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Abstract. A theory of trapping gaseous
reactants by aerosol particles is developed for
arbitrary regimes of reactant transport. The
dependence of the trapping efficiency on the
particle size is found as a function of sticking
probability of the reactant molecules to the
particle surface. The key point of this
consideration is the solution of the transport
equation in the free-molecule zone (where the
collisions between the reactant molecules and
the molecules of the carrier gas can be ignored)
and further matching the reactant concentration
profiles at the interface separating the
free-molecule and diffusion zones. The flux
conservation allows for the formulation of the
boundary condition that determines the reactant
surface concentration. The latter depends on
the total flux of the reactant and thus the
trapping efficiency of the reactant molecules
occurs to be dependent on the nature of
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in-particle chemical processes. The first-order
chemical reaction serves as a good example of
such dependence, where all characteristics of the
trapping efficiency can be found analytically.

1 Introduction

Trace gases are commonly recognized to react actively
with the aerosol component of the Earth atmosphere.
Substantial changes to the atmospheric chemical cycles
due to the presence of aerosol particles in the atmo-
sphere make us to look more attentively at the nature
of the processes depending on the activity of the atmo-
spheric aerosols (see e.g., [Seinfeld and Pandis, 1998]
and extensive citation therein).

The processes of gas-particle interactions are usu-
ally the first-order chemical reactions going along the
pathway:

A + P −→ (AP), (1)

where A, P , and (AP) stand respectively for a reactant
molecule, an aerosol particle, and the final product re-
sulting from the reaction Eq. (1).

As an example we refer to ozone, a key substance
for the Earth atmosphere protecting living systems on



our planet against the Sun UV radiation. Since the
discovery of the ozone hole in the mid-seventies [Far-
man et al., 1985], it has been well established that
ozone is subject to periodical large depletion events at
the Poles and to continuous decay in the global strato-
sphere. The amplitudes of ozone level variations are
partly driven by heterogeneous chemical reactions oc-
curring on the surfaces of polar stratospheric clouds
which transform the stable reservoir molecules into rad-
ical precursors (see [Lohman and Feichter, 2005] and
references therein). The processes like Eq. (1) are
also of importance in the aerosol catalysis [Feng et al.,
2001; Weber et al., 1999].

The interconnections between uptake and mass ac-
commodation efficiencies were studied in refs [Davi-
dovits et al., 1991, 1995; Finlayson-Pitts and Pitts,
2000; Kulmala and Wagner, 2001; Laaksonen et al.,
2005]. The condensational aspects of the problem were
considered earlier in [Wagner, 1982]. The attempts of
theoretical interpretations were presented in [Clement
et al., 1996; Li and Davis, 1995; Qu and Davis, 2001;
Widmann and Davis, 1997]. Models of the uptake
process were proposed in [Smith et al., 2003; Wid-
mann and Davis, 1997; Worsnop, 2002]. Experimen-
tal measurements of the mass accommodation efficien-



cies of the aerosol particles are reported in [Li et al.,
2001; Winkler et al., 2004, 2006]. Two recent pa-
pers [Ammann and Pöschl, 2007; Pöschl et al., 2007]
summarize the present state of art in this problem and
try to unify existing very diverse terminologies applied
by different authors working in this direction.

As showed the review article [Clement, 2007] and
just cited paper [Pöschl et al., 2007] since the very
end of the last century the discrepancies in approaches
to the kinetics of uptake process almost disappeared.
The commonly accepted schemes now assume the se-
quential transports of the gaseous reactant through the
gas phase, then through the interface, then in the bulk
of the particle including possible chemical reactions in-
side accompanying the transport process.

This paper considers only a part of the uptake pro-
cess: the reactant transport through the gas phase.
The transport in the gas phase is normally assumed to
be described by semi-empirical theories that connect
the total flux of the reactant with its concentration far
away from the particle.

The main idea of this paper is to replace the semi-
empirical approaches by a theory that applies the Boltz-
mann kinetic equation with Maxwell’s boundary con-
ditions corresponding to non-complete sticking of the



reactant molecule to the particle surface and to derive
analytically the expression for the efficiency of trapping
the reactant molecule. It is possible to do for not very
huge cost. The final formula is even simpler than those
proposed by the semi-empirical approaches. The theory
itself is also simple and transparent.

