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Weighted gravitational time series smoothing
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This article continues the series of papers by the authors on the new universal DMA-
smoothing of time series, originally intended for the analysis of geophysical time series
obtained in the framework of discrete mathematical analysis (DMA), developed by GC
RAS. We formulated the general concept of weighted DMA-smoothing, constructed and
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Introduction

Time series are the most effective way to represent dy-
namic data, the results of various kinds of monitoring (phys-
ical, geophysical, environmental et al.). Smoothing of time
series is one of the most powerful tools to study them,
because the smoothed time series often are simpler, more
amenable to simple analysis and serve as an effective ap-
proximation of the original time series.

To date, the most known methods of smoothing are re-
gression analysis, finite element method and splines, Fourier
and wavelet smoothing and their generalizations based on
expansions in orthogonal systems of functions and time-
frequency analysis.

The proposed method expands the list of a new type of
smoothing, able to operate successfully in the analysis of
geophysical time series. In the article it was applied to real
data from the Borok geomagnetic observatory of the INTER-
MAGNET network.

Main Concept of DMA-Smoothing

Let TS[𝑎, 𝑏] be a space of time series on a discrete seg-
ment [𝑎, 𝑏] with nodes 𝑡𝑖 = 𝑎 + (𝑖 − 1)ℎ, 𝑖 = 1, . . . , 𝑛,
ℎ = (𝑏 − 𝑎)/(𝑛 − 1). The elements of TS[𝑎, 𝑏] are denoted
by 𝑥, 𝑦, 𝑧, . . . . If 𝑧 ∈ TS[𝑎, 𝑏], then 𝑧𝑖 = 𝑧(𝑡𝑖) and the corre-
spondence 𝑧 ∼ (𝑧𝑖)|𝑛1 turns TS[𝑎, 𝑏] into 𝑛-dimensional Euk-
lidian space 𝑅𝑛 = 𝑅𝑛(𝑧1, . . . , 𝑧𝑛).

We considered the task of constructing the smoothing

Sm 𝑦
def
= 𝑥 ∈ TS[𝑎, 𝑏] for the given time series 𝑦 ∈ TS[𝑎, 𝑏].
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Its solution is a consistent formalization of the following con-
junction:

”𝑥− smoothing 𝑦” ≡ (𝑥− approximation 𝑦)∧
(𝑥− smoothed time series)

(1)

Let us denote by 𝑧 a variable series in TS[𝑎, 𝑏]. The ap-
proximation in (1) is formalized by the quadratic residual
functional Sc(𝑧|𝑦) = ||𝑧 − 𝑦||2, and the smoothness – by
the non-negative quadratic form CG(𝑧), which we call the
smoothness residual. It is based on a variant of the discrete
continuity. The residual CG(𝑧) is a measure of the deviation
from this property for the time series 𝑧 on the interval [𝑎, 𝑏].
The less are the values Sc(𝑧|𝑦) and CG(𝑧), the more reason
we have to consider 𝑧 the smoothing 𝑦. Consequently, we
need a meaningful simultaneous minimization of the func-
tionals Sc(𝑧|𝑦) and CG(𝑧). To do this, we considered their
nontrivial convex combination

Sm𝜆(𝑧|𝑦) = 𝜆CG(𝑧) + (1− 𝜆)Sc(𝑧|𝑦), 𝜆 ∈ (0, 1)

and a search of the smoothing 𝑥 = Sm 𝑦 for 𝑦 is reduced
to a minimization on TS[𝑎, 𝑏] at a suitable 𝜆 ∈ (0, 1) of the
functional Sm𝜆(𝑧|𝑦), i.e. to the solution of the 𝑛-dimensional
linear system

𝑥 = Sm𝜆𝑦 ⇔ Grad Sm𝜆(𝑥|𝑦) = 0

Thus we suggest the whole family {Sm𝜆𝑦, 𝜆 ∈ (0, 1)} as
the smoothing Sm 𝑦. Let us find the gradient Grad Sm𝜆(𝑥|𝑦)
in its clear form. For that first we introduce the non-negative
on TS[𝑎, 𝑏] operator G, which generates the gravitational
smoothness residual CG(𝑧) = (G 𝑧, 𝑧) and then we transform
Sm𝜆(𝑧|𝑦):

