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Abstract. The 2D Parker’s mean-field
dynamo equations with a various distributions of
the α- and ω-effects are considered. We show
that smooth profiles of α and ω can produce
dipole configuration of the magnetic field with
the realistic magnetic energy spectrum. We
emphasize that fluctuating α-effect leads to
increase of the magnetic energy at the small
scales, breaking the dipole configuration of the
field. The considered geostrophic profiles of α
and ω correspond to the small-scale
polarwards/equatorwards travelling waves with
the small dipole field contribution. The same
result is observed for the dynamic form of the
α-quenching, where two branches of the weak
and strong solution coexist.
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1. Introduction

The last decades demonstrated impressive success of
the three-dimensional geodynamo modeling. It appears
that combination of the compositional and thermal con-
vection can drive the dynamo mechanism, transform-
ing the heat and kinetic energies to the energy of the
magnetic field. To the moment, the various 3D geody-
namo models can reproduce the main features of the
observable geomagnetic field: the dipole structure, re-
versals and excursions of the field, as well as the regimes
without reversals, which correspond to the chrons, well
known in palaeomagnetism [Roberts and King, 2013].

However analysis of the data simulated in the 3D
models sometimes is not easier task rather the analysis
of the observations itself. Moreover, due to specific of
the 3D modeling, which requires the detailed resolution
of the small-scaled turbulence, it appears impossible to
reproduce the long-time sequences of the magnetic field
evolution, compared with the paleo- and archemagnetic
observations. Note that from the point of view of the
observer, information that can be derived from the bulk
of 3D data in the models, is excessive, because it can
not be verified by the observations with the pure reso-
lution.



The tendency of the geodynamo development only
proves this statement: to reach the desired parameter
regimes of the magnetohydrodynamic (MHD) process
in the turbulent liquid core one needs at least 1024 grid
points for the data simulations that corresponds to the
Reynolds number Re = 109. In the same moment,
the direct observations of the geomagnetic field, lim-
ited by the screening of the low-conductive mantle, are
bounded with the first decade of the spherical functions
(more precisely n ≤ 13) [Finlay et al., 2010]. It means
that scale to scale comparison of 3D simulations with
observations is only possible in the negligible part of
the spatial scales, involved into the simulations. On
the other hand, the time scales in 3D models are order
of magnitude shorter than the geological times.

This discrepancy results in renovation of the quite
old mean field approach in geodynamo, which is able
to reproduce behavior of the large-scale magnetic field.
In its turn, simulated large-scale magnetic field already
can be easily compared with the observations. Due
to reduction of the 3D basic equations to the axi-
symmetric form, this approach permits to simulate long-
term evolution of the magnetic field, compared with the
palaeomagnetic records.

The mean-field theory was developed by the two in-



dependent scientific groups. The exhaustive theoret-
ical background was elaborated in the German group
[Krause and Rädler, 1980], mostly concentrated on
the astrophysical applications. The main result of the
theory is the description of the large-scale magnetic
field generation with the conductive turbulent medium
and velocity shear. The back-reaction (or quenching)
of the magnetic field onto the flow was introduced by
the damping of the turbulence.

The other, geophysical approach, developed by the
Russian scientist S. I. Braginsky, included influence of
the magnetic field onto the large-scale velocity field.
The famous geodynamo Z-model could reproduce the
dipole structure of the magnetic field and made a re-
markable insight into the physics of the liquid core
[Braginsky, 1975]. One of the crucial points of this
model is existence of the strong magnetic wind, which
corresponds to the large magnetic field counterpart to
the azimuthal force in the Navier-Stokes equation. That
was the reason of the too strong toroidal magnetic field,
compared to the poloidal part.

Only latter it was recognised that influence of the
magnetic field on the flow is a very delicate process
[Brandenburg and Subramanian, 2005; Hejda and
Reshetnyak, 2010]: magnetic field does not change



the cyclonic form of the flow essentially, as well as it
does not produce too large azimuthal velocity [Jones,
2000]. This is the motivation to consider the classical
mean-field dynamo equations without back-reaction of
the magnetic field on the large-scale flow, using only
α-quenching, concerned with the damping of the tur-
bulence by the large-scale magnetic field. So far the
kinetic energy of the turbulence is smaller than that of
the large-scale velocity, suppression of the turbulence
looks more acceptable.

This approach is supported by the new knowledge
on the hydrodynamic of the liquid core: the spatial dis-
tribution of the differential rotation and kinetic helicity
in the rotating spherical shell, where the geostrophic
state holds [Reshetnyak, 2010]. The other point is the
study of the more complex quenching mechanisms of
the α-effect [Kleeorin et al., 1995], developed after the
first success of the mean-field theory, and its influence
on the magnetic dipole behavior.

We also consider applications of the popular ap-
proach of the fluctuating α-effect [Hoyng, 1993], and
discuss constraints on the amplitude of such fluctua-
tions, which follows from the form of the spatial spec-
trum of the geomagnetic field [Langel, 1987].



2. Basic Equations and Methods of

Solution

The mean magnetic field B is governed by the induction
equation

∂B

∂t
= ∇×

(
αB + V × B− η rotB

)
, (1)

where V is the large-scale velocity field, α is the α-
effect, and η is a magnetic diffusion.

The magnetic field B =
(
Bp, Bt

)
has two parts:

the poloidal component Bp = ∇×A, and the toroidal
component Bt, where A is the vector potential of the
magnetic field.

The principal point of the mean-field dynamo theory
is the separation of the physical fields onto the large-
and small-scale counterparts. Information on the large-
scale velocity field is described by V, and on the small-
scale fields fluctuations by the α-effect.

Usually, it is supposed that the mean field B has axial
symmetry. This assumption follows from the effect of
the differential rotation, which suppresses deviations of
the frozen magnetic field into the flow from the axial
symmetry.

Due to the axial symmetry of the magnetic field,



vector potential A and Bt have the only one azimuthal
component in the spherical system of coordinates
(r , θ, ϕ): A(r , θ) = (0, 0, A), and Bt(r , θ) = (0, 0,B).
Then the poloidal field can be written in the form:

Bp =

(
1

r sin θ

∂

∂θ
(A sin θ) , −1

r

∂

∂r
(r A) , 0

)
. (2)

In terms of scalars A and B Eq(1) is reduced to the
following system of equations:

∂A

∂t
= αB + (V × B)ϕ +

(
∇2 − 1

r2 sin2 θ

)
A

∂B

∂t
= rotϕ (αB + V × B) +

(
∇2 − 1

r2 sin2 θ

)
B ,

(3)
where the subscript ϕ corresponds to the azimuthal
component of the vector.

Eqs(3), solved in the spherical shell ri ≤ r ≤ r◦ with
ri = 0.35, r◦ = 1, are closed with the pseudo-vacuum

boundary conditions: B = 0, and
∂

∂r
(rA) = 0 at ri and

r◦ and A = B = 0 at the axis of rotation θ = 0, π. The
simplified form of the vacuum boundary condition for
A is well adopted in dynamo community, and presents
a good approximation of the boundary with the non-



conductive medium [Jouve et al., 2008]. The reason
why the vacuum boundary condition is used at the inner
core boundary is discussed in [Reshetnyak, 2013] and
concerned with the weak influence of the inner core
on the reversals statistics of the magnetic field [Wicht,
2002].

In the general case velocity V is a three-dimensional
vector, as a function of r and θ. Further we consider
only the effect of the differential rotation, concerned
with the ϕ component of V, leaving the input of the
meridional circulation (Vr , Vθ) out of the scope of the
paper.

For the quite large amplitudes of α and V solution
(A, B) grows exponentially, and one needs to introduce
the feedback of the magnetic field onto the sources of
the input energy α and V. As we already mentioned
above, we concentrate our study on the feedback of
the magnetic field onto the α-effect, responsible on the
production of the large-scale poloidal magnetic fields
by the small-scaled turbulence. This approach let us to
bypass solution of the Navier-Stokes equation, which,
at least in the geodynamo, is the most difficult part
of the full dynamo problem. We recall that turbulent
convection presents at the small scales, where the mag-
netic field is already absent due to the high magnetic



diffusion. The ratio of the diffusion scales of the veloc-
ity and magnetic fields is of the order of the Roberts
number q = 10−5, which is quite small in the liquid
core. However the magnetic field is not generated at
the small-scaled part of the kinetic energy spectrum,
to get a self-consistent solution for the velocity field,
one needs to solve the Navier-Stokes equation in the
full range of scales. This task is still out of reach of
the modern computer facilities.

