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Abstract. The inverse solution of the 1D
Parker dynamo equations is considered. The
method is based on minimization of the
cost-function, which characterize deviation of
the model solution properties from the desired
ones. The output is the latitude distribution of
the magnetic field generation sources: the α-
and ω-effects. Minimization is made using the
Monte-Carlo method. The details of the
method, as well as some applications, which can
be interesting for the broad dynamo community,
are considered: conditions when the invisible for
the observer at the surface of the planet toroidal
part of the magnetic field is much larger than
the poloidal counterpart. It is shown that at
some particular distributions of α and ω the
well-known thesis that sign of the
dynamo-number defines equatorial symmetry of
the magnetic field to the equator plane, is
violated.
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It is also demonstrated in what circumstances
magnetic field in the both hemispheres have dif-
ferent properties, and simple physical explanation
of this phenomenon is proposed.

1. Introduction

The observed magnetic field in the various astrophysi-
cal objects, like planets, stars and galaxies, is a product
of the dynamo mechanism. The dynamo theory, which
first success was concerned with the development of the
mean-field dynamo [Krause and Rädler, 1980], to the
present time transformed to the new branch of physics,
and combined recent knowledges on the structure and
evolution of the objects, fluid dynamics, supercomputer
modeling. To now it can describe many typical features
of the magnetic field, known from observations [Rüdi-
ger et al., 2013], [Roberts and King, 2013].

As it usually happens during the development of the
new theory, the first approach is the direct solution of
the model equations with prescribed parameters, which
are chosen due to some a priori information on the sys-
tem. Whether it leads to the acceptable correspon-
dence of the model with the observations, the fine tun-
ing of the model parameters starts. This is the subject



of the inverse problem, where basing on the observa-
tions, and usually on the fixed equations, the governing
parameters of the model are looked for.

There are different ways how it can be done. Here
we consider approach, where the desired parameters
are the forms of the spatial distribution of the energy
sources in the dynamo equations. We limit our study
to the simple, but well-adopted in the dynamo commu-
nity, 1D Parker’s equations with the algebraic quench-
ing, which are traditionally used in the planetary, galac-
tic, and stellar dynamo applications [Rüdiger et al.,
2013]. These equations describe evolution of the axi-
symmetric mean magnetic field, which depends on the
latitude ϑ. The sources of the energy, the α- and ω-
effects, are the prescribed functions of ϑ. The aim is
to find such distributions of α and ω in ϑ, which sat-
isfy some restrictions on the simulated magnetic field.
The measure of deviation of the model from the de-
sired state is characterized by the cost-function Ψ. To
minimize numerical expenses we decompose α and ω in
the Fourier series in the polar angle θ = π/2− ϑ, and
rewrite Ψ in terms of the spectral coefficients, where
only the first N modes are used. Minimization of Ψ,
which can have quite complex structure, should be done
using some robust method. So far Ψ usually has lo-



cal minima, we used modification of the Monte-Carlo
method, the good candidate for the parallel simulations
at the cluster supercomputer systems, used in the work.

Below we consider some examples, which demon-
strate implementation of the method, and show how
information on the spatial spectrum of the magnetic
field, its periodicity, ratio of the poloidal and toroidal
magnetic energies can be used for the estimates of the
optimal profiles of α and ω. We stress attention that
the inverse approach in dynamo applications is very
rare, compared to the direct simulations, and only a
few papers in this direction exist.

2. Dynamo in the Spherical Shell

We consider simple dynamo model in the spherical shell
[Ruzmaikin et al., 1988]:

∂A

∂t
= αB + L̂ A

∂B

∂t
= −Ω

∂

∂θ
A + L̂ B ,

(1)

where A and B are the azimuthal components of the
vector potential A, and magnetic field B = rot A, α(θ)



is the α-effect; Ω(θ) is the differential rotation, and L̂ =

η
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sin2 θ

)
is the diffusion operator

with η for the magnetic diffusion. System (1) is solved
in the interval 0 ≤ θ ≤ π with the boundary conditions
B = 0 and A = 0 at θ = 0 and π.

To exclude the exponentially growing solution of
Eqs(1) the α-quenching is used. The form of quench-
ing depends on the particular objects. In planetary and
galactic dynamos the simple algebraic form is accept-
able. In the solar dynamo the dynamical quenching is
usually used, see for details [Kleeorin et al., 1995].

Here we consider the local form of the algebraic α-
quenching:

α(θ) =
α◦(θ)

1 + Em
, (2)

with the magnetic energy Em(θ) = (B2
r + B2)/2, and

radial component of the magnetic field

Br =
1

sin θ

∂

∂θ
(sin θA).

3. Inverse Problem

The direct solution of the system (1),(2) with the pre-
scribed profiles of α◦(θ) and Ω(θ) gives B(θ, t), which



can be compared with the observations. The disad-
vantage of the direct problem is a pure knowledge on
α◦(θ) and Ω(θ). Thus, in the planetary dynamo these
profiles are known only from 3D simulations, see, e.g.,
[Reshetnyak, 2010]. For the solar dynamo [Belvedere
et al.,2000] information on Ω comes from the helioseis-
mology, however α-effect is still varies from model to
model. In galactic dynamo situation is similar to the
solar dynamo, that is why the simplest models of α◦
are still so popular. These reasons motivate the inverse
problem approach, where different profiles of α◦(θ) and
Ω(θ) are tested on observations.

Let introduce the cost-function Ψ(B, Bo), where B
is the model magnetic field, and Bo is the observable
one. Then Ψ has at least one minimum at B = Bo.
The proper choice of Ψ, and sufficient observations
Bo make this minimum global. Usually, observations
do not cover the whole domain of the magnetic field
generation, either one observes such properties of the
magnetic field that magnetic field can not be recovered
in the unique way. Then Ψ has local minima as well,
and for minimization of Ψ one requires special efficient
methods, see review in [Press et al., 2007].

The next step is to simplify the problem and consider
only the large-scale features of profiles, e.g., the first



Nα, NΩ Fourier harmonics in θ:

α◦ =

Nα∑
n=1

Cα
n sin(2θn), Ω =

NΩ∑
n=0

CΩ
n cos(2θn).

Then, the problem reduces to the search of such Cα

and CΩ that Ψ(Cα, CΩ) has minimum (maybe local).
In general case, study of the sequence of minima, ob-
tained during simulations, is interesting too.

The numerical details of the direct solver, based
on the central 2nd -order finite-difference approxima-
tion of the spatial derivatives, and 4th-order Runge-
Kutta method for integration in time, are described
in [Reshetnyak, 2014]. The direct C++ solver was
wrapped, using MPI interface, so that at each com-
puter node the direct problem (1),(2) for the different
(Cα, CΩ), given by the random generator, was solved.

The random Gauss generator, with the mean value,
equal to the previous best choice, and standard devia-
tion 3σ, generates set of (Cα, CΩ). It is supposed that
(Cα, CΩ) should be in the fixed region. After selection
of (Cα, CΩ) at the current iteration step, which corre-
sponds to the minimal Ψ, the new (Cα, CΩ) were gen-
erated, and then the next iteration started. The shift of
the mean value of (Cα, CΩ), which is optional, helps
to increase convergence of the process. This method is



modification of the Monte-Carlo method, see the basic
ideas in [Press et al., 2007].

To solve equations at Lomonosov’s supercomputer
in Moscow State University and the Joint Supercom-
puter Center of RAS, N = 101 grid points for the
spatial approximation, the time step τ = 10−5, and
N computer nodes from 10 to 100 for parallelization
were used. Usually, number of iterations was less than
10, and depended on N . Application of MPI and clus-
ter computers for 1D problem is not crucial, but it will
be of great importance for the 2D code (with radial
dependence), which is under development now.

Further we consider some particular forms of Ψ and
discuss the resulted profiles of α◦(θ) and Ω(θ) in de-
tails.

4. Ratio of the Poloidal and Toroidal

Magnetic Energies

The measure of intensity of generation sources in (1) is
the so-called dynamo-number, defined as:

D =
||α◦|| ||Ω|| L3

η2
, where L = π is the spatial scale,

and ||.|| is the norm of the physical quantity, discussed



below. Here we consider how solution of (1),(2), with
fixed ||α◦|| and ||Ω||, depends on the forms of profiles.

Having in mind that the both quantities α◦, Ω, can
change the sign, we introduce the following definitions

of norms: ||α◦|| = π−1
π∫
o
|α◦| sin θ dθ, and ||Ω|| =

π−1
π∫
o
|Ω| sin θ dθ. It would correspond to the classical

definition of the dynamo number with the fixed ampli-
tudes of α and Ω for the uniform profiles.

We look for such solutions of (1), (2), which for the
fixed ||α◦||, ||Ω||, have minimal, either maximal ratio
R of the poloidal ET

p = B2/2 and toroidal ET
p = B2/2

magnetic energies.
So far in many astrophysical applications only the

one component of the magnetic field (poloidal or toroi-
dal) can be observed, estimate of the whole magnetic
energy Em = ET

m (1+R) can vary from model to model,
and amplitude of its variations is the subject of active
debates [Brandenburg and Subramanian, 2005].

Simple analysis of (1),(2) leads to the following pre-
dictions:



R =


||α◦||
||Ω||L

, Em � 1

η2

||Ω||2L4
, Em � 1,

(3)

that follows to that R is defined by ||α◦|| and ||Ω||.
Our aim is to find dependence of R on these profiles.

Let introduce the cost-function Ψ = 1 − e−R, and
find (Cα, CΩ), which extremum of Ψ. Latitude distri-
butions of α◦ and Ω for the four cases Nα = NΩ = M
with M = 2 ... 5, and ||α◦|| = 102, ||Ω|| = 102, are
presented in Figure 1 and Figure 2.

Firstly note that some details do depend on M . This
is natural for the small M . However usage of the large
M would be inconsistent with the basics of the mean-
field dynamo, where the large-scale fields are consid-
ered. In other words, the number of harmonics M
should be much less than the number of the grid points
N in the numerical scheme for Eqs(1). It means that
here we discuss only the large-scale trends in the model,
and they do exist.

Before to start the analysis of Figure 1 and Fig-
ure 2, note that minimal (Rmin ∼ 10−4) and maximal
Rmax ∼ 1 correspond to the different levels of the total



Figure 1. Latitude dependence of α◦, Ω, and their
product α◦Ω for minimal Ψ.



Figure 2. Latitude dependence of α◦, Ω, and their
product α◦Ω for maximal Ψ.



magnetic energy Em: for Rmin one has Em ∼ 103, and
for Rmax – Em ∼ 1. In agreement with estimate (3),
the case Rmin corresponds to Em � 1. On contrary, in
the case Rmax , by some reasons, there is suppression
of the total magnetic field generation.

Following further note that due to our normalization,
amplitudes of α◦, and Ω, see Figure 1 and Figure 2, do
not demonstrate significant differences. But as was al-
ready mentioned before, the measure of the field gener-
ation is the product D. And this quantity does demon-
strate the different behaviour for two branches. For
Rmin (large Em) there is only one extremum of α◦Ω in
the hemisphere. This helps to generate the large-scale
magnetic field.

For Rmax (small Em) the product D oscillates in θ
coordinate. The scale of the fields is smaller than in
the case of Rmin, and as a result, the magnetic diffu-
sion is larger. Whether for Rmin for all M , the leading
harmonic for Br is stable quadrupole (Legendre poly-
nomial with l = 2), then for Rmax during the time
solution switches from l = 1 (dipole) to higher orders:
even to l = 10 at M = 5. So far the amplitudes of
α◦ and Ω are of the same order in the both cases, dif-
ference in R is a product of low correlation in space
of α◦ and Ω, as well as of the energy sources with the



generated magnetic field. The first option is shown in
Figure 1, where the maximum of the product near the
equatorial plane is clearly pronounced. On contrary,
this correlation is small in Figure 2. It supports sug-
gestion that localizations of the both energy sources
(α◦ and Ω) in the same place helps to the large-scale
magnetic field generation.

The test on the field configurations reveals that for
Rmin the both components of the quadrupole magnetic
field have maximum at the equator, so that in that
region the products of the magnetic field components
and α◦, Ω are large, and as a result, the magnetic field
generation is enhanced.

For the case Rmax correlation between the mag-
netic field and energy sources is weak, and efficiency of
the dynamo mechanism is small. Situation can change
if the meridional circulation, providing transfer of the
magnetic field from one region of generation to the
other, will be taken into account. Then effective gen-
eration of the magnetic field with the different local-
izations of α◦ and Ω is possible.



5. Pure Dipole and Non-dipole Solutions

The another prediction of the linear analysis of Parker
equations with simple forms of α◦ and Ω is that alter-
nation of sign D leads to the change of the symmetry
of the leading mode: the dipole mode switches to the
quadrupole, and vice versa. This change can also be
accompanied with transition from the stationary to os-
cillatory regimes. Using our approach we test whether
this prediction is valid for complex forms of α◦ and Ω
in the non-linear regime.

Let introduce the cost-function Ψ = 1− e
−g 2

1 /
11∑
l=2

g 2
l

,
where gl are the spectral coefficients in decomposition
on the Legendre polynomials. The same norms ||α◦||
and ||Ω||, as in the previous section, were used. Min-
imum of Ψ corresponds to the non-dipole configura-
tion, and maximum limits to the pure dipole field, re-
spectively. As we will see, the two groups with dipole
(l = 1) and non-dipole (l > 1) configurations will dom-
inate.

The four runs with M = 2 ... 5 for minimal and maxi-
mal Ψ were done. For maximal Ψ the stationary dipole
solution was observed for all the runs. The toroidal
energy was Em ≈ 650, and the poloidal one was two



orders less. Exception was the case with M = 5 with
ET
m ≈ 100, and R ≈ 0.1.
The regimes with minimal Ψ demonstrated various

behaviour in time. Cases with M = 2, 4 were the
stationary quadrupoles with R ≈ 0.1 and 0.01, and
Em ≈ 900, 40, respectively. In the case M = 3 we
got R ≈ 1, Em ≈ 10. The dominant oscillatory mode
was gl = 6. The last stationary regime with M = 5
corresponded to gl = 4.

The visual analysis of product α◦Ω does not reveal
any significant differences between the branches of the
minimal and maximal Ψ. To test whether the sign D

plays the role, we calculated integrals
π/2∫
0

α◦Ω dθ, for

Ψmin: 4.3 104, 2.7 104, -4 103, -2 104, and for Ψmax :
3.4 104, 3.2 104, 2.1 104, -5 103. As we can see, the
sign of the integral does not influence on whether solu-
tion is dipole, either it is quadrupole. Moreover, there
is no correlation of sign of D with the symmetry of the
magnetic field over the equator plane in the non-linear
regime. This result demonstrates once more how pre-
dictions of the linear analysis should be used carefully
in the saturated states.



6. Dynamo-wave Through Equator

The asymmetry of the magnetic fields over the equator
plane is well-known to observers. In geomagnetism this
problem was discussed in [Gubbins et al., 2000], where
the idea of the interplay of the dipole and quadrupole
modes was proposed. These two modes have similar
thresholds of generation and its superposition can en-
force the total magnetic field in one hemisphere, and
weaken it in the other one. The paleomagnetic records,
often based on the assumption of the axial dipole, can
not exclude this possibility even for Phanerozoic.

In the solar dynamo asymmetry presents at least in
two forms: the difference between the magnetic fluxes
from two hemispheres is finite, and can change the sign
in time [Knaack et al., 2004]. The other remarkable
phenomenon is that during the Maunder minimum in
the 17th century more than 95% of the sunspots were
located in the southern hemisphere of the Sun [Ribes
and Nesme-Ribes, 1993].

Another example of the break of the magnetic field
equatorial symmetry demonstrates Mars’s crustal field
[Stanley et al., 2008]. This field is associated with
the internal magnetic field generated by the dynamo
mechanism in the past.



The equatorial asymmetry of the magnetic field is
allowed by the dynamo theory as well. The 3D dynamo
simulations can reproduce this phenomenon for the par-
ticular set of parameters as for the spherically sym-
metrical boundary conditions [Grote and Busse, 2000],
[Busse and Simitev, 2006], [Landeau and Aubert,
2011], as well as for the heterogeneous heat flux at
the outer boundary of the spherical shell [Stanley et
al., 2008], [Amit et al., 2011], [Dietrich and Wicht,
2013].

It should be noted that possibility of such asymme-
tries is also interesting from the general point of view.
It motivates us to use the inverse approach to test this
phenomenon at the simple dynamo-model.

In assumption that dynamo wave, say for the field A,
is monochromatic, its phase velocity is VA = A′t/A

′
θ.

Information on VA can be used to distinguish between
the two cases: the wave, which propagates through the
equator plane, either it vanishes at the plane, and then
recovers with the opposite sign in the second hemi-
sphere1.

The mean value of VA in the equatorial band ϑ =
1The third possibility, when the wave is reflected from the equa-

tor plane, is not supported by the observations.



±ϑb is 〈VA〉 =
ϑb∫
−ϑb

VA dϑ. In assumption, that the

band is narrow enough, so that VA changes (if does)
the sign only at the equator, the normalized quantity

F = 〈VA〉 /
〈∣∣∣VA

∣∣∣〉 ranges in the interval [0, 1]. The

case F = 0 corresponds to the vanishing wave at the
plane ϑ = 0. The second extreme case is |F| = 1,
when VA has the same sign over the whole band.

The proposed cost-function has the following form:

Ψ =
1

2

(
e−|F| + e−G

)
. (4)

The first term in the sum in (4) corresponds to the
described above restriction on the wave behaviour in
the band. The second term helps to filter out the non-
oscillatory solutions:

G =
f1

f1 + f2
, f1 = Em − Em, f2 = Em,

where the overline means averaging over the whole
space and time. The case with G � 1 corresponds to
the small amplitude oscillations, compared to the mean
level of Em. We do not interesting in this regime. The
case with G ∼ 1 corresponds to the large oscillations:
e.g., for Em = sin2(νθ), and any integer ν, G ≈ 0.68.



The largest F and G provide minimum of Ψ in (4).
The simulated magnetic field, see the butterfly di-

agrams in Figure 3, demonstrate the quite different
behaviour in the northern and southern hemispheres.
In the northern hemisphere it consists of two kinds
of waves, which travel to the poles at the high lati-
tudes, and from the poles to the equator in the band
ϑ = ±π/4. There are periodic reversals of the mag-
netic field, which correspond to the change of the sign
of Br .

On the contrary, in the southern hemisphere the
main part of the magnetic field is constant in time.
The poloidal field Br is concentrated near the pole,
and maximum of the toroidal field B is shifted to ϑ ≈
−π/3.

This quite strange configuration of the magnetic field,
at least compared to the usual field states, corresponds
to the class of the hemispherical dynamo, mentioned in
the beginning of the section. Note that we did not use
any imposed asymmetry in the model, and this result is
the intrinsic property of the model, as it was discovered
in some 3D simulations.

Returning to the way how we get this solution, we
remind that the crucial point was selection of regimes
with the non-zero mean phase velocity VA of the radial



Figure 3. The butterfly diagrams for B , Br components
of the magnetic field, and phase velocity VA of the poloidal
magnetic field for M = 2 and ||α◦|| = |Ω|| = 50.



magnetic field in the equatorial band, see Figure 3.
There are waves of VA, traveling from the north pole
to the southern, with the constant magnitude, except
the region near the equator plane, where VA is small.
If resolution of observations is pure, then it seems that
the dynamo wave penetrates free through the equator
plane from one hemisphere to the other. The direction
of this wave changes in time, however the mean value
of VA over the time and space domain in Figure 3 is
not zero. It is this deviation from the zero value the
cost-function (4) detected.

The possible explanation of our hemispherical dy-
namo is concerned with the spatial distribution of α◦
and Ω, obtained in the inverse model, Figure 4.

We observe coincidence of α◦ and Ω extrema’s lo-
cations. It results in the large product D. Situation
is similar to that one in Figure 1, where correlation of
α◦ and Ω was also strong. However, in that case ex-
trema of D were near the equator plane, on contrary
to the hemispherical dynamo, where they are shifted
to the middle latitudes. It is this shift of maximum
of the magnetic field generation helps to isolate dy-
namo process in hemispheres from each other, and per-
mits different evolutions of the magnetic field in the
hemispheres. We emphasize that the observed flux,



Figure 4. Latitude dependence of α◦, Ω, and their
product α◦Ω with M = 2.

concerned with the phase velocity VA, is quite small,
and does not change situation substantially. But as
we demonstrated, this flux is the result of the equato-
rial symmetry break, which leads to the very different
morphologies of the magnetic fields in the hemispheres.

7. Conclusions

Having deal with the direct dynamo problem solutions,
I really enjoyed to work with the inverse problem ap-



proach for this toy dynamo model. In spite of the fact
that 1D model itself is out of date, the level of abstrac-
tion in communication with the computer in the inverse
approach is much higher than in the direct problems.
In the inverse approach one formulates the properties
of the desired solution, and then tries to understand
why the resulted parameters provide these properties.
This process is much more intriguing rather than to use
the fixed parameters, and follow the results of the di-
rect problem, where solution is already also prescribed.
However the latter approach can be used for the more
sophisticated models, its not the fact that the simpler
model in inverse approach will not give the better result
due to the finer tuning of parameters.

The obtained above results are the product of nu-
merous tries, when for many times I wandered why
the computer selected this or that particular regime.
The lack of criteria, which were used for the cost-
function construction, sometimes resulted in the very
unexpected results. Many restrictions, which are sup-
posed by default, should be explained straightforward
to the computer. However the results are worthy of
these efforts. May be what is more important, is that
this approach stimulates understanding of the model.
With minimal number of criteria, it is possible to find



scenarios, which can be tested, using more complex
models. This inverse approach can be useful tool for
asking a good questions, even the answers would be
quite wrong. As regards to the simplicity of the con-
sidered model, estimates of the required computer time
shows that the inverse method, considered here, can be
extrapolated to the higher dimensional models as well.
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