Sm𝜆(𝑧|𝑦) = 𝜆(G 𝑧, 𝑧) + (1− 𝜆)||𝑧 − 𝑦||2 =

𝜆(G 𝑧, 𝑧) + (1− 𝜆)(𝑧 − 𝑦, 𝑧 − 𝑦) =

ES3002 1 of 7



ES3002 agayan et al.: weighted gravitational time series smoothing ES3002

𝜆(G 𝑧, 𝑧) + (1−𝜆)(𝑧, 𝑧)− 2(1−𝜆)(𝑧, 𝑦) + (1−𝜆)||𝑦||2 =

((𝜆G+ (1− 𝜆)E)𝑧, 𝑧)− 2(1− 𝜆)(𝑧, 𝑦) + (1− 𝜆)||𝑦||2

Hence E is a unit operator on TS[𝑎, 𝑏]. Consequently, the
minimization Sm𝜆(𝑧|𝑦) is equal to the functional minimiza-
tion

̃︁Sm𝜆(𝑧|𝑦) =
1

2
((𝜆G+ (1− 𝜆)E)𝑧, 𝑧)− ((1− 𝜆)𝑧, 𝑦)

For it the gradient in the point 𝑧 is expressed through G
like this [Pshenichny and Danilin, 1975]:

Grad ̃︁Sm𝜆(𝑧|𝑦) = (𝜆G+ (1− 𝜆)E)𝑧 − (1− 𝜆)𝑦

Thus,

𝑥 = Sm𝜆𝑦 ⇔ (𝜆G+ (1− 𝜆)E)𝑥 = (1− 𝜆)𝑦

If 𝜆 ∈ (0, 1), then the operator 𝜆G + (1 − 𝜆)E is posi-
tive on TS[𝑎, 𝑏], and therefore reversible. Consequently, the
smoothing 𝑥 = Sm𝜆𝑦 always exists, is uniquely defined for
any 𝑦 ∈ TS[𝑎, 𝑏] and represents the result of applying the
operator (𝜆G+ (1− 𝜆)E)−1, therefore

Sm𝜆 = (1− 𝜆)(𝜆G+ (1− 𝜆)E)−1

Let us consider an important variant of the residual
CG(𝑧).

Gravitational Residual of Smoothness

Let us briefly (according to the module [Agayan et al.,
2010; Gvishiani et al., 2011]) consequently, from top to bot-
tom recall the construction of the main, but not the only one
residual of the discrete smoothness CG(𝑧): the gravitational
smoothness residual CG𝑟(𝑧):

CG𝑟(𝑧) =

𝑛−1∑︁
𝑠=0

𝜔𝑠CG𝑟𝑠(𝑧)

where 𝜔𝑠 is the non-negative weights (parameters of smooth-
ness). The residual CG𝑟(𝑧) was generated by the operator
of gravitational smoothness Gr:

CG𝑟(𝑧) = (Gr 𝑧, 𝑧), Gr =

𝑛−1∑︁
𝑠=0

𝜔𝑠Gr𝑠

where

Gr𝑠 = D𝑠*Gr[𝑎, 𝑏𝑠]D𝑠

and D𝑠 is the 𝑠-dimensional discrete differentiation opera-
tor: if 𝑧 is the time series on the interval [𝑎, 𝑏], then its

Figure 1. Global proximity measure.

𝑠-dimensional derivative 𝑧𝑠 = D𝑠𝑧 is time series on the in-
terval [𝑎, 𝑏𝑠], 𝑏𝑠 = 𝑏− 𝑠ℎ and in each node 𝑡𝑖 ∈ [𝑎, 𝑏𝑠]

𝑧𝑠(𝑡𝑖) =

∑︀𝑠
𝑙=0(−1)𝑠−𝑙𝐶𝑙

𝑠𝑧𝑖+𝑙

ℎ𝑠

The operator Gr[𝑎, 𝑏𝑠] is called the operator of gravitation
continuity residual on the interval [𝑎, 𝑏𝑠] and is defined by the
proximity measure 𝛿𝑠𝑡𝑖(𝑡𝑗) in accordance with the following
formula

Gr[𝑎, 𝑏𝑠] = (A(𝛿𝑠)− E)*(A(𝛿𝑠)− E)

A(𝛿𝑠) = (𝑎𝑠
𝑖𝑗)

𝑎𝑠
𝑖𝑗 =

𝛿𝑠𝑖 (𝑗)∑︀𝑛−𝑠
𝑗=1 (𝛿

𝑠
𝑖 (𝑗))

One of the following constructions was used as the prox-
imity measure:

𝛿𝑠𝑖 (𝑗) = 𝛿𝑠𝑡𝑖(𝑡𝑗) =(︂
1− |𝑡𝑗 − 𝑡𝑖|

max(|𝑡𝑖 − 𝑎|, |𝑡𝑖 − 𝑏𝑠|) + ℎ

)︂𝑝

as shown in Figure 1, or

𝛿𝑠𝑖 (𝑗) = 𝛿𝑠,𝑟𝑖 (𝑗) = 𝛿𝑠,𝑟𝑡𝑖
(𝑡𝑗) =⎧⎪⎪⎨⎪⎪⎩

(︂
1− |𝑡𝑗 − 𝑡𝑖|

𝑟

)︂𝑝

if |𝑡𝑗 − 𝑡𝑖| < 𝑟,

0 if |𝑡𝑗 − 𝑡𝑖| ≥ 𝑟.

for a certain 𝑟 < 𝑏𝑠 − 𝑎, as shown in Figure 2

Figure 2. Local proximity measure.
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Figure 3. Dependence on 𝜆 at fixed 𝑤 and 𝛿.

Parameters of Gravitational Smoothness

Thus there are three free parameters of gravitational
smoothing: the coupling multiplier 𝜆 ∈ [0, 1], the system 𝑤
of non-negative weights 𝑤𝑠, 𝑠 = 0, . . . , 𝑛− 1 and the system
𝛿 of proximity measures 𝛿𝑠, 𝑠 = 0, . . . , 𝑛− 1, which depends
on the internal parameter 𝑝 ≥ 0.

These parameters give the gravitational smoothing greater
flexibility and expressiveness. The study allows some quali-
tative conclusions about their relationship to be made:

1. the increment 𝜆 at fixed 𝑤 and 𝛿 leads to increasing
smoothness and reduces the scanning (Figure 3).

Figure 4. Dependence on 𝑝 at fixed 𝜆 and 𝛿.

2. the increment 𝑝 at fixed 𝜆 and 𝑤 leads to improving
scanning with the preservation of smoothness (Fig-
ure 4).

3. the influence of weights 𝑤 at fixed 𝜆 and 𝑝 on gravi-
tational smoothness is more complicated and depends
on their relationship. In Figure 5 the simplest depen-
dence on basic weights is shown.

4. our experience with the algorithm allowed the most
appropriate values of the free parameters to be iden-
tified: 𝜆 ∈ [0.9, 0.999], 𝑝 ∈ [2, 10], 𝑤 = {𝑤0 = 0,
𝑤1−4 = 1, 𝑤𝑠 = 0, 𝑠 > 4} (Figure 6).
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Figure 5. Dependence on 𝑤 at fixed 𝜆 and 𝑝.

Weighted DMA-Smoothing. Main Concept

Let us assume that each node 𝑡𝑖 in the interval [𝑎, 𝑏] has
its non-trivial weight 𝑣𝑖 ≥ 0. Let us denote by V their
total population V = {𝑣𝑖|𝑛1 }. This raises the question of the
impact of V on the DMA-smoothing, which is the subject
of this paragraph. The functional

Sm𝜆(𝑥|𝑦) = 𝜆CG(𝑥) + (1− 𝜆)Sc(𝑥|𝑦)

Figure 6. 𝜆 = 0.95, 𝑝 = 4, 𝑤 = {𝑤0 = 0, 𝑤1−4 = 1, 𝑤𝑠 = 0, 𝑠 > 4}.

is responsible for the smoothing, so the impact V occurs sep-
arately: through the smoothness residual CG(𝑥), the scan-
ning functional Sc(𝑥|𝑦) and the connecting multiplier 𝜆.

In the future we shall also denote by V the diagonal oper-
ator with weights 𝑣𝑖. Further, the smoothing elements, into
which the weights V have (or have not) penetrated, will
be respectively denoted by CGV(𝑥), ScV(𝑥|𝑦), 𝜆V (CG(𝑥),
Sc(𝑥|𝑦), 𝜆). Relationships between the smoothing Sm and
the weights V in a general case can develop according to one
of the following eight scenarios:
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Figure 7. The points’ weights in the period 18:30–18:50 are equal to 10.0.