Here we specify two forms of the α-quenching. The
first one, the so-called algebraic quenching, originates
from the simple idea of the damping of the α-effect’s
amplitude with the mean magnetic field:

α =
α◦(r , θ)

1 +
Em(r , θ)

E ◦m

, (4)

where Em = B2/2 is the magnetic energy, and E ◦m is
the constant parameter. The choice of this parameter
relates to our assumptions on the ratio of the kinetic to
magnetic energies, and depends strongly on the angular
rotation of the body [Reshetnyak and Sokoloff, 2003].

The more sophisticated form of the α-quenching fol-
lows from [Pouquet at al., 1976], [Zeldovich at al.,
1990], where influence of the magnetic field onto the



α-effect was described by the magnetic pat of the α-
effect, so that the total effect is the sum: α = αh+αm.
Here αh and αm are the hydrodynamic (the so-called
kinetic α-effect) and magnetic parts, correspondingly.
The damping of α means generation of αm with the
opposite sign to αh. This idea was formulated latter in
the form of the evolutionary equation for αm [Kleeorin
et al., 1995], see for details Section 6. This kind of the
α-quenching, derived from the basic MHD equations,
leads to oscillations in the system, and was used in the
solar dynamo to mimic the solar cycle of the magnetic
activity.

The differential operators in Eqs.(3–4) were approxi-
mated with the second-order central-differences scheme
in space, and integrated in time using the second-order
Runge-Kutta method. These algorithms resulted in
C++ object oriented code with use of Blitz++ C++ li-
brary for the easier compact operations with the arrays.
The post-processor graphic visualization was organized
using the Python graphic library MatPlotlib. All simu-
lations were done under the Linux OS.

The code passed the set of the benchmarks. The
first one is the free-decay mode test for the diffusion



operator in the equation:

∂A

∂t
=

(
∇2 − 1

r2 sin2 θ

)
A, (5)

with A = 0 at the axis and at r = ri , and
∂

∂r
(r A) = 0

at r◦.
Simple analytic solution of (5) for testing can be

written in the form:

A = eγ t
(
j1(
√
λ r) + C y1(

√
λ r)

)
P1

1 , (6)

where P1
1 is the associated Legendre polynomial of de-

gree 1, and order 1, and j1, y1 are the spherical Bessel
functions of the first and second kind. Note, that in
contrast to the scalar Laplace equation, where the ax-
ially symmetric meridional part of the solution is de-
scribed by P0

l , the order of our vector diffusion opera-
tor’s eigenfunctions is shifted by one, and corresponds
to P1

1 .
Putting expression for A (6) in (5), and using bound-

ary conditions for A at the radial boundaries, one has
condition of solvability for λ. Solution of this
transcendent equation, using package of the analytic
algebra SymPy for the Python, gives
λ = 4.8732823108648490873, that leads to



C = 0.380157168844938 and
γ = −23.74888048138824458988. This estimate of λ,
C , and γ is enough to satisfy to the boundary condi-
tions with the double precision accuracy, used in the
program. Using (6) as the initial condition, we simu-
lated Eq(5) and obtained the decay rate equal to the
analytic γ with the accuracy up to 0.5% for Nr × Nθ
mesh grid points, with Nr = Nθ = 101.

The other test was the benchmark on the thresh-
old of the magnetic field generation, the Case A′ from
[Jouve et al., 2008], which was also passed successfully.

3. Simple Forms of α-ω Profiles

We start from the simple forms of the α-effect and
azimuthal velocity Vϕ, adopted in the mean-field dy-
namo.

From the general arguments it is known that the α-
effect has the dipole symmetry in respect to the equator
plane. We also assume that it is positive in the northern
hemisphere, so that

α◦ = Cα sin

(
π
r − ri
r◦ − ri

)
sin(2θ), (7)

where Cα is a positive constant. This assumption is in



agreement with that fact that kinetic helicity χ is neg-
ative in the northern hemisphere and α ∼ −χ [Krause
and Rädler, 1980]. In (7) α vanishes at the poles,
which, as we see below, is also the good approximation
of the real α-effect, derived from 3D models [Reshet-
nyak,2010]).

For the azimuthal velocity we take

Vϕ = Cω(r−ri)(r◦−r)e
−0.7−1

(
θ − π

2

)2

sin(θ), (8)

where Cω is the amplitude. This profile is symmetric
to the equator plane and has maximum at the equator
for Cω > 0.

As follows from analysis of 1D Parker’s equations,
which can be derived from Eqs(3), neglecting
r -derivatives, solution depends on the product of D =
Cα Cω, called the dynamo number. Change of the sign
of D leads to the change of direction of propagation of
the dynamo wave. In general, in 2D case this statement
is not correct, and the direction of the wave propaga-
tion depends on the spatial distribution of α and Vϕ. It
means that choice of signs of Cα, Cω needs additional
information.

The positive sign of α follows from the simple rela-
tion α ∼ −χ between the α-effect and kinetic helicity



χ, which is negative in the northern hemisphere. From
3D geodynamo simulations follows that Vϕ has maxi-
mum in the bulk of the liquid core at the equator plane
[Reshetnyak,2010]), what is also is in agreement with
the helioseismological observations in the solar convec-
tive zone [Belvedere et al.,2000]). These two argu-
ments fix the signs of Cα and Cω.

Integration in time of Eqs((3)–(4)) with α◦, and Vϕ,
given by (7)–(8), with the time step τ = 10−6, leads
to the quasi-periodic oscillatory solution, which has the
dipole symmetry for Br and B , and the quadrupole
type for Bθ, see Figure 1. Note that magnetic field
is mostly concentrated inside of the spherical shell, in
spite on the penetrating poloidal component of the field
outside of the shell. Solution is highly non-linear, what
is proved by the very irregular distribution of the α-
effect, damped with the magnetic field, see Eq(4).

Evolution of the axi-symmetric magnetic dipole g0
1 ,

which contributes to the axi-symmetric form of the
Mauersberger-Lowes spectrum [Langel, 1987] Sl = (l+

1)
(
g0
l

)2
, corresponds to the regime in oscillations,

where the mean level of the field is larger rather the
amplitude of its fluctuations. The range of oscillations
is (0.4 − 0.47), and the dipole does not reverse. This
regime is the typical example of the αω-dynamo with



Figure 1. Spatial distribution of Br , Bθ, B , and α for
Cα = 50, Cω = 5 104.



the poloidal magnetic energy
1

2

(
B2
r + B2

θ

)
of factor 30

smaller than the toroidal one, B2/2. The ratio of the
dipole to quadrupole components S1/S2 ∼ 10 is quite
large. and remains large for Cα = (5 − 500) for the
fixed value of Cω.

To follow the details of the magnetic field genera-
tion we consider the butterfly diagrams of the mag-
netic field, Figure 2. The poloidal field (Br , Bθ) is
taken at the outer boundary, and the toroidal one at
the maximum of generation, near the inner boundary.
The poloidal field demonstrates two kinds of the waves,
propagating to the equator at |θ| < 80◦, and to the
poles at |θ| > 70◦. Note that there is intersection of
the waves in the band θ = 70 − 80◦. Simultaneous
existence of the polarwards and equatorwards waves is
the subject of debates in the solar dynamo [Moss et al.,
2011]. These waves can be related to the quasi-periodic
archeomagnetic waves, which also demonstrate differ-
ent directions of propagation.

The toroidal magnetic field B near the inner bound-
ary oscillates at the non-zero mean level, and at least
potentially can contribute to the torsional oscillations,
concerned with the inner-outer cores interaction. The
absolute maximal values of the azimuthal field B in



Figure 2. The butterfly diagrams for Br , Bθ at r = r◦,
and B at r = 0.7.



the northern hemisphere is shifted relative to the field
in the southern hemisphere at the half of the period of
oscillation. It means that solution can not be described
with the combination of a few symmetric and antisym-
metric functions relative to the equator plane, and that
it has more complex structure.

4. Random α

The proposed axi-symmetric αω-model is a crude sim-
plification of the original 3D MHD equations at least in
that sense that α◦, which describes production of the
magnetic field with the turbulence, is a constant param-
eter. In the more consequent approach [Hoyng,1993]
α◦ has a random fluctuating part, caused with the finite
number of the fluid cells. This assumption leads to the
reasonable estimates of the α fluctuations in the so-
lar convective zone [Moss et al.,2013]. This approach
was used to get a spontaneous reversals of the mag-
netic field in the finite-dimensional geodynamo model
[Sobko et al.,2012].

