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Abstract. This article continues the series of
papers by the authors on the new universal
DMA-smoothing of time series, originally
intended for the analysis of geophysical time
series obtained in the framework of discrete
mathematical analysis (DMA), developed by GC
RAS. We formulated the general concept of
weighted DMA-smoothing, constructed and
analyzed one of its variants.
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Introduction

Time series are the most effective way to represent dy-
namic data, the results of various kinds of monitoring
(physical, geophysical, environmental et al.). Smooth-
ing of time series is one of the most powerful tools to
study them, because the smoothed time series often are
simpler, more amenable to simple analysis and serve as
an effective approximation of the original time series.

To date, the most known methods of smoothing are
regression analysis, finite element method and splines,
Fourier and wavelet smoothing and their generaliza-
tions based on expansions in orthogonal systems of
functions and time-frequency analysis.

The proposed method expands the list of a new type
of smoothing, able to operate successfully in the anal-
ysis of geophysical time series. In the article it was
applied to real data from the Borok geomagnetic ob-
servatory of the INTERMAGNET network.

Main Concept of DMA-Smoothing

Let TS[a, b] be a space of time series on a discrete
segment [a, b] with nodes ti = a+(i−1)h, i = 1, ... , n,
h = (b − a)/(n − 1). The elements of TS[a, b] are



denoted by x , y , z , . . . . If z ∈ TS[a, b], then zi = z(ti)
and the correspondence z ∼ (zi)|n1 turns TS[a, b] into
n-dimensional Euklidian space Rn = Rn(z1, ... , zn).

We considered the task of constructing the smooth-

ing Sm y
def
= x ∈ TS[a, b] for the given time series y ∈

TS[a, b]. Its solution is a consistent formalization of
the following conjunction:

”x − smoothing y” ≡ (x − approximation y)∧
(x − smoothed time series)

(1)
Let us denote by z a variable series in TS[a, b]. The

approximation in (1) is formalized by the quadratic
residual functional Sc(z |y) = ||z−y ||2, and the smooth-
ness – by the non-negative quadratic form CG(z), which
we call the smoothness residual. It is based on a vari-
ant of the discrete continuity. The residual CG(z) is
a measure of the deviation from this property for the
time series z on the interval [a, b]. The less are the
values Sc(z |y) and CG(z), the more reason we have to
consider z the smoothing y . Consequently, we need a
meaningful simultaneous minimization of the function-
als Sc(z |y) and CG(z). To do this, we considered their
nontrivial convex combination



Smλ(z |y) = λCG(z) + (1− λ)Sc(z |y),λ ∈ (0, 1)

and a search of the smoothing x = Sm y for y is
reduced to a minimization on TS[a, b] at a suitable
λ ∈ (0, 1) of the functional Smλ(z |y), i.e. to the solu-
tion of the n-dimensional linear system

x = Smλy ⇔ Grad Smλ(x |y) = 0

Thus we suggest the whole family {Smλy , λ ∈
(0, 1)} as the smoothing Sm y . Let us find the gra-
dient Grad Smλ(x |y) in its clear form. For that first
we introduce the non-negative on TS[a, b] operator G,
which generates the gravitational smoothness residual
CG(z) = (G z , z) and then we transform Smλ(z |y):

Smλ(z |y) = λ(G z , z) + (1− λ)||z − y ||2 =

λ(G z , z) + (1− λ)(z − y , z − y) =

λ(G z , z) + (1−λ)(z , z)− 2(1−λ)(z , y) + (1−λ)||y ||2 =

((λG + (1− λ)E)z , z)− 2(1− λ)(z , y) + (1− λ)||y ||2

Hence E is a unit operator on TS[a, b]. Conse-
quently, the minimization Smλ(z |y) is equal to the



functional minimization

S̃mλ(z |y) =
1

2
((λG + (1− λ)E)z , z)− ((1− λ)z , y)

For it the gradient in the point z is expressed through
G like this [Pshenichny and Danilin, 1975]:

Grad S̃mλ(z |y) = (λG + (1− λ)E)z − (1− λ)y

Thus,

x = Smλy ⇔ (λG + (1− λ)E)x = (1− λ)y

If λ ∈ (0, 1), then the operator λG + (1 − λ)E is
positive on TS[a, b], and therefore reversible. Conse-
quently, the smoothing x = Smλy always exists, is
uniquely defined for any y ∈ TS[a, b] and represents
the result of applying the operator (λG + (1− λ)E)−1,
therefore

Smλ = (1− λ)(λG + (1− λ)E)−1

Let us consider an important variant of the residual
CG(z).

Gravitational Residual of Smoothness

Let us briefly (according to the module [Agayan et al.,
2010; Gvishiani et al., 2011]) consequently, from top



to bottom recall the construction of the main, but not
the only one residual of the discrete smoothness CG(z):
the gravitational smoothness residual CGr(z):

CGr(z) =
n−1∑
s=0

ωsCGr s(z)

where ωs is the non-negative weights (parameters of
smoothness). The residual CGr(z) was generated by
the operator of gravitational smoothness Gr:

CGr(z) = (Gr z , z), Gr =
n−1∑
s=0

ωsGrs

where

Grs = Ds∗Gr[a, bs ]Ds

and Ds is the s-dimensional discrete differentiation op-
erator: if z is the time series on the interval [a, b], then
its s-dimensional derivative z s = Dsz is time series
on the interval [a, bs ], bs = b − sh and in each node
ti ∈ [a, bs ]



z s(ti) =

∑s
l=0(−1)s−lC l

szi+l

hs

The operator Gr[a, bs ] is called the operator of grav-
itation continuity residual on the interval [a, bs ] and is
defined by the proximity measure δsti (tj) in accordance
with the following formula

Gr[a, bs ] = (A(δs)− E)∗(A(δs)− E)

A(δs) = (asij)

asij =
δsi (j)∑n−s

j=1 (δsi (j))

One of the following constructions was used as the
proximity measure:

δsi (j) = δsti (tj) =(
1−

|tj − ti |
max(|ti − a|, |ti − bs |) + h

)p

as shown in Figure 1, or



Figure 1. Global proximity measure.

δsi (j) = δs,r
i (j) = δs,r

ti (tj) =
(

1−
|tj − ti |

r

)p

if |tj − ti | < r ,

0 if |tj − ti | ≥ r .

for a certain r < bs − a, as shown in Figure 2

Parameters of Gravitational Smoothness

Thus there are three free parameters of gravitational
smoothing: the coupling multiplier λ ∈ [0, 1], the sys-
tem w of non-negative weights ws , s = 0, ... , n−1 and



Figure 2. Local proximity measure.

the system δ of proximity measures δs , s = 0, ... , n−1,
which depends on the internal parameter p ≥ 0.

These parameters give the gravitational smoothing
greater flexibility and expressiveness. The study allows
some qualitative conclusions about their relationship to
be made:

1. the increment λ at fixed w and δ leads to increasing
smoothness and reduces the scanning (Figure 3).

2. the increment p at fixed λ and w leads to improv-
ing scanning with the preservation of smoothness
(Figure 4).

3. the influence of weights w at fixed λ and p on
gravitational smoothness is more complicated and
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depends on their relationship. In Figure 5 the sim-
plest dependence on basic weights is shown.

4. our experience with the algorithm allowed the most
appropriate values of the free parameters to be
identified: λ ∈ [0.9, 0.999], p ∈ [2, 10], w =
{w0 = 0, w1−4 = 1, ws = 0, s > 4} (Figure 6).

Weighted DMA-Smoothing. Main Con-

cept

Let us assume that each node ti in the interval [a, b]
has its non-trivial weight vi ≥ 0. Let us denote by
V their total population V = {vi |n1}. This raises the
question of the impact of V on the DMA-smoothing,
which is the subject of this paragraph. The functional

Smλ(x |y) = λCG(x) + (1− λ)Sc(x |y)

is responsible for the smoothing, so the impact V oc-
curs separately: through the smoothness residual CG(x),
the scanning functional Sc(x |y) and the connecting
multiplier λ.

In the future we shall also denote by V the diago-
nal operator with weights vi . Further, the smoothing
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elements, into which the weights V have (or have not)
penetrated, will be respectively denoted by CGV(x),
ScV(x |y), λV (CG(x), Sc(x |y), λ). Relationships be-
tween the smoothing Sm and the weights V in a general
case can develop according to one of the following eight
scenarios:

Smλ(x |y) = λCG(x) + (1− λ)Sc(x |y)

VSmλ(x |y) = λCG(x) + (1− λ)ScV(x |y)

SmVλ(x |y) = λCGV(x) + (1− λ)Sc(x |y)

VSmVλ(x |y) = λCGV(x) + (1− λ)ScV(x |y)

SmλV
(x |y) = λVCG(x) + (1− λV)Sc(x |y) (2)

VSmλV
(x |y) = λVCG(x) + (1− λV)ScV(x |y)



SmVλV
(x |y) = λVCGV(x) + (1− λV)Sc(x |y)

VSmVλV
(x |y) = λVCGV(x) + (1− λV)ScV(x |y)

The interest in the structures (2) is explained by the
following circumstances: in general stochastic setting
smoothing of time series can be considered as a possible
option of ideal course of the process, which is described
by the given time series. If the disturbances of process
in time are expressed by weights, the weighted smooth-
ing gives an idea of the impact of these disturbances
on the process.

The simplest is the impact of V on the scanning
Sc(x |y): it is natural to assume that

ScV (x |y) =
n∑

i=1

vi(xi − yi)
2

If the weights vi are positive, then the operator V is
reversible and the smoothing x = Smy (2) looks like
this

Smλ y = (1− λ)(λG + (1− λ)E)−1y



VSmλ y = (1− λ)(λG + (1− λ)E)−1Vy

SmVλ y = (1− λ)(λGV + (1− λ)E)−1y

VSmVλ y = (1− λ)(λGV + (1− λ)E)−1Vy

SmλV
y = (1− λV)(λVG + (1− λV)E)−1y (3)

VSmλV
y = (1− λV)(λVG + (1− λV)E)−1Vy

SmVλV
y = (1− λV)(λVGV + (1− λV)E)−1y

VSmVλV
y = (1− λV)(λVGV + (1− λV)E)−1Vy

To summarize, there are seven non-trivial scenarios
of varying degrees of penetration depth of the weights
V of nodes in the DMA-smoothing Sm. The simplest
is the second scenario VSmλ ((2) and (3)) in which the
weights of nodes penetrate the scanning only.

We conclude this work with the analysis of such
smoothing in the gravitational case.

Weighted Gravitational Smoothing VSmλ

In all the smoothings in Figure 7–Figure 9 the nodes of
the main record y were supposed to be equal, having a



unit weight. Let us break this equality three times by
giving

• in the first case to the points on the interval [18:30–
18:50] the weight 10.0;

• in the second case to the points on the interval
[19:50–20:10] the weight 0.1;

• in the third unifying case to the points on the in-
terval [18:30–18:50] the weight 10.0, to the points
on the interval [19:50–20:10] the weight 0.1.

In each case at the same parameters λ, w and p
we constructed the smoothings Smλ y and VSmλ y .
In Figure 7–Figure 9 the smoothing Smλ y is shown
in blue and outside the intervals [18:30–18:50] and
[19:50–20:10] is concealed by the smoothing VSmλ y ,
shown in red. Our study has shown that the situation
in Figure 7–Figure 9 typical for the correlation of Smλ y
and VSmλ y and allows the following conclusion to be
made: under the same conditions λ, w , p the smooth-
ings Smλ y and VSmλ y have the same smoothness, at
that the construction VSmλ y is clearly dependent on
the weights V: the higher is the weight vi in the node
ti , the more carefully the smoothing VSmλ y scans the
record y in the vicinity ti .
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