro-physical
fields in the ocean. Several results of analysis of
model linear problems describing various regimes of
excitation and propagation of wave perturbations
also underlie the nonlinear theory of generation of
waves of extremely large amplitude, i.e., of rogue-
waves. This theory is currently actively developed
[Mei et al., 2017; Morozov, 2018].
The simulation of the dynamics of internal grav-

ity waves is important because of the growing num-
ber of offshore platforms in the oil and gas fields.
Several cases of offshore platform damage by inter-
nal waves of large amplitude should be noted, for
example, in the Andaman Sea when, in October,
1997, one of the pillars supporting the platform
was bent by a shear flow of an internal wave. The
measurements show that the loads caused by inter-
nal gravity waves applied to an offshore platform
bottom in the vertical direction can be 30 times
greater than the loads caused by the wind waves.
The internal wave forcing results in the intensive
transport of sediments and the bed motions, espe-
cially in the regions, where the influence of wind
(storm) waves is negligibly small. The internal
gravity waves also accelerate the sediment diffu-
sion and the sediment transport in the marine en-
vironment. Therefore, the process of particle trans-
port by the flows induced by internal waves are ac-
tively studied in different science fields related to
hydrobiology (plankton migration, benthos), ecol-
ogy (propagation of admixtures and impurities),
and engineering oceanology [Mei et al., 2017; Mo-
rozov, 1995, 2018; Navrotsky, 2013; Vlasenko et al.,
2005].
Internal waves in the ocean are three-

dimensional, hence, the analysis of two- and
three-dimensional unsteady wave motions is a very
complicated problem. A numerical code which
can solve complete hydrodynamic equations with
regard to the real ocean floor relief, the Earth’s

rotation, and turbulent processes was developed at
the Massachusetts Institute of Technology (USA)
and was widely adopted. This numerical model
requires many computer resources, thus it can be
justified only for solving several practical problems
in oceanology. Nevertheless, even such complete
models do not take into account, for example, the
stable horizontally inhomogeneous background
stratification existing in the real ocean. To
take this hydro-physical effect into account, it is
necessary to introduce external forces maintaining
this stratification inhomogeneity, but it is rather
difficult to parameterize them numerically. The
other currently available methods for numerical
simulation, including the methods based on the
use of supercomputers (IGW Research algorithm,
Riemann Solver algorithms for solving hyper-
bolic equations of shallow water, higher-order
pseudo-spectral algorithm for solving hydrody-
namic equations HOSM) do not always permit
efficiently calculating specific physical problems
of wave dynamics of the ocean and atmosphere
with regard to their real variability, because they
are oriented at solving rather general problems,
require high computational power, and do not
always take into account the physical nature of the
problems under study. In this case it significantly
decreases their practical applicability, especially
in computations of wave fields in the real natural
environment. Moreover, the use of powerful
numerical algorithms requires verification and
comparison with the solutions of model problems
[Abdilghanie et al., 2013; Rees et al., 2012; Tiugin
et al., 2012; Vlasenko et al., 2005].
Therefore, simplified and analytical models are

widely used in the scientific research and analysis of
the wave phenomena in the real stratified ocean. In
the linear approximation, the existing approaches
to the description of the wave pattern of excited
fields of internal waves are based on the represen-
tation of the wave fields by Fourier integrals. As
a rule, only the first wave mode is considered, be-
cause this mode makes the basic contribution to
the complete wave field [Bulatov and Vladimirov,
2012, 2015a; Morozov, 2018].
The goal of this paper is the mathematical mod-

eling of unsteady regimes of generation of internal
gravity wave fields generated by an unsteady per-
turbation source moving in the stratified ocean of
a finite depth.
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1. Formulation of the Problem

In this paper, we consider the problem of math-
ematical modeling of internal gravity waves gener-
ated by the motion of a point perturbation source
of power 𝑄 in the stratified ocean of depth 𝐻.
We assume that the source power harmonically de-
pends on time 𝑄 = 𝑞 exp(𝑖𝜔𝑡). The source moves
with velocity 𝑉 in the horizontal negative direction
along the 𝑥-axis (the 𝑧-axis is directed upwards),
the depth of the source is 𝑧0. The steady-state
regime of wave oscillations is considered. In the
linear formulation, assuming the Boussinesq ap-
proximation, we have the following equation, for
example, for the vertical displacement of the isopy-
cnic lines 𝜂(𝑥, 𝑦, 𝑧) (lines of equal density with
the same harmonic time-dependence) [Bulatov and
Vladimirov, 2012, 2015a, 2015b]