However, we have to use results of the
finite-dimensional geodynamo models very carefully be-
cause the considered Galerkin decomposition in [Sobko
et al.,2012] included only two first modes. On the



other hand, input of the energy by the fluctuating α
at the small scale can change the magnetic field spec-
trum essentially. So far there is no inverse cascade in
the αω-equations, as it happens, e.g., in 2D hydrody-
namic turbulence [Kraichnan and Montgomery,1980],
energy of fluctuations will not transfer over the spec-
trum to the large scales, and concentrate at the scale of
fluctuations. It can happen that such energy injection
will lead to the change of the spectrum. In its turn,
increase of the energy at the small scales will result
in disagreement with observations, which demonstrate
predominance of the magnetic dipole component on
the higher harmonics. We recall that as it follows from
the practice of the 3D dynamo simulations, solution is
decently resolved if the kinetic and magnetic energies
drop by more than a factor of 100 from the spectral
maximum to the cut-off wavelength [Christensen et
al.,,1999].

Influence of the α fluctuations on the solution of
Eqs((3)–(4)) was tested, using our finite difference
model, which can reproduce continuous spectrum up
to the scale of the energy injection. The scale of injec-
tion is assumed to be the grid scale, i.e. the distance
between the mesh grid points.

The random fluctuations modify α◦ in the following



way: α◦ → α◦(1 +Cεε(r , θ)), where ε is the uniformly
distributed random variable from -1 to 1, and Cε is the
constant. In every mesh grid point ε changed after the
time δt = 0.01 simultaneously, see evolution of the
root mean square value of α in Figure 3.

We indeed observed appearance of some reversals
of the magnetic field, see evolution of g0

1 in Figure 3,
for Cε = 7, 50, which can be related to the geomag-
netic field reversals. However, this statement appears
to be wrong, because the structure of the magnetic
field spectrum Sl due to fluctuations changed essen-
tially, see Figure 3. Before it dissipates at the diffusion
scale, the magnetic energy of fluctuations accumulates
at the wave numbers l > 4, that is resulted in the
appearance of the spectrum’s plateau at 5 ≤ l ≤ 9.
In other words, to change evolution of the magnetic
dipole g0

1 one needs to increase the magnetic energy at
the small scales in some orders, see the normalized fac-
tors for g0

1 in the figure caption. Such a catastrophic
event is hardly believed to happen in the liquid core
if the geomagnetic reversals is treated like the trivial
redistribution of the energy between the harmonics in
the white spectrum [Reshetnyak, 2013].



Figure 3. Evolution of the root mean square value of
α (upper plane), normalized magnetic dipole g0

1 (middle
plane), and the averaged magnetic spectra Sl (lower plane)
for the three regimes: Cε = 1 (red), 7 (green), and 50
(blue). The corresponding amplitudes for g0

1 : 0.31, 0.32,
1.27, and for Sl : 1 500, 9 900, 124 000.



5. Geostrophic Regimes

The specific feature of the planetary dynamo is the geo-
strophic balance of the forces in the liquid core [Ped-
losky,1987]. Assuming that in the leading order viscous
and Archimedean forces are small, one has balance of
the Coriolis force and the gradient of the pressure. Ap-
plication of the Taylor-Praudman theorem leads imme-
diately to conclusion that velocity field V is elongated
along the axis of rotation. In the other words V in the
bulk of the core depends weakly on the z-coordinate.

In the general case, in presence of the viscous force
and the thermal buoyancy, locations of the large gra-
dients in the z-direction correspond to the boundary
layers and the equator plane, where physical fields can
change the sign. This statement relates not only to the
large-scale velocity field but to the averaged products
of the turbulence, like the kinetic helicity χ, α, as well.

Here we use results of 3D simulations of the thermal
convection heated from below in the rapidly rotating
spherical shell. Roughly, for the moderate Rayleigh
numbers (regime R2 in [Reshetnyak,2010]) α-effect
and azimuthal velocity Vϕ can be approximated as fol-



Figure 4. Spatial distribution of α◦ and Vϕ in the
geostrophic regime.

lows:

α◦ = Cα r(−erf (1.25|z |) + 1)e−66.7(s−0.39)2 sin(2θ)

Vϕ = Cωs

(
e−11.76(s − 0.35)2

+ 0.73e−3.84(s−1)2
)

,

(9)
with the polar coordinates s = r sin θ, z = r cos θ. This
approximation corresponds to the convection mainly
outside of the Taylor cylinder, see Figure 4.

The maximum of |α◦| locates near s = 0.45 and



maximum of the radial gradient of the differential rota-

tion,
∂

∂r

Vϕ
s

, is near s ∼ 0.6, close to |α|’s maximum.

It means that the both sources of generation, α-effect,
and ω-effect have the same locations, and meridional
circulation will not change solution too much.

As we can expect from Figure 4, the scale of the
magnetic field in s-coordinate is expected to be quite
small, because the scales of α-effect, and ω are small
as well. This prediction is proved with the simulations
for Cα = 2980 and Cω = 35.4, which are near the
threshold of generation. The ratio of the poloidal to
the toroidal energies is equal to 8, and the maximum
of the magnetic energy is at l = 3. Increase of Cα, Cω
leads to the shift of the maximum of the spectra to
the small-scaled part of the spectra. The switch on of
the meridional circulation does not help to increase the
dipole component of the field.

Magnetic energy oscillates with amplitude about 1%
of its mean value, and amplitude of the magnetic dipole
oscillations is even smaller. In spite of the fact that we
used α and Vϕ from 3D simulations, production of the
dipole magnetic field is less efficient than in the model,
discussed in the Section 3.



6. Dynamic α-quenching

The more sophisticated model of α-quenching is the
so-called dynamic quenching, where the damping of α,
given by the sum α = α◦ + αm, is provided with a
magnetic part αm, described by the evolution equation
[Kleeorin et al., 1995]:

∂αm
∂t

= B · ∇ × B− α B2

η
− αm
T

, (10)

where T = 1 is the typical time scale. The generated
αm has the opposite sign to α◦ that reduces the total
α-effect in (3).

We tested regimes with α◦ and Vϕ, given by (7)–(8),
and set of parameters close to Cα = −0.004, Cω = 30.
The amplitude of the poloidal magnetic energy (1 200)
is order of magnitude smaller than the toroidal part
(20 000). In spite of the quite large values of the mag-
netic energies, decrease of Cα, and Cω at 20-30% leads
to decay of the solution. It can be explained as with
the rapid increase of the growth rate in the linearised
equations, as well as with coexistence of two finite-
amplitude solution branches with the weak and strong
magnetic field intensity. Some simulations demonstrate
spontaneous transitions from the weak field dynamo to



the strong field, accompanied with the reconstruction
of the magnetic energy spectrum that tells in favour
of the latter assumption. Such a rapid increase of the
magnetic field production makes it difficult to find a
solution with a predominant dipole contribution.

The magnetic dipole g0
1 oscillates, changing its sign

with the period tosc = 0.036. The magnetic field spec-
trum has maximum at l = 9, that corresponds to the
small-scaled polarwards dynamo-wave. The further in-
crease of Cα, and Cω preserves the zero mean level of
g0

1 . This kind of α-quenching requires a thorough anal-
ysis of the range of parameters, which can be used for
the geodynamo applications.

7. Conclusions

It is quiet expected that the considered above mean-
field dynamo do can reproduce some features of the
geomagnetic field. At least in principal, αω-models can
generate the predominant dipole magnetic field, similar
to that one at the Earth’s liquid core, and even the re-
versals of the field. To the moment it is not clear if the
reversal is the intrinsic feature of the dynamo mecha-
nism either it is triggered with the external perturba-
tion. The both scenarios have its own arguments. Here
we showed that even the simple idea of the fluctuat-



ing mean-field coefficient, say α-effect, should be con-
sidered very carefully. Influence of fluctuations on the
magnetic dipole evolution should not treated separately
from the properties of the magnetic energy spectrum,
which can be modified by the fluctuations essentially.

The other point is the application of the 3D dynamo
simulations for estimates of the α-effect and differen-
tial rotation. Our study reveals that it can not be done
straightforward. There are many reasons to that con-
clusion. One of the reason is that calculation of the av-
eraged quantities like kinetic helicity and α requires the
intermediate physical scale, li , such that ld � li � L,
where ld is the dissipative scale, and L is the scale
of the liquid core. This is quite difficult task for the
3D simulations, which have still pure resolution. Note
also that separation of the scales, well adopted in the
astrophysical applications, is questionable point in the
geodynamo, where the magnetic spectrum is smooth
and continuous, and the intermediate scale can absent
at all. We also should not exclude possibility that some
more successful combination of parameters will improve
the situation. This problems requires exploration of the
phase space and it is a challenge for the cluster com-
puter systems. It will be the next step of the research
in the close future.
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