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Growth of the inner core in the mean-field dynamo model
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Application of Parker’s dynamo model to the geodynamo with the growing inner core is
considered. It is shown that decrease of the inner core size, where intensive magnetic
field generation takes place, leads to the multi-polar magnetic field in the past. This
effect reflects the decrease of the region of the effective magnetic field generation. The
process is accompanied by increase of the reversals number and decrease of intensity of
the geomagnetic field. The constraints on the mechanisms of convection in the liquid core
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Introduction

Geomagnetic field, generated by the dynamo process in
the liquid core of the Earth, is a unique source of informa-
tion on the internal structure of the planet. Due to low con-
ductivity of the mantle, magnetic field penetrates from the
surface of the inner core to the surface of the planet with-
out significant distortions. The age of the magnetic field,
estimated as 3.5Gy [Tarduno at al., 2010], see also review
[Reshetnyak and Pavlov, 2016], is compared to the age of
the Earth itself 4.5Gy. So far during the “magnetic” epoch
the liquid and solid cores of the Earth evolved, it is tempt-
ing to detect variations of the geomagnetic field, concerned
with the evolution of the planet. The main reason of such
variations is the formation of the inner core, which effects
the dynamo process at least in two ways.

Firstly, the growth of the inner core can influence on the

magnetic field generation through the pure geometrical fac-

tor, which has no relation to the physical mechanisms of

convection. The growth of the inner core leads to decrease

of the liquid core, and to increase of the radius of the Taylor

cylinder (the imaginary cylinder elongated along the axis of

rotation and surrounding the inner core). So far the geo-

magnetic dipole between the reversals wanders inside of the

cylinder, one can expect increase of the virtual geomagnetic

pole fluctuations relative to the axis of rotation during the

evolution of the Earth.
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The other reason is existence of two mechanisms of convec-

tion simultaneously: the thermal convection, concerned with

the radioactive heating, and compositional convection, which

is associated with the growth of the inner core. The latter

mechanism is supposed to be more efficient, because the heat

is injected at the bottom of the liquid core. Compositional

convection can produce three times more energy than the

thermal convection. In the thermal convection the radioac-

tive heat sources are distributed smoothly in the bulk of

the liquid core. It is quiet different from the compositional

convection, where latent heat sources, concerned with crys-

tallization process at the surface of the inner core, are local-

ized at the inner core boundary. The shift of this boundary,

where maximum of the magnetic field generation is observed

in 3D models, relative to the observer at the surface of the

planet, can change spatial spectrum of the observable mag-

netic field.
These more or less evident assumptions were already

tested in some 3D models, however the obtained conclusions
still can not provide the robust scenario of the core evolution,
supported by the paleomagnetic measurements [Reshetnyak
and Pavlov, 2016]. There are at least two reasons of such
failure.

The first one is that geomagnetic field indeed does not
reveal significant changes during the supposed period of the
inner core formation 1-2Ga. The other point is that 3D
models, due to its complexity, provide too short time series,
which are not sufficient for the evolutionary processes treat-
ment. Moreover, having deal with the 3D models, one sub-
stitutes the black box of the MHD system in the core, with
the another one, named the non-linear system of 3D partial
differential equations, which can be solved only numerically.
Note that the parameters used in the models in its turn are
very far from that ones in the core. Even if the model cor-
responds to observations, the level of understanding of the
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physics of such a complex system is not satisfactory. Inter-
pretation of the dynamo process using the simpler and more
obvious scenarios is appreciated.

It motivates us to use further the simpler, 2D Parker’s
dynamo model [Parker, 1955], which was developed latter
to the mean-field dynamo theory [Krause and Rädler, 1980].
The energy sources: the 𝛼-effect and differential rotation,
are taken from 3D simulations, and can vary with change
of the inner core’s size in the prescribed manner. It is also
considered the different spatial distributions of the 𝛼-effect
and differential rotation, which depend on the intensity of
the heat sources in the core. As a result we present depen-
dence of the observed at the surface of the core magnetic
field on the radius of the solid core and analyze how the spa-
tial spectrum of the magnetic field varies during the Earth’s
evolution. This analysis helps to distinguish the main fea-
tures of the flows in the liquid core responsible for generation
of the dominant dipole magnetic field in the past.

Dynamo Model

The mean magnetic field B is governed by the induction
equation

𝜕B

𝜕𝑡
= ∇×

(︁
𝛼B+V ×B− 𝜂 rotB

)︁
, (1)

whereV is the large-scale velocity field, 𝛼 is the 𝛼-effect, and
𝜂 is a magnetic diffusion. The magnetic field B =

(︀
Bp, Bt

)︀
has two parts: the poloidal componentBp = ∇×A, whereA
is the vector potential of the magnetic field, and the toroidal
component Bt.

In the axi-symmetrical case the vector potential A and
Bt have the only one azimuthal component in the spherical
system of coordinates (𝑟, 𝜃, 𝜙): A(𝑟, 𝜃) = (0, 0, 𝐴), and
Bt(𝑟, 𝜃) = (0, 0, 𝐵).

The poloidal field can be written in the form:

Bp =

(︂
1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(𝐴 sin 𝜃) , −1

𝑟

𝜕

𝜕𝑟
(𝑟 𝐴) , 0

)︂
. (2)

In terms of scalars 𝐴 and 𝐵 Eq(1) is reduced to the fol-
lowing system of equations:

𝜕𝐴

𝜕𝑡
= 𝛼𝐵 + (V × B)𝜙 + 𝜂

(︂
∇2 − 1

𝑟2 sin2 𝜃

)︂
𝐴

𝜕𝐵

𝜕𝑡
= rot𝜙 (𝛼B+V × B) + 𝜂

(︂
∇2 − 1

𝑟2 sin2 𝜃

)︂
𝐵,

(3)

where the subscript 𝜙 corresponds to the azimuthal compo-
nent of the vector, and 𝜂 is equal to unity.

Eqs(3), solved in the spherical shell 𝑟𝑐 ≤ 𝑟 ≤ 𝑟∘ with
variable 𝑟𝑐, and 𝑟∘ = 1, are closed with the pseudo-vacuum

boundary conditions: 𝐵 = 0, and
𝜕

𝜕𝑟
(𝑟𝐴) = 0 at 𝑟𝑐, and

𝑟∘. The fields are vanishing at the axis of rotation 𝜃 = 0, 𝜋 :
𝐴 = 𝐵 = 0. The simplified form of the vacuum boundary
condition for 𝐴 is well adopted in dynamo community, and
presents a good approximation of the boundary with the

non-conductive medium [Jouve et al., 2008]. The reason
why the vacuum boundary condition is used at the inner
core boundary is concerned with the weak influence of the
inner core on the reversals statistics of the magnetic field
[Wicht, 2002].

In the general case velocity V is a three-dimensional vec-
tor, which depends on 𝑟 and 𝜃. Further we consider only
the effect of the differential rotation, concerned with the 𝜙-
component of V, leaving the input of the meridional circu-
lation (𝑉𝑟, 𝑉𝜃) out of the scope of the paper. The amplitude
of the azimuthal velocity component 𝑉𝜙 = Ω𝑠, where Ω is
the angular velocity of the fluid, and 𝑠 is the distance from
the axis of rotation z, is defined by constant 𝐶𝜔.

The model is closed by the 𝛼-quenching in the local alge-
braic form:

𝛼 = 𝐶𝛼
𝛼∘

1 + 𝐸𝑚(𝑟, 𝜃)
, (4)

where 𝐸𝑚 is the magnetic energy, and 𝐶𝛼 is a constant.
The system (3),(4) was solved using the 4𝑡ℎ-order Runge-

Kutta method, where spatial derivatives in the r.h.s. were
approximated by the second-order central-differences at the
mesh grid (𝑟, 𝜃) (101 × 101). These algorithms resulted in
C++ object oriented code with OpenMP for parallelization.
The post-processor graphic visualization was organized using
the Python graphic library MatPlotlib. All simulations were
done under Ubuntu OS. See the details of the benchmark
[Jouve et al., 2008] in [Reshetnyak, 2014].

To demonstrate dependence of solution of Eqs(3),(4) on
the different parameters the MPI wrapper was used to run
the main program at two cluster supercomputers: Lomonosov
in Moscow State University and at the Joint Supercomputer
Center of RAS. The wrapper called the main program with
the fixed different values of parameters, like radius of the in-
ner core 𝑟𝑐, and amplitudes of the 𝛼- and 𝜔-effects, 𝐶𝛼, 𝐶𝜔,
at the different processors and then gathered all the data at
the end of simulations.

Spatial Distribution of the Fields in
Presence of the Rapid Rotation

In the first approximation effect of rotation results in elon-
gation of all the fields along the axis of rotation. The linear
theory predicts that derivatives of the velocity and temper-
ature fluctuation fields along the axis of rotation is five or-
ders of magnitude smaller than in the perpendicular plane
[Roberts, 1968; Busse, 1970]. The turbulent effects decrease
this difference, leaving it however still substantial. This fea-
ture distinguishes the planetary dynamo from the dynamo in
the galaxies and in the majority of the stars, where rotation
is not so strong. It means that in the considered 2D model
gradients of the prescribed 𝛼∘ and Ω should also reflect this
feature.

This point is very tricky, because the mean-field approach
is based on existence of the intermediate scale, concerned
with the averaging of the turbulent fields. This averaging
leads to the opposite effect, concerned with smoothing of the
sharp gradients of the velocity and temperature fluctuations
fields, which are indeed observed in 3D dynamo models. As
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Figure 1. Meridional sections of 𝛼-effect and angular ve-
locity Ω for the small Rayleigh numbers.

a result the difference between the derivatives of the fields
in 𝑠- and 𝑧-directions in the cylindrical system of coordinate
should substantially decrease.

Having these arguments in mind, only the large-scale fea-
tures of the flow, taken from 3D simulations, should be in-
cluded in the mean-field dynamo models. For the angular
velocity Ω it is dependence only on 𝑠-coordinate, so that
for large 𝑠 Ω > 0 and for small 𝑠 Ω is negative, see, e.g.
[Busse and Simitev, 2008]. As regards to the distribution
of 𝛼 it should change sign at the equator plane and concen-
trate near the Taylor cylinder, where cyclonic convection is
localized [Reshetnyak, 2012].

We start from the more explored to the moment in the
geodynamo regime with the present size of the solid core
𝑟𝑐 = 0.35, and introduce the following proxies to the 𝛼∘-
and Ω-distributions:

𝛼𝐼
0 = ̂︀𝐶𝛼(1− 𝑒𝑟𝑓(1.25|𝑧|))𝑒−𝑆𝑐(𝑠−1.1𝑟𝑐)

2

𝑠 cos(𝜃),

Ω𝐼 = − ̂︀𝐶Ω (1 + 𝑒𝑟𝑓(8(𝑠− 𝑟𝑐))) cos

(︂
𝜋(𝑠− 𝑟𝑐)

1− 𝑟𝑐

)︂
,

(5)

with 𝑆𝑐 = 67, 𝑠 = 𝑟 sin(𝜃), and 𝑧 = 𝑟 cos(𝜃). The positive

constants ̂︀𝐶𝛼, ̂︀𝐶Ω satisfy conditions: the maximal values of
|𝛼𝐼

0|, |Ω𝐼 | are equal to unity.
These distributions, Figure 1, correspond to the strongly

geostrophic state near the threshold of convection generation
(small Rayleigh number), where convection is concentrated
outside of the Taylor cylinder. It appears [Reshetnyak, 2014]
that using these distributions one can generate the Earth-like
magnetic field that resembles the well-known 𝑍-field distri-
butions in Bragisnky’s geodynamo model [Braginsky, 1975].

It is interesting that 𝐵𝑟-component is concentrated inside
of the cylinder, Figure 2, where 𝛼∘ is small. This is the
essentially the non-linear effect, concerned with the small
quenching effect inside of the cylinder and near the inner
core boundary. The total magnetic energy 𝐸𝑚 with the
main contribution from the toroidal field counterpart (see
distribution of 𝐵-component in Figure 2) is smaller inside
of the cylinder, and equal to zero at the boundary due to

Figure 2. Distributions of the radial, 𝐵𝑟, and azimuthal,
𝐵, magnetic field components for the present time radius of
the inner core, 𝑟𝑐 = 0.35.

the boundary conditions. Then, following Eq.(4) one has
smaller 𝛼-quenching in these regions.

On the contrary, the large toroidal magnetic field outside
of the cylinder sweeps out 𝛼 from the region, suppressing
the poloidal field generation.

In other words the specific of our model is that the max-
imum of the poloidal magnetic field is determined by the
intensity of the 𝛼-quenching rather than by the amplitude
of the original 𝛼∘.

If we believe that distributions of 𝛼∘ and Ω follow loca-
tion of the Taylor cylinder then we can extrapolate distri-
butions (5) to the smaller 𝑟𝑐. However this approach leads
to contradiction with the pillar of paleomagnetism that the
geomagnetic field should be dipole. This is demonstrated in
Figure 3, where the gradual increase of the higher harmonics
strength in the Mauersberger spectrum 𝒮(𝑙) with decrease
of 𝑟𝑐 is clearly observed.

The decrease of the dipole is closely related to the geostro-
phic balance in the core. In presence of the geostrophic bal-
ance: the balance of the Coriois force and pressure gradient,
the velocity and temperature fields variations are elongated
along the axis of rotation. Moreover, the magnetic field also
“feels” the geograpical poles, so that the geomagnetic dipole,
as already was mentioned, prefers to stay inside of the Taylor
cylinder. The decrease of the radius of the Taylor cylinder
decreases the scale of the magnetic field, concentrated inside
of the cylinder. As a result the dipole contribution to the
spectrum becomes smaller. This exactly what we observe in
Figure 3.

It is worthy to note that this effect is stronger than the
opposite effect, concerned with the radial decay of the mag-
netic field: the smaller is the inner core, the larger is the
distance from the surface of the core to the inner core bound-
ary, where the magnetic field is strong. Then the ratio of the
dipole component to the other harmonics at the Earth’s sur-
face will increase with increase of the liquid core thickness.
However, as we have just shown, the effect, concerned with
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Figure 3. The normalized Mauersberger spectra for the dif-
ferent radius of the inner core: 𝑟𝑐 = 0.15 (green), 𝑟𝑐 = 0.25
(blue), 𝑟𝑐 = 0.35 (red). The maximal values of the original
spectra before normalization are 0.02, 0.56, 1.3, correspond-
ingly. The flow depends on the inner core radius.

geostrophy, is stronger than the effect, concerned with the
radial decay of harmonics.

There are two ways out of this situation. Of course, it
would be naive to expect now from the paleomagnetic com-
munity estimates of evolution of the Mauersberger spectrum
on the geological times. That is why we can not exclude the
enforce of the higher harmonics in the spectrum in the past
at all. However rejection of the dipole hypothesis of the pa-
leo field leads to the principal impossibility of any useful for
theoreticians mathematical description of the fields spatial
structure. Then it is more instructive to consider how our
model can be modified to adjust the dipole hypothesis in the
past.

Firstly we have to note that we considered the differential
rotation which does not depend on 𝑧 at all. This flow corre-
sponds to the regime with the very small Ekman numbers E,
which is indeed expected in the inner core: E ∼ 10−16. The
increase of E breaks geostrophy and can lead to increase of
the flowing up to the surface of the liquid core magnetic field.
In other words, dependence on 𝑠-coordinate will change to
dependence on 𝑟. This effect can be observed in 3D dynamo
models with moderate Ekman numbers. Recall that in ma-
jority of the dynamo models E is in the range 10−6 ÷ 10−4

that is still quite far from the geophysical values in the liquid
core. In this sense the prescribed geostrophical Ω in our 2D
model can be more realistic. It is important that for the com-
positional convection, where the heat flux, associated with
crystallization, is injected at the inner core boundary. Then,
in presence of the geostrophic state, decrease of 𝑟𝑐 leads to
the decrease of the dipole field contribution. And on con-
trary, when the radial Archimedean force is quite strong in
the thermal convection models, the magnetic field expands
to the surface of the liquid core, increasing the scale. In this
case the dipole field can be quite strong at the surface of the
liquid core even at the small 𝑟𝑐.

Situation is even worth if we take into account that in-
crease of the heat sources leads to the shift of convection

from the part of the liquid core outside of the Taylor cylin-
der to its inner part [Glatzmaier and Roberts, 1995]. If for
the present size of the inner core such convection still gener-
ates the dipole field, then for the smaller value of 𝑟𝑐 there is
no chance for the dipole magnetic field. The same is for the
thermal convection with the prescribed temperatures at the
inner core and mantle boundaries, where the density of the
heat flux 𝑞 ∼ 1/𝑟. For this model generation of the magnetic
field will be more effective near the inner core boundary,
where 𝑞 is larger.

Summing up, we have that localization of the magnetic
filed generation near the liquid core in presence of the geostro-
phic balance leads to decrease of the spatial scale of the mag-
netic field at the liquid core surface. It means that thermal
convection with the radioactive heating suites better to the
dipole filed generation in the past than the compositional
convection, or the thermal convection model with the fixed
temperatures at the boundaries.

We note that only taking into account of the inner core
evolution allows to come to such a conclusion and reject some
models, which give similar configurations of the magnetic
field at the surface of the Earth for the present value of the
inner core radius 𝑟𝑐.

Besides the mentioned above increase of the scale, pro-
duced by the radioactive heating, there is the another phys-
ical effect, which leads to the same result. The majority of
the modern 3D dynamo models is based on the Boussinesq
approximation of convection. It means that effect of com-
pressibility is taken into account only for derivation of the
Archimedean forces. Then, the kinetic helicity, 𝜒 = V·rotV,
closely connected to the 𝛼-effect, is generated near the
boundaries of the liquid core, and in the vicinity of the Tay-
lor cylinder. For the realistic values of Ekman number the
scales of the boundary layers, where helicity of the incom-
pressible fluid is generated, are too small to generate the
magnetic field. It means that extrapolation of helicity pro-
files to the realistic E can lead to the break of the magnetic
field generation at all.

However, in the compressible fluid kinetic helicity can gen-
erate in the bulk of the volume due to expansion/compression
of the rotating flowing up/down fluid particle. This effect
leads to increase of the 𝛼-effect spatial scale. The drop of the
density 𝜌 from the inner core boundary to the core-mantle
boundary is 20%. This is quiet enough for discernible con-
tribution to the total 𝛼-effect [Reshetnyak, 2012]. Note that
this effect has no connection to the inner core at all. In
another words, we assume that for the state with the small
inner core, where the drop of 𝜌 is even larger than for the
present time, effects of compressibility should be taken into
account to provide generation of the large-scale magnetic
field in Parker’s dynamo model.

Fortunately, having deal with the mean-field dynamo
model we can drop out some details of the flow on the scales,
including the inner core size in the past, leaving the geostro-
phy of the flow as the main feature. Further we disconnect
the localization of the 𝛼-effect and differential rotation from
the boundary of the Taylor cylinder. Then, growth of the in-
ner core will lead only to the increase of the bulk of the core,
but will not change substantially distributions of the energy
sources in the model. Such assumptions are valid to the
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Figure 4. The normalized Mauersberger spectra for the dif-
ferent radius of the inner core: 𝑟𝑐 = 0.15 (green), 𝑟𝑐 = 0.25
(blue), 𝑟𝑐 = 0.35 (red). The maximal values of the original
spectra before normalization are 0.5, 2.9, 2.6, correspond-
ingly. The case with the reduced dependency on the inner
core radius.

compressible fluid and thermal convection with distributed
over the liquid core heat sources.

To explore this possibility we consider the smoother distri-
bution of 𝛼∘, see Eqs(5), with 𝑆𝑐 = 17, and fixed 𝑟𝑐 = 0.35,
even if the volume of the liquid core in Eqs(3) was changed.
For the angular velocity Ω we used the following dependence
Ω𝐼𝐼 = −𝐶Ω cos(𝜋𝑠), where we kept geostrophy, i.e. depen-
dence on 𝑠 coordinate only, and the change of Ω sign from
negative to positive with increase of 𝑠.

These assumptions let to generate the dipole magnetic
field, see Figure 4, which is larger at 𝑟𝑐 = 0.25, than in the
present time, as well as at the very small 𝑟𝑐 = 0.15.

As it follows, the ratio of the dipole field to the higher
harmonics is the same for the range 𝑟𝑐 = 0.25 ÷ 0.35, but
for the smaller 𝑟𝑐 dipole is already comparable to the oc-
tupole, 𝑙 = 3. The total magnetic field at the small 𝑟𝑐 is
substantially weaker than in the present time.

In spite of the fact that our distributions of 𝛼∘ and Ω
do not depend on 𝑟𝑐 explicitly, model feels the inner core
due to the imposed vacuum boundary condition at the inner
core boundary. As we already mentioned above, this trick
leads to the effective increase of the poloidal magnetic field
generation at the boundary, clearly observed in Figure 5. We
can associate this effect with the release of the latent heat,
as well as with the enhanced viscous and Maxwell stresses
at the inner core boundary in the more complex dynamo
models.

We conclude that using this technique we provided the
large-scale distributions of 𝛼∘ and Ω in Eqs(3), took into
account the growth of the inner core in the model, and ob-
tained the dipole field configurations of the magnetic field
for all 𝑟𝑐.

The Random 𝛼-effect

To the moment we did not discuss the time evolution of
the magnetic fields, considering its spatial distributions only.
As usually, the dipole magnetic fields in the mean-field model

Figure 5. Distributions of the radial, 𝐵𝑟, component of the
magnetic field for the inner core radius 𝑟𝑐 = 0.15, 0.25, and
0.35.

with geostrophic 𝛼∘ and Ω are stationary. Increase of the
energy sources leads to the switch from the dipole magnetic
field to the multi-polar state, with already fluctuating, and
may be reversing, dipole. Even if we find the transition re-
gion in the phase space, where the dipole’s magnitude is still
comparable to the other harmonics, the volume of this phase
space will be very small, and it would be difficult to justify
correspondence of exactly these parameters to the geody-
namo regime. In other words, the sharper is the boundary
between two states, the less is the probability of switch be-
tween these states.

Anyway, if we consider such fluctuating regimes, evolution
of the magnetic dipole is very far from that one, observed
in the geodynamo. The mean-field models demonstrate os-
cillations of the dipole, which resemble superposition of the
periodic harmonics. On contrary, paleomagnetic observa-
tions point at existence of two attractors of the magnetic
dipole at the geographic poles, and the quick transitions of
the dipole between attractors: the reversals. Between the
reversals there is the so-called regime in oscillations, where
the dipole wanders around the pole, without change of the
sign. The 3D dynamo models can indeed produce similar to
observable behavior of the magnetic dipole, see, e.g., review
[Roberts and King, 2013], but the mean-field models require
additional modification.

The hint is that in 3D models there is the turbulence,
which triggers the large-scale fluctuations. The mean-field
dynamo models are too simple nonlinear systems to generate
the small-scale fluctuations, and these fluctuations should be
injected into the system by hand. It means that averaged
quantities, used in the mean-field dynamo models, like 𝛼-
effect and differential rotation, must fluctuate.

Peter Hoyng was the first one who used these ideas in
the solar dynamo [Hoyng, 1993], where minima of the solar
activity are associated with the breaks of the dynamo cycle,
caused by such fluctuations. Latter, stochastic 𝛼-effect was
used in the Galerkin’s dynamo models [Sobko et al., 2012],
where the geomagnetic dipole evolution was very similar to
that one in the paleomagnetic records. The further analysis
of the phase-space of 2D Parker’s models, using the finite-
differences [Reshetnyak, 2016], revealed some restrictions on
the form of fluctuations of 𝛼-effect. It looks attractive to use
further the random 𝛼-effect and explore how the growth of
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Figure 6. Evolution of the magnetic dipole 𝑔01 with random
𝛼 for 𝜎 = 0.7, and different radius of the inner core: 𝑟𝑐 =
0.35 (upper), 𝑟𝑐 = 0.25 (middle), 𝑟𝑐 = 0.15 (lower).

the inner core effects on the reversals statistic.
To introduce fluctuations of 𝛼-effect we modify Eq. (4) as

follows:

𝛼 = 𝐶𝛼
𝛼∘ (1 + 𝜖)

1 + 𝐸𝑚(𝑟, 𝜃)
, (6)

where 𝜖 is the random normal variable (the same for all the
grid points) with zero mean value and standard deviation
𝜎. The new fluctuation, introduced by 𝜖, was applied with
the time step 𝜏𝑓 = 0.1. Then, after it, during the time 𝜏𝑓 𝛼
depended on the magnetic energy 𝐸𝑚 only.

We started from the state with the core size 𝑟𝑐 = 0.35 and
the varied amplitudes of the noise: 𝜎 = 0.3, 0.5, 0.7, 0.9.
The initial condition was taken from the solution, obtained
in the previous Section. The first reversal was observed at
𝜎 = 0.5. The further increase of 𝜎 resulted in the gradual
increase of the reversals number. For all 𝜎 the magnetic field
was dipole.

Then we performed similar simulations for the other two

cases with 𝑟𝑐 = 0.15 and 0.25. At the case with the small
inner core, 𝑟𝑐 = 0.15, for all 𝜎 the leading harmonic in the
spatial spectrum was 𝑙 = 3 that corresponds to the anti-
symmetric to the equator plane configuration, but with the
smaller scale than for the dipole field, 𝑙 = 1.

We conclude that turbulent fluctuations in the liquid core
lead to the decrease of the magnetic field scale at the surface
of the core. Note that we considered only the dipole-like
fluctuations of 𝛼 in Eq. (6). Introduction of the independent
fluctuations at the every grid point, immediately leads to the
pike in the spatial spectrum at the small scales even for 𝑟𝑐 =
0.35, see [Reshetnyak, 2016]. This effect is concerned with
the absence of the inverse cascade of the magnetic energy in
Parker’s equations Eq. (3).

The evolution of the magnetic dipole 𝑔01 for 𝜎 = 0.7 with
varying 𝑟𝑐 is presented in Figure 6. For 𝑟𝑐 = 0.25 the ampli-
tude of dipole fluctuations is slightly increased compared to
the present time regime. However the number of the rever-
sals changed only from 5 to 6, the number of the excursions
increased in more extent. In the both cases the dipole com-
ponent is the strongest one. Obviously, the length of the
time interval is too short to insist on any additional signifi-
cant distinctions of the cases with 𝑟𝑐 = 0.25 and 0.35.

The third case with 𝑟𝑐 = 0.15 is very different from the
previous two. As was already mentioned, the dominating
harmonic is 𝑙 = 3. As regards to the dipole’s behavior,
it spends more time in the low latitudes with the short
blowouts to the poles. This behavior is natural to the state,
where the harmonic depends strongly on interaction with
the large number of the other harmonics. The memory on
the attractors at the poles is lost. Thus, fluctuations causes
transition from the dipole magnetic field configuration to the
octupole field at the small 𝑟𝑐. In other words, accordingly
to this mean-field dynamo model, the dipole configuration
of the magnetic field in the past, if it did exist, was unstable.

Conclusions

We tried to present the consistent scenario of how infor-
mation on the physical fields, obtained from the modern 3D
dynamo simulations in the liquid core, could be included to
the mean-field geodynamo model. This approach suggests
that we distinguish the principal effects from the more com-
plex models and then test them in the simpler ones. The
correspondence of the obtained results to the 3D simulations
and our expectations (based on some general knowledge on
the system) let us to judge whether our suggestions were
right or wrong.

Following this way we come to the quiet interesting phe-
nomenon, concerned with the decrease of the magnetic field
spatial scale in the past, caused by the small inner core. We
emphasize that to test this effect in the 3D dynamo models,
the low Ekman number regime is required.

Moreover, the majority of the dynamo models, which in-
clude sometimes the very different sources of the energy, nev-
ertheless, have the same size of the inner core (equal to the
present core’s size). The latter obstacle lets to generate the
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dipole magnetic field regardless to the physical mechanism
of convection.

On contrary, in the mean-field model, where the geostro-
phic balance is prescribed, only for the comparable size of the
inner core to the modern one, the magnetic field’s spectrum
is dipole and stable to the turbulent perturbations. The
decrease of the inner core’s size from 𝑟𝑐 = 0.35 to 0.15 leads
to the dipole magnetic field as well, which is however already
unstable.

It is worthy to note that dipole field generation is sup-
ported by the “volume” effects, like compressibility of the liq-
uid, homogeneously distributed radioactive heating sources,
and can be violated by the processes at the smaller scales:
compositional convection at the stage of the small inner core,
viscous and magnetic stresses at the inner core boundary.

So far the modern 3D dynamo models still lead to the
quite contradictory scenarios, we believe that these sugges-
tions will attract attention of the dynamo community and
would be carefully checked with the higher level of accuracy,
where it is possible.
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