Sm𝜆(𝑥|𝑦) = 𝜆CG(𝑥) + (1− 𝜆)Sc(𝑥|𝑦)

VSm𝜆(𝑥|𝑦) = 𝜆CG(𝑥) + (1− 𝜆)ScV(𝑥|𝑦)

SmV𝜆(𝑥|𝑦) = 𝜆CGV(𝑥) + (1− 𝜆)Sc(𝑥|𝑦)

VSmV𝜆(𝑥|𝑦) = 𝜆CGV(𝑥) + (1− 𝜆)ScV(𝑥|𝑦)

Sm𝜆V (𝑥|𝑦) = 𝜆VCG(𝑥) + (1− 𝜆V)Sc(𝑥|𝑦) (2)

VSm𝜆V (𝑥|𝑦) = 𝜆VCG(𝑥) + (1− 𝜆V)ScV(𝑥|𝑦)

SmV𝜆V (𝑥|𝑦) = 𝜆VCGV(𝑥) + (1− 𝜆V)Sc(𝑥|𝑦)

VSmV𝜆V (𝑥|𝑦) = 𝜆VCGV(𝑥) + (1− 𝜆V)ScV(𝑥|𝑦)

The interest in the structures (2) is explained by the fol-
lowing circumstances: in general stochastic setting smooth-
ing of time series can be considered as a possible option of
ideal course of the process, which is described by the given
time series. If the disturbances of process in time are ex-
pressed by weights, the weighted smoothing gives an idea of
the impact of these disturbances on the process.

The simplest is the impact of V on the scanning Sc(𝑥|𝑦):
it is natural to assume that

Sc𝑉 (𝑥|𝑦) =
𝑛∑︁

𝑖=1

𝑣𝑖(𝑥𝑖 − 𝑦𝑖)
2

If the weights 𝑣𝑖 are positive, then the operator V is re-
versible and the smoothing 𝑥 = Sm𝑦 (2) looks like this

Sm𝜆 𝑦 = (1− 𝜆)(𝜆G+ (1− 𝜆)E)−1𝑦

VSm𝜆 𝑦 = (1− 𝜆)(𝜆G+ (1− 𝜆)E)−1V𝑦

SmV𝜆 𝑦 = (1− 𝜆)(𝜆GV + (1− 𝜆)E)−1𝑦

VSmV𝜆 𝑦 = (1− 𝜆)(𝜆GV + (1− 𝜆)E)−1V𝑦

Sm𝜆V 𝑦 = (1− 𝜆V)(𝜆VG+ (1− 𝜆V)E)
−1𝑦 (3)

VSm𝜆V 𝑦 = (1− 𝜆V)(𝜆VG+ (1− 𝜆V)E)
−1V𝑦

SmV𝜆V 𝑦 = (1− 𝜆V)(𝜆VGV + (1− 𝜆V)E)
−1𝑦

VSmV𝜆V 𝑦 = (1− 𝜆V)(𝜆VGV + (1− 𝜆V)E)
−1V𝑦

To summarize, there are seven non-trivial scenarios of
varying degrees of penetration depth of the weights V of
nodes in the DMA-smoothing Sm. The simplest is the sec-
ond scenario VSm𝜆 ((2) and (3)) in which the weights of
nodes penetrate the scanning only.

We conclude this work with the analysis of such smooth-
ing in the gravitational case.
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Figure 8. The points’ weights in the period 19:50–20:10 are equal to 0.1.

Weighted Gravitational Smoothing VSm𝜆

In all the smoothings in Figure 7–Figure 9 the nodes of
the main record 𝑦 were supposed to be equal, having a unit
weight. Let us break this equality three times by giving

∙ in the first case to the points on the interval [18:30–
18:50] the weight 10.0;

∙ in the second case to the points on the interval [19:50–
20:10] the weight 0.1;

Figure 9. The points’ weights in the period 18:30–18:50 are equal to 10.0, in the period 19:50–20:10 are equal to 0.1.

∙ in the third unifying case to the points on the inter-
val [18:30–18:50] the weight 10.0, to the points on the
interval [19:50–20:10] the weight 0.1.

In each case at the same parameters 𝜆, 𝑤 and 𝑝 we con-
structed the smoothings Sm𝜆 𝑦 and VSm𝜆 𝑦. In Figure 7–
Figure 9 the smoothing Sm𝜆 𝑦 is shown in blue and outside
the intervals [18:30–18:50] and [19:50–20:10] is concealed by
the smoothing VSm𝜆 𝑦, shown in red. Our study has shown
that the situation in Figure 7–Figure 9 typical for the cor-
relation of Sm𝜆 𝑦 and VSm𝜆 𝑦 and allows the following con-
clusion to be made: under the same conditions 𝜆, 𝑤, 𝑝 the
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smoothings Sm𝜆 𝑦 and VSm𝜆 𝑦 have the same smoothness,
at that the construction VSm𝜆 𝑦 is clearly dependent on the
weights V: the higher is the weight 𝑣𝑖 in the node 𝑡𝑖, the
more carefully the smoothing VSm𝜆 𝑦 scans the record 𝑦 in
the vicinity 𝑡𝑖.
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