(︀
𝑖𝜔 + 𝑉

𝜕

𝜕𝑥

)︀2
Δ𝜂 +𝑁2(𝑧)Δ2𝜂 =

𝑄
(︀
𝑖𝜔 + 𝑉

𝜕

𝜕𝑥

)︀
𝛿(𝑥)𝛿(𝑦)

𝜕𝛿(𝑧 − 𝑧0)

𝜕𝑧0
(1)

Δ = Δ2 +
𝜕2

𝜕𝑧2
, Δ2 =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

where

𝑁2(𝑧) = − 𝑔

𝜌0(𝑧)

𝑑𝜌0(𝑧)

𝑑𝑧

is the Brunt-Väisälä buoyancy frequency which is
further assumed to be constant (𝜌0(𝑧) is the unper-
turbed ocean density) and 𝛿(𝑥) is the Dirac delta
function.
The problem of adequate and physically justified

modeling of natural stratified environment, i.e., the
ocean, has been studied in numerous works, be-
cause, on the one hand, the widely used models
of stratified media described in the scientific litera-
ture (𝑁(𝑧) =const, the linear or another model dis-
tribution of the buoyancy frequency) significantly
simplify the mathematical solution of the problem,
but on the other hand, problems appear of the ade-
quacy and physical justification of the model repre-
sentations. The model used here is one of the most
widely used models of wave motions in the ocean,
because, in certain regions of the World Ocean
(Arctic basin), this approximation (𝑁(𝑧) =const)

gives a good description of the real hydrology and
it is one of the basic approximations in real oceano-
graphic and hydro-physical numerical simulations
[Bulatov and Vladimirov, 2012, 2015a; Massel, 2015;
Morozov, 1995; Pisarev, 1996].
Function 𝜂(𝑥, 𝑦, 𝑧) is related to the vertical com-

ponent of velocity 𝑤(𝑥, 𝑦, 𝑧) as follows:

𝑤(𝑥, 𝑦, 𝑧) =
(︀
𝑖𝜔 + 𝑉

𝜕

𝜕𝑥

)︀
𝜂(𝑥, 𝑦, 𝑧)

[Bulatov and Vladimirov, 2015b]. We use the “rigid
lid” boundary condition

𝜂 = 0 at 𝑧 = 0,−𝐻 (2)

In the dimensionless coordinates

𝑥* = 𝑥𝜋/𝐻, 𝑦* = 𝑦𝜋/𝐻, 𝑧* = 𝑧𝜋/𝐻

𝜂* = 𝜂𝐻2𝑉/𝑞𝜋2, 𝜔* = 𝜔/𝑁, 𝑡* = 𝑡𝑁

Eq. (1) and boundary conditions (2) become (in-
dex “*” is omitted)

(︀
𝑖𝜔 +𝑀

𝜕

𝜕𝑥

)︀2
Δ𝜂 +Δ2𝜂 =

(︀
𝑖𝜔 +𝑀

𝜕

𝜕𝑥

)︀
𝛿(𝑥)𝛿(𝑦)

𝜕𝛿(𝑧 − 𝑧0)

𝜕𝑧0

𝜂 = 0 at 𝑧 = 0,−𝜋 (3)

where 𝑐 = 𝑁𝐻/𝜋 is the maximum group veloc-
ity of internal gravity waves in a layer of strati-
fied medium of thickness 𝐻, 𝑀 = 𝑉/𝑐. The sim-
plest case (𝑀 > 1) is considered in [Bulatov and
Vladimirov, 2015b]. It is shown that at a far dis-
tance from the oscillating source of perturbations,
the excited fields form only a system of wedge-like
(longitudinal) waves located inside the correspond-
ing wave fronts. In this paper, we consider a more
complicated case: 𝑀 < 1.