Let a particle of the radius a initially containing NB

molecules of a substance B be embedded to the at-
mosphere containing a reactant A. The reactant A is
assumed to be able to dissolve in the host particle ma-
terial and to react with B . The particle will begin to
consume A and will do this until the pressure of A over
the particle surface will be enough for blocking the dif-
fusion process. Our task is to find the consumption rate
of the reactant A as a function of time. Next, we focus
on sufficiently small particles whose size is compara-
ble to or less than the mean free path of the reactant
molecules in the carrier gas. The mass transfer to such
particles is known to depend strongly on the dynamics
of the interaction between incident molecules and the
particle surface. In particular, the value of the proba-
bility Sp for a molecule to stick to the particle surface
is suspected to strongly affect the uptake kinetics.

The first simplest theories of mass transfer from gas
to particles applied the continuous models (the particle



radius a much exceeds the condensing molecule mean
free path l). Such models were not able to describe very
small particles with sizes less than l . It was quite natu-
ral therefore to try to attack the problem starting with
the free-molecule limit, i.e., to consider a collisionless
motion of condensing molecules Respective expressions
for the condensational efficiencies. had been derived
and can be found in [Davis, 1983; Fuchs and Sutugin,
1971; Li and Davis, 1995; Seinfeld and Pandis, 1998;
Williams and Loyalka, 1991]. The important step di-
rected to reconciliation of these two limiting cases was
done by Fuchs [Fuchs, 1964] who invented the flux-
matching theory.

The flux-matching theories are well adapted for study-
ing the mass transfer to aerosol particles in the transi-
tion regime. Although these theories mostly had not a
firm theoretical basis, they successfully served for sys-
tematizing numerous experiments on growth of aerosol
particles, and until now these theories remain rather ef-
fective and very practical tools for studying kinetics of
aerosol particles in the transition regime (see [Fuchs,
1964; Seinfeld and Pandis, 1998; Williams and Loy-
alka, 1991]. On the other hand, these theories are
always semi-empirical ones, i.e., they contain a param-
eter that should be taken from somewhere else, not



from the theory itself.
We introduce the readers to the ideology of the flux-

matching theories by considering the condensation of
a nonvolatile vapor onto the surface of an aerosol par-
ticle. The central idea of the flux-matching procedure
is a hybridization of the diffusion and the free-molecule
approaches. The concentration profile of a condensing
vapor far away from the particle is described by the
diffusion equation. This profile coincides with the real
one down to the distances of order the vapor molecule
mean free path. A limiting sphere is then introduced
wherein the free-molecule kinetics governs the vapor
transport. The equality of the fluxes in the both zones
and the continuity of the concentration profile at the
surface of the limiting sphere define the flux and the
condensing vapor concentration at the particle surface.
The third parameter, the radius of the limiting sphere,
cannot be found from such a consideration.

We apply a more sophisticated approach of ref [Lush-
nikov and Kulmala, 2004] (LK, in what follows). This
approach starts with an exact expression for the trap-
ping efficiency. This step, however, does not solve the
whole problem. The point is that this exact expression
contains two unknown functions that should be found
on solving the respective transport equation. Still this



formal step is of great use, because some ideas come
up how to introduce efficient approximations. We also
introduce a limiting sphere outside of which the den-
sity profile of condensing vapor can be described by the
diffusion equation. Inside the limiting sphere we solve
the collisionless Boltzmann equation subject to a given
boundary condition at the particle surface and put an
additional condition: the vapor concentration at the
surface of the limiting sphere coincides with that found
from the solution of the diffusion equation. This con-
dition has also been applied in older theories. The next
step forward was done in LK, where the authors no-
ticed that even in absence of any potential created by
the particle the vapor profile in the free-molecule zone
depends on the radial coordinate. We thus gain the
possibility to call for the continuity of the first deriva-
tives of the profile on both sides of the limiting sphere.
This additional condition defines the radius of the lim-
iting sphere. This very ideology applies here for deter-
mining the efficiency of trapping the reactant molecules
by an aerosol particle as a function of the mass accom-
modation coefficient.

The remainder of this paper is divided as follows. We
first formulate an exact flux-matching theory of parti-
cle trapping. This is just a formal step allowing one



to express the reactant flux toward a particle of radius
a in terms of a generalized trapping efficiency α(a,R)
depending on the radius R of a limiting sphere. At the
distances exceeding R the reactant profile is described
by the diffusion equation. The requirement of the con-
tinuity of the profile at r = R gives an expression for
the ion flux J(a). At this step we specify neither the
radius of the limiting sphere nor the form of the gener-
alized efficiency. The details of this exact formulation
are given in the next Section where the approxima-
tions are also formulated. These approximations are
i. The generalized efficiency α(a,R) is approximated
by its free-molecule value found from the solution of
the collisