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Discrete Mathematical Analysis (DMA) is a new approach to data analysis
that is being developed at the Geophysical Center of the Russian Academy
of Sciences. Multiple papers, which have been published earlier, are mainly
devoted to applied research and solving specific problems in various areas of
the Earth’s sciences, such as detection of geophysical anomalies, monitoring of
geophysical processes, seismic zoning, etc. The goal, which the authors pursue
in this paper, is, to a certain degree, opposite – to give a formal mathematical
description of principles that form the basis of DMA. KEYWORDS: Fuzzy
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Introduction

Data mining in natural sciences can be very
schematically presented as follows (Figure 1). Nowa-
days the analysis and processing of data are per-
formed mainly by using such classical methods as
statistical analysis, time-frequency signal analysis,
wavelet analysis, fractal analysis and mathematical
morphology, which currently gains popularity.
For all the advantages, most of them have ex-

cessive robustness because of their mathematical
origin. This means that the object, which is be-
ing studied (more likely, its model), has to meet
certain preliminary criteria (stationarity, normalcy,
regularity, etc.). If they fail to meet them, then
problems may occur. Previously they were solved
by model’s simplification.
In recent times due to the development of com-

putational tools more gentle and undemanding ap-
proaches have been introduced (combinatory ex-
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Figure 1. Scheme of a research.

haustive search, imitational modelling, neural net-
works, etc.)
The presented scheme (Figure 1) does not in-

clude a researcher while his role is important even
in case of a firm theory (e.g. during the discus-
sion and interpretation of results) and completely
essential in other cases. The more accurate will
be the scheme, shown in Figure 2. It represents
the situation in geology and geophysics (which is
particularly close to the authors’ practice): the re-
searcher’s role in this area is extremely important,
since data and knowledge tend to be irregular and
ill-defined.

Figure 2. The final scheme of data analysis.
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Figure 3. Transition from mathematical concepts (white fields) to the concepts of data
analysis (yellow fields).

In comparison to any formal apparatus an expe-
rienced researcher is more accurate in detection of
anomalies in low-dimensional physical fields; tran-
sit from local level to the global one for achieving
interpretational unity; in recognition of signals of
any desired form within short fragments of records;
etc. But he fails to deal with large dimensions and
volume. For that reason, the task of learning the
computer to analyze data as a researcher becomes
particularly topical.

Discrete mathematical analysis – DMA

The fact that human thinks and operates not
in numbers but in fuzzy concepts was primarily
considered while solving the problem. Therefore,
the technical basis of our modelling along with the
classical mathematics was formed with fuzzy math-
ematics and directly through it with fuzzy logic
[Zadeh, 1965].
The authors presume that the researcher’s ad-

vantage in data analysis over the formal methods
is explained by a man’s flexible and adaptive per-
ception of fundamental features of proximity, con-
tinuity, connectivity, trend, etc., because these par-
ticular features, like a “construction set”, form all
the algorithms for data analysis. The more thor-
oughly the features are modelled, the more compre-
hensive the “construction set” is. It is the reason
why there should be plenty of continuities, connec-
tivities, trends, etc.
The resulting solution is a new approach to data

analysis that is, being researcher-oriented, falls in
between robust mathematical methods and gentle
combinatory. It is DMA [Gvishiani et al., 2010].

Discrete mathematical analysis (DMA) is a series
of algorithms for processing of discrete data, uni-
fied by common formal basis: numeric fuzzy com-
parison, measure of proximity in discrete spaces,
discrete limit. The idea of DMA is based on
the construction of discrete analogues of classi-
cal mathematical analysis concepts: limit, conti-
nuity, smoothness, connectivity, monotonicity, ex-
tremum, etc.
Thus, our way is to implement the classical con-

tinuous mathematics, substituting its fundamental
basis with fuzzy models of their discrete analogues.
Referring to scheme (Figure 3), let’s presume

that we know what large–small is, thus we can
construct the following mathematical concepts:

∙ Proximate–Remote≡ large–small distance;

∙ Continuous–Discontinuous ≡ proximate
to proximate – proximate to remote;

∙ Dense–Non–dense≡ large–small presence
of small points;

∙ Continuous–Discontinuous≡ possibility–
impossibility of transition from any point to
another via proximate points;

and concepts of data analysis:

∙ Anomalies ≡ discontinuous;

∙ Clusters ≡ connected and dense;

∙ Trends will be discussed further.

For construction of DMA and particularly for
implementation of the presented scheme the or-
dinary sets and Boolean logic are not sufficient:
Boolean features are internally disjoint (robust),
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what leads to modeling emasculation. Conceptual
features have to be continuous (gentle) and thus,
fuzzy.

Fuzzy mathematics = fuzzy sets + fuzzy logic.

Fuzzy mathematics is an appropriate link (inter-
face) between a researcher and a computer.

Fuzzy Sets

Definition 1. Fuzzy set 𝐴 ≡ is set of pairs
(𝑥, 𝜇𝐴(𝑥)), where 𝑥 – point within universal 𝑋, and
𝜇𝐴(𝑥) – degree of membership 𝑥 to 𝐴.

Main operations with fuzzy sets

∙ Fuzzy complement

1. 𝜇¬𝐴(𝑥) = 1− 𝜇𝐴(𝑥), ∀𝑥 ∈ 𝑋

2. 𝜇¬𝐴(𝑥) =
√︁

1− 𝜇2
𝐴(𝑥), ∀𝑥 ∈ 𝑋

∙ Fuzzy intersection

1. 𝜇𝐴∩𝐵(𝑥) = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), ∀𝑥 ∈ 𝑋

2. 𝜇𝐴∩𝐵(𝑥) = 𝜇𝐴(𝑥)𝜇𝐵(𝑥), ∀𝑥 ∈ 𝑋

∙ Fuzzy union

1. 𝜇𝐴∪𝐵(𝑥) = min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), ∀𝑥 ∈ 𝑋

2. 𝜇𝐴∪𝐵(𝑥) = 𝜇𝐴(𝑥)+𝜇𝐵(𝑥)−𝜇𝐴(𝑥)𝜇𝐵(𝑥),
∀𝑥 ∈ 𝑋

We adopt two concepts from fuzzy mathematics:

1. That which is declared the principle of fuzzi-
ness: “Any element possesses any quality, but
to varying degree”.

2. Fuzzy logic operations for combining the qual-
ities and algorithm construction.

Commonly in DMA 𝑋 is the range of definition
of a data record, field or process. Any feature of
theirs is manifested within 𝑋 to various degrees
and in this aspect, it can be considered as a gentle
structure within 𝑋.

Large–small

From this perspective, in order to set up the
scheme in Figure 3 one should answer a question,
what “large” is, and what “small” is.
Given: 𝐴 = {(𝑎𝑘, 𝜔𝑘)|𝐾𝑘=1, 𝜔𝑘 > 0} – a finite nu-

merical collection with weights.

Definition 2. Measure of maximalitymesmax𝐴(𝑥)
(minimality mesmin𝐴(𝑥)) is a fuzzy structure within
R, that answers the question: “To what measure
(mes) the number 𝑥 is larger (smaller) modulo 𝐴?”

mesmax𝐴(𝑥) = mes (𝐴 < 𝑥) ∈ [−1, 1]
mesmin𝐴(𝑥) = mes (𝑥 < 𝐴) ∈ [−1, 1]

Measure of extremality ≡ (Measure of maximal-
ity) ∨ (Measure of minimality)
Informal interpretation for functions: mesmax 𝑓(𝑥)

shows to what degree the value of function 𝑓 in a
point 𝑥 is large. The same is for mesmin 𝑓(𝑥).

𝑓 : 𝑋 → R, mesmax 𝑓(𝑥) = mesmax Im 𝑓𝑓(𝑥)
mesmin 𝑓(𝑥) = mesmin Im 𝑓𝑓(𝑥)

There are four constructions for measures in DMA.
The most transparent is “fuzzy comparison”

Fuzzy comparison

In many cases the conventional linear measure
of greatness of one number over another as their
difference appears to be too coarse.

Definition 3. Fuzzy comparison 𝑛(𝑎, 𝑏) for
nonnegative numbers 𝑎, 𝑏 ∈ R+ defines the level of
greatness of “𝑏” over “𝑎”:

𝑛(𝑎, 𝑏) = mes (𝑎 < 𝑏) ∈ [−1, 1].

Example 1. 𝑛(𝑎, 𝑏) = 𝑏−𝑎
max(𝑎,𝑏) . Two pairs of

numbers are given (5, 10) and (70, 75). The con-
ventional difference for them is equal, whereas the
fuzzy comparison is varying:

mes (5 < 10) = 𝑛(5, 10) = 5
10 = 1

2
mes (70 < 75) = 𝑛(70, 75) = 5

75 = 1
15

which seems more natural (a five-year-old child dif-
fers greatly from a ten-year-old one, than a seventy-
year-old man from a seventy-five-year-old one).
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Every fuzzy comparison defines the measures of
extremeness, for example by means of the binary
method:

mesmax𝐴𝑥 =

∑︀
𝜔𝑖𝑛(𝑎𝑖, 𝑥)∑︀

𝜔𝑖
∈ [−1, 1]

mesmin𝐴𝑥 =

∑︀
𝜔𝑖𝑛(𝑥, 𝑎𝑖)∑︀

𝜔𝑖
∈ [−1, 1]

Thus, we have an answer for the question: “What
is large and what is small?”

Definition 4. The element 𝑥 is large (small)
modulo 𝐴, if mesmax𝐴𝑥 ≥ 0.5 (mesmin𝐴𝑥 ≥
0.5).

Proximate–remote

Proximity measures are constructed using the
measures of minimality. Let us give two construc-
tions.

∙ 1st construction: 𝑑𝑋 is an assembly of all
non-trivial distances in the space 𝑋. For
points 𝑥 and 𝑦 the following problem is solved:
“To what degree the distance 𝑑(𝑥, 𝑦) between

Figure 4. Dependence of the space partition by measure of nearness from the position
of point (black color).

Dark blue − −1.0 ≤ 𝛿𝑥(𝑦) < 0.0
Blue − 0.0 ≤ 𝛿𝑥(𝑦) < 0.5
Green − 0.5 ≤ 𝛿𝑥(𝑦) < 0.75
Red − 0.5 ≤ 𝛿𝑥(𝑦) ≤ 1.0

them is small amongst the others?”. The an-
swer is 𝛿𝑥(𝑦).

𝑑𝑋 = {𝑑(�̄�, 𝑦) : �̄� ̸= 𝑦 ∈ 𝑋}
𝛿𝑥(𝑦) = 𝑛(𝑑(𝑥, 𝑦), 𝑑𝑋) =∑︀

𝑦 ̸=𝑥 𝑛(𝑑(𝑥, 𝑦), 𝑑(�̄�, 𝑦)

|𝑋|(|𝑋| − 1)

∙ 2nd construction: 𝑑𝑋(𝑥) is an assembly of
distances from 𝑥 to other points from 𝑋. Fur-
ther the same.

𝑑𝑋(𝑥) = {𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝑋 − 𝑥}
𝛿𝑥(𝑦) = 𝑛(𝑑(𝑥, 𝑦), 𝑑𝑋(𝑥)) =∑︀

𝑦 ̸=𝑥 𝑛(𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑦))

|𝑋| − 1

Example 2. Application of the 2nd construc-
tion (see Figure 4).

Dense–non–dense

NB: The denser is the space at a point (Fig-
ure 4), the lesser is the radius of the red circle. In
other words, such a circle can be considered as the
criteria of density (irreducibility) of the space at a
point. Let us give a general definition:

4 of 10



ES2001 agayan et al.: short introduction into dma ES2001

Figure 5. Dense points.

Definition 5. For a subset 𝐴 ⊂ 𝑋 density
𝑃𝐴(𝑥) is the function of membership within 𝑋 for
the fuzzy concept “proximity (irreducibility) to 𝐴 in
𝑋”: value 𝑃𝐴(𝑥) expresses in the scale [0, 1] the de-
gree of proximity (irreducibility) of point 𝑥 to subset
𝐴 within the space (𝑋, 𝑑)

Let us give two constructions:

∙ 1st construction continues the concept of prox-
imity measures from two points to a subset
and a point: if 𝑑(·, 𝐴) is a variant of the dis-
tance to 𝐴 in𝑋, 𝑑(𝑋,𝐴) = {𝑑(𝑥,𝐴) : 𝑥 ∈ 𝑋},
then

𝑃𝐴(𝑥) = mesmin 𝑑(𝑋,𝐴)𝑑(𝑥,𝐴)

∙ 2nd construction implements “dense – large
presence of proximate points”. Let 𝑟 > 0,
𝐷𝐴(𝑥, 𝑟) = {𝑎 ∈ 𝐴 : 𝑑(𝑎, 𝑥) ≤ 𝑟}, 𝐷𝐴(𝑋, 𝑟) =
{𝐷𝐴(𝑦, 𝑟), 𝑦 ∈ 𝑋}. Then

𝑃𝐴(𝑥) = mesmax |𝐷𝐴(𝑋,𝑟)||𝐷𝐴(𝑥, 𝑟)|.

Let (𝑋, 𝑑) be the finite metric space, 𝑃𝑋(·) is the
chosen density model within it, 𝑃 (𝑋) = {𝑃𝑋(𝑥) :
𝑥 ∈ 𝑋}.

Definition 6. The point 𝑥* is dense in 𝑋, if
mesmax 𝑃 (𝑋)𝑃𝑋(𝑥*) ≥ 0.5

Example 3. Red color denotes dense points
(see Figure 5).

Clusters

DMA defines clusters informally as continuous
regions of the initial space with a relatively high
density of points that are separated from other sim-
ilar ones by regions with relatively low density. The
basis of the rigorous formalization of clusterness
forms the abovementioned conjunction:

Clusterness ≡ density + connectivity .
Let us consider connectivity: the measure of den-

sity 𝛿 and density threshold 𝛼 are chosen.

Definition 7. 𝐴 – 𝛼-𝛿-connected, if ∀𝑥, 𝑦 ∈
𝑋 there is a chain 𝑧1, . . . , 𝑧𝑛 with 𝑥 = 𝑧1 and 𝑦 =
𝑧𝑛, for which 𝛿𝑧𝑖(𝑧𝑖+1) ≥ 𝛼, 𝑖 = 1, . . . , 𝑛− 1.
This definition implements “connectivity as abil-

ity to transfer through proximate points”.

Definition 8. 𝐴 – 𝛼-𝛿-cluster, if min
𝑥∈𝐴

𝑃𝐴(𝑥) ≥
𝛽 ∧ 𝐴 – 𝛼-𝛿-connected.

DMA-clustering (density + connectivity) is more
realistic, than traditional, such as clustering in
noisy spaces. It includes two stages:

1st stage is noise removal ≡ topological filter-
ing ≡ reduction of space to dense points;

2nd stage is clustering of dense points in gen-
eral sense ≡ breakdown into connected com-
ponents (clusters).

Example 4. Figure 6 demonstrates DMA-
clustering with respect to vertical view on density
(the densest is in the bottom of the hills): Fig-
ure 6a - initial set; Figure 6b - result of the 1st
stage; Figure 6c - result of the 2nd stage.

Continuous–Discontinuous

Discrete continuity is in the focus in the DMA,
since it is closely associated with discontinuity (one
of the manifestations of anomaly). Let us consider
the following approach: let 𝑓 be the mapping of
finite metric spaces 𝑋 and 𝑌 , which transfers point
𝑥 ∈ 𝑋 into point 𝑦 ∈ 𝑌 :

𝑓 : 𝑋 → 𝑌 𝑋 ∋ 𝑥
𝑓→ 𝑦 ∈ 𝑌.

The abovementioned fuzzy comparisons and mea-
sures of proximity allow formalizing the concept of
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continuity 𝑓 in point 𝑥: any pair of proximity mea-
sures 𝛿𝑥 at point 𝑥 within 𝑋, 𝛿𝑦 at point 𝑦 within 𝑌
allow to implement the formulated earlier logic of
continuity (proximate to proximate) of mapping
𝑓 and obtain fuzzy measure of continuity 𝐶𝑓 (𝑥) of
mapping 𝑓 at point 𝑥:

Definition 9.

𝐷(𝑥) = {�̄� ∈ 𝑋 : 𝛿𝑥(�̄�) ≥ 0.5}
𝐷(𝑦) = {𝑦 ∈ 𝑌 : 𝛿𝑦(𝑦) ≥ 0.5}
𝐶𝑓 (𝑥) =

|�̄�∈𝐷(𝑥):𝑓(�̄�)∈𝐷(𝑦)|
|𝐷(𝑥)|

Example 5. In Figure 7 red color shows the
points, where mapping 𝑓 has a low measure of dis-
crete continuity (high measure of anomaly)

Trends

Let there be given a series 𝑥 ∼
(︀
𝑥(𝑡𝑖)|𝑁0

)︀
, 𝑡𝑖 =

𝑎+ 𝑖ℎ. ℎ = 𝑏−𝑎
𝑁 , 𝑡0 = 𝑎, 𝑡𝑁 = 𝑏

Definition 10. Let’s specify limitations 𝑥|[𝑎,𝑡𝑖]
and 𝑥|[𝑡𝑖,𝑏], respectively left and right parts of 𝑥 at
node 𝑡𝑖 and denote them respectively as 𝐿𝑥(𝑡𝑖) and
𝑅𝑥(𝑡𝑖).
Series 𝑥 increases (decreases) at node 𝑡𝑖, if 𝐿𝑥(𝑡𝑖) ≤

𝑅𝑥(𝑡𝑖) (𝑅𝑥(𝑡𝑖) ≤ 𝐿𝑥(𝑡𝑖)).
These inequations are modeled differently by fuzzy

comparisons. Fuzzy measure also assigned differ-
ently. Let us consider one of the possible schemes
of such modeling. Let 𝛿−𝑡𝑖 (𝑡𝑗) and 𝛿+𝑡𝑖 (𝑡𝑗) be the
one-sided weights at node 𝑡𝑖:

𝛿−𝑡𝑖 (𝑡𝑗) =
𝑡𝑗 − 𝑎+ ℎ

𝑡𝑖 − 𝑎+ ℎ

𝛿+𝑡𝑖 (𝑡𝑗) =
𝑏+ ℎ− 𝑡𝑗
𝑏+ ℎ− 𝑡𝑖

and

gr−𝑥(𝑡𝑖) =

∑︀
𝑥(𝑡𝑗)𝛿

−
𝑡𝑖 (𝑡𝑗)∑︀

𝛿−𝑡𝑖 (𝑡𝑗)
, 𝑡𝑗 ∈ [𝑎, 𝑡𝑖]

gr+𝑥(𝑡𝑖) =

∑︀
𝑥(𝑡𝑗)𝛿

+
𝑡𝑖 (𝑡𝑗)∑︀

𝛿+𝑡𝑖 (𝑡𝑗)
, 𝑡𝑗 ∈ [𝑡𝑖, 𝑏]

Figure 6. DMA-clustering.

Definition 11.

1. Series 𝑥 increases (decreases) at node 𝑡𝑖, if
gr−𝑥(𝑡𝑖) ≤ gr+𝑥(𝑡𝑖) (gr+𝑥(𝑡𝑖) ≤ gr−𝑥(𝑡𝑖))

2. Series 𝑥 increases (decreases) within [𝑎, 𝑏], if
it increases (decreases) at every 𝑡𝑖 ∈ [𝑎, 𝑏]

The difference of such trends from the ordinary
ones is that they intersect covering each other.
Their intersection is the fuzzy extremum. Choosing
the only candidate for the fuzzy extremum within
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Figure 7. The most clear variant of “proximate to proximate.”

it is a separate task, which has been solved within
DMA.

Example 6. Figure 8 demonstrates the re-
sults of definition of trends and fuzzy extremums
in different situations. Red color shows the zones
of monotonous increase, green – monotonous de-
crease, cyan – fuzzy extremums.
So, we have answered all the main problems of

data analysis and hence formed its variant. Many
of them are “able to shoot and engaged in active
combat”. But, for example, the block “continuous–
discontinuous” is not very convenient for detecting
real anomalies, since they are much wider and more
complicated.
This task is solved by the system for monitoring

of dynamic processes that was developed within the
DMA framework. A dynamic process is defined as
number of time series of arbitrary nature. Mon-
itoring includes the analysis of activity measures
[Agayan et al., 2016] of separate time series with
consecutive assessment of the dynamic processes’
anomality in general. Measure of activity is the
formalization of the fuzzy and multivalent concept
of a time series activity. Any time series may be
connected with a number of measures of activity
that implement various views on its activity.

Application of DMA to Analysis of
Geomagnetic Data

For automated assessment of geomagnetic activ-
ity level within a region, where a separate geomag-
netic observatory is located; or for assessment of

Figure 8. Fuzzy trends and extremums.

geomagnetic conditions within a given region us-
ing data from a network of observatories; or for
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Figure 9. Comparison of 𝐾𝑝-index (downloaded from [WDC, 1957]) and measure of
activity 𝜇 (data for analysis obtained from [INTERMAGNET, 1991].

global assessment of magnetic disturbances within
the Earth, a new indicator has been introduced. It
is based on the value of the measure of anomality 𝜇
of a magnetometer data at a given moment (time
interval). This indicator allows to measure the level
of geomagnetic activity at various observatories on
a single scale regardless the amplitude of distur-
bances, common to a given observatory. This am-
plitude depends on the latitude where an observa-
tory is located. The largest amplitudes of geomag-
netic disturbances are typical for auroral regions.
The indicator 𝜇 to a certain extent is the analog
of the traditional 𝐾𝑝-index (Figure 9) [Love and
Remick, 2007]. But its widely known disadvantage
is its extremely large 3-hour time interval, within
which the index is calculated. Moreover, the cal-
culation of 𝐾𝑝-index requires preliminary elimina-
tion of regular daily variation from magnetograms,
which is highly labor-consuming and causes delays.
Nowadays there is a demand of operative geomag-
netic indices, calculated with a 1-minute interval
and provided in the internet in quasi-real mode.
The proposed indicator 𝜇 is aimed to overcome the
disadvantages of the traditional 𝐾𝑝-index. Calcu-
lation of 𝜇 is algorithmized and may be executed
in operative and automated mode with the same
frequency as the initial data are acquired.
Let’s consider an example of geophysical moni-

toring of geomagnetic nature. Measures of activity
𝜇 in this case play the same role as the indices

of geomagnetic activity. Let us compare 𝜇 with a
widely known 𝐾𝑝-index.
The magnetic conditions in the network within 3

hours according to𝐾𝑝-index and 𝜇 are presented in
Figure 10 respectively horizontally and vertically.
Using the Kolmogorov’s mean a new system of

coordinates is constructed. In its first (third) quad-
rant interesting (uninteresting) events, according
to 𝐾𝑝-index and 𝜇, are located. The fourth quad-
rant contains events, which are interesting accord-
ing to 𝐾𝑝-index and uninteresting according to
𝜇. The opposite quadrant is untrivial, it contains
events, which are interesting according to 𝜇 and
uninteresting according to 𝐾𝑝-index (Figure 10).
Indeed, let’s consider one of the events from the

second quadrant and compare them with the cor-
responding intervals of the magnetic records, reg-
istered at stations that perform monitoring (Fig-
ure 11).
It is apparent that within the first hour all of the

considered stations register a certain event. It was
detected by the index based on measure of activity,
and missed by the standard 𝐾𝑝-index.

Conclusion

The goal the authors pursued in this paper is to
give a brief formal mathematical description of the
Discrete Mathematical Analysis (DMA) approach.
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Figure 10. Condition of the INTERMAGNET network.

We formally described the basis of mathemati-
cal concepts which form the apparatus of DMA:
proximate–remote, dense–non-dense, continuous–
discontinuous, clusters, and trends. A more de-
tailed description and examples of DMA-application
for geological and geophysical tasks (monitoring
of geophysical processes, seismic zoning, analysis

Figure 11. Intervals of the magnetic satation records.

of magnetograms) can be found in the following
papers: [Agayan et al., 2014; 2016], [Bogoutdi-
nov et al., 2010], [Gvishiani et al., 2008a; 2008b;
2010; 2013a; 2013b; 2016], [Mikhailov et al., 2003],
[Sidorov et al., 2012], [Soloviev et al., 2012a; 2012b;
2013; 2016], [Zelinskiy et al., 2014], [Zlotnicki et al.,
2005].
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