2. Integral Forms of the Solution

We seek the solution of problem (3) in the form
of the Fourier integral

𝜂(𝑥, 𝑦, 𝑧) =
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1

4𝜋2

∞∫︁
−∞

𝑑𝑣

∞∫︁
−∞

𝜙(𝜇, 𝑣, 𝑧) exp(−𝑖(𝜇𝑥+ 𝑣𝑦))𝑑𝜇

Then, for determining function 𝜙(𝜇, 𝑣, 𝑧), we have
the boundary-value problem (𝑘2 = 𝜇2 + 𝑣2)

𝜕2𝜙

𝜕𝑧2
+ 𝑘2

(︂
1

(𝜔 − 𝜇𝑀)2
− 1

)︂
𝜙 =

𝑖

(𝜔 − 𝜇𝑀)

𝜕𝛿(𝑧 − 𝑧0)

𝜕𝑧0
, 𝜙 = 0 at 𝑧 = 0,−𝜋 (4)

The solution of problem (4) can be represented
as a sum of vertical modes

𝜙(𝜇, 𝑣, 𝑧) =

∞∑︁
𝑛=1

𝜙𝑛(𝜇, 𝑣, 𝑧) =

∞∑︁
𝑛=1

𝐵𝑛(𝜇, 𝑣) cos𝑛𝑧0 sin𝑛𝑧

𝐵𝑛(𝜇, 𝑣) =

2𝑛𝑖

𝜋(𝜔 − 𝜇𝑀)

1

𝑘2((𝜔 − 𝜇𝑀)−2 − 1)− 𝑛2

i.e., as a series in eigen functions of the homoge-
neous boundary-value problem (4). As a result,
the solution of problem (3) becomes

𝜂(𝑥, 𝑦, 𝑧) =

∞∑︁
𝑛=1

𝜂𝑛(𝑥, 𝑦) cos𝑛𝑧0 sin𝑛𝑧

𝜂𝑛(𝑥, 𝑦) =

1

4𝜋2

∞∫︁
−∞

𝑑𝑣

∞∫︁
−∞

𝐵𝑛(𝜇, 𝑣) exp(−𝑖(𝜇𝑥+ 𝑣𝑦))𝑑𝜇 (5)

In the expression for function 𝐵𝑛(𝜇, 𝑣), we equate
the denominator to zero to obtain the dispersion
relation between the horizontal components 𝜇 and
𝑣 of wave vector 𝑘, which can be represented as

𝐹𝑛(𝜇, 𝑣, 𝜔,𝑀) = 0

𝐹𝑛(𝜇, 𝑣, 𝜔,𝑀) ≡

(𝜇𝑀 − 𝜔)2 − 𝑘2(𝑘2 + 𝑛2)−2, 𝑛 = 1, 2, . . .

Further, we consider the first mode (index 𝑛 = 1
is omitted), 𝑀 = 0.4, and the unsteady regimes of
internal wave generation corresponding to different
values of 𝜔. The frequency range is divided into
four intervals as follows: 1) 0 < 𝜔 < 𝜔1; 2) 𝜔1 <
𝜔 < 𝜔2; 3) 𝜔2 < 𝜔 < 1; 4) 𝜔 > 1. Frequency 𝜔1 is
determined by the system of equations

𝐹 (𝜇, 0, 𝜔,𝑀) = 0

𝜕𝐹 (𝜇, 0, 𝜔,𝑀)

𝜕𝜇
= 0, 𝜇 < 0

whose solution gives 𝜔1 = 0.309. Frequency 𝜔2 is
determined by the system of equations

𝐹 (𝜇, 𝑣, 𝜔,𝑀) = 0

𝜕𝐹 (𝜇, 𝑣, 𝜔,𝑀)

𝜕𝜇
= 0

𝜕2𝐹 (𝜇, 0, 𝜔,𝑀)

𝜕𝜇2
= 0

whose solution is 𝜔2 = 0.370. Further, the nu-
merical computations are carried out for the fol-
lowing frequencies of the perturbation source os-
cillations: 𝜔 = 0.30 (the first interval), 𝜔 = 0.32
(the second interval), 𝜔 = 0.66 (the third inter-
val), and 𝜔 = 1.12 (the fourth interval). Figure 1
shows the dispersion relations for these four val-
ues of 𝜔. In the first interval, the dispersion curve
consists of two unclosed branches and one closed
branch. In the second, third, and fourth intervals,
there are two unclosed branches. The closed dis-
persion curves are associated with annular (trans-
verse) waves, and the unclosed dispersion curves
are associated with wedge-like waves (longitudinal
waves inside the Kelvin wedge).
The residue theorem is used to calculate the in-

ner integral in (5) at the poles of the integrand and
the direction of bypassing the poles is determined
by the perturbation method. In this case, in the
first, third, and fourth intervals, it is convenient to
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Figure 1. Dispersion curves: a – first interval, b – second interval, c – third interval,
d – fourth interval.

calculate the inner integral in (5) over integration
variable 𝜇, and in the second interval, over variable
𝑣. Then, in each of the four intervals, the deter-
mined dispersion curve is associated with its own
single integral. For example, in the third inter-
val and in the lower branch of the dispersion curve
(Figure 1c), the corresponding single integral (with
regard to the harmonic time dependence) becomes

𝐽 =
1

2𝜋

∞∫︁
−∞

𝐴(𝑣) cos(𝜇(𝑣)𝑥+ 𝑣𝑦 − 𝜔𝑡)𝑑𝑣

𝐴(𝑣) =
𝑀

2
×

(𝜇𝑀 − 𝜔)2

𝜇(𝑣)𝜔 +𝑀𝑣2 + 𝜇(𝑣)(𝜇(𝑣)𝑀 − 𝜔)3
(6)

where 𝜇(𝑣) is the lower branch of the dispersion
curve in Figure 1c.

3. Phase Structure and Wave Patterns

The phase structure of the elevation field of
generated internal waves for different generation
regimes is completely determined by single inte-
grals of form (6) (the other unsteady generation
regimes corresponding to different values of 𝜔 are
studied similarly). We denote the phase by Φ =
𝜇(𝑣)𝑥+ 𝑣𝑦 − 𝜔𝑡 and use the phase stationary con-
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Figure 2. Phase structure for first interval: a –
wedge-like (longitudinal) waves, b – annular-like
(transverse) waves.

dition 𝜇′(𝑣) = −𝑦/𝑥 to obtain a family of constant
phase line for different values of Φ with parameter
𝑣 in the form

𝑥 =
Φ+ 𝜔𝑡

𝜇(𝑣)− 𝑣𝜇′(𝑣)

𝑦 =
𝜇′(𝑣)(Φ + 𝜔𝑡)

𝑣𝜇′(𝑣)− 𝜇(𝑣)

Figure 2–Figure 9 show the results of calcula-
tions for the phase structures and wave pattern of
the excited internal wave fields at 𝑡 = 0. Solid lines
in Figure 2, Figure 4, Figure 6, and Figure 8 show
the values of phase Φ multiple of 2𝜋. The dashed
lines in Figure 2, Figure 6, and Figure 8 show the
wave front determined by equation 𝑦 = 𝜇′(𝑣*)/𝑥,
where 𝑣* is a root of equation 𝜇*(𝑣) = 0; in this
case, the negative root of this equation is associ-
ated with the front line in the upper half-plane, and

Figure 3. Wave pattern for first interval: sum of
wedge-like (longitudinal) and annular-like (trans-
verse) waves.

the positive roots, with the front line in the lower
half-plane. The dashed-dotted line in Figure 6 in-
dicates the crest of the wave with zero phase Φ; the
equation of this line is 𝑦 = 𝜇′(𝑣0)/𝑥, where 𝑣0 is
a root of equation 𝜇′(𝑣) = 𝑦/𝑥. Figure 2 presents
the phase patterns corresponding to the lower and
closed branches of the dispersion curve for the first
interval. Figure 3 shows the complete wave pat-
tern which is the sum of two corresponding single
integrals. It should be noted that the Kelvin wave

Figure 4. Phase structure for second interval.
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Figure 5. Wave pattern for second interval.

wedge determined by the upper branches of all dis-
persion curves (Figure 1) has a very small half-
opening angle (of the order of 10) and the wave
amplitude determined by these branches is several
times smaller than the amplitudes of the waves cor-
responding to the lower branches of the dispersion
curves. Figure 4 and Figure 5 show the phase struc-
ture and the wave pattern corresponding to the
lower branch of the dispersion curve for the sec-
ond interval. In this generation regime, the com-
plete field is a hybrid system of waves of the follow-
ing two types: annular-like (transverse) and wedge-
like (longitudinal). Since the amplitude of the per-
turbation source is unsteady, not only annular-like

Figure 6. Phase structure for third interval.

Figure 7. Wave pattern for third interval.

(transverse) waves propagating directly from the
source appear, but hybrid internal waves propagat-
ing upstream from the source are also generated.
In this case, there is an upstream wave front which
is indicated by the dotted line in Figure 4. The
dashed line in Figure 4 is the crest of the wave with
phase Φ = 0, the phase of the annular crests and
the longitudinal crests to the left of the dashed line
in Figure 4 is Φ > 0, and the phase of the longitu-
dinal crests to the right of the dashed line is Φ < 0.
Figure 6, Figure 7, Figure 8, and Figure 9 show the
phase structure and the wave pattern correspond-
ing to the lower branch of the dispersion curve for
the third and fourth intervals.

Figure 8. Phase structure for fourth interval.
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Figure 9. Wave pattern for fourth interval.

We describe the qualitative evolution of the wave
patterns of the excited fields (corresponding to the
lower branches of the dispersion curves) depend-
ing on the frequency 𝜔 of the perturbation source
oscillations. At 0 < 𝜔 < 𝜔1, the wave pattern con-
sists of waves of the following two types: wedge-
like (longitudinal) and annular-like (transverse); in
this case, the annular-like (transverse) waves prop-
agate directly from the perturbation source, includ-
ing the upstream direction. At 𝜔1 < 𝜔 < 𝜔2, the
lower and closed branches of the dispersion curves
merge and form a unique Ω-like curve. In this case,
the half-opening angle of the wave wedge in the
wave pattern is greater than 𝜋/2, and the wave pat-
tern is a system of hybrid waves, i.e., the properties
of the waves correspond both to the annular-like
(transverse) and wedge-like (longitudinal) waves.
At 𝜔2 < 𝜔 < 1, the lower branch of the dispersion
curve becomes a single-valued function intersect-
ing the abscissa axis, the half-opening angle of the
wave wedge is less than 𝜋/2, and the wave pat-
tern contains only wedge-like (longitudinal) waves.
At 𝜔2 < 𝜔 < 1, the lower branch of the disper-
sion curve is completely in the upper half-plane
and the corresponding phase structure consists of
curvilinear triangles embedded in the wave wedge
so that their bases face the origin. At 𝜔2 < 𝜔 < 1,
the vertices of the triangles embedded in the wave
wedge face the origin. In the generation intervals
𝜔2 < 𝜔 < 1 the wave pattern consists only of a
system of wedge-like (longitudinal) waves.

Conclusions

Thus, the results of mathematical simulation of
unsteady generation regimes show that, at certain
generation regimes, the fields of internal gravity
waves excited by an unsteady source moving in
the stratified ocean of a finite depth present a hy-
brid system of waves of the following two types:
annular-like (transverse) and wedge-like (longitudi-
nal). Since the perturbation source is unsteady, not
only annular-like wave propagating directly from
the source appears, but hybrid internal waves prop-
agating upstream from the source are also gener-
ated.
The qualitative pattern of wave fields at a far dis-

tance from the pulsing perturbation source is sig-
nificantly more complicated compared to the case
of wave generation by a moving stationary pertur-
bation source, when the wave fronts of separate
modes, starting from the first, successively arrive
to a fixed observation point. First, at some pa-
rameters of the source motion (velocity, pulsation
frequency), the annular waves can first arrive to
the fixed observation point, and the number of ar-
riving waves is always finite. Second, unlike the
case of internal gravity wave generation by a sta-
tionary perturbation source, the front of the wave
mode other than the first mode but with the great-
est half-opening angle of the Kelvin wedge can first
arrive at the observation point before the front of
the first mode, then the front of the second mode
arrives, and so on in succession. The number of the
wave mode which is the first to arrive to the fixed
observation point depends on the velocity of the
perturbation source motion, the frequency of its
pulsation, and the Brunt-Väisälä frequency. The
number of wedge-like wave modes with the half-
opening angle of the Kelvin wedge greater than the
half-opening angle of the Kelvin wedge of the first
mode is finite. At large numbers of modes, the
half-opening angle of the Kelvin wave wedge de-
creases with the number of the mode similarly to
the case of internal wave generation by a stationary
perturbation source.
The results of the mathematical simulation of in-

ternal gravity wave fields allow us to efficiently an-
alyze the main amplitude-phase characteristics of
the excited wave fields and, in addition, a qualita-
tive investigation of the obtained solutions is possi-
ble, which is important for the express estimation
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of the wave field characteristics in full-scale obser-
vations in the ocean and for the well-posed state-
ment of more complicated mathematical models of
the wave dynamics of real stratified media. In con-
clusion, we note that similar wave patterns can be
observed in remote sensing, observation, and mea-
surements of internal gravity waves excited by vari-
ous perturbation sources in the natural (ocean, the
Earth atmosphere) and artificially stratified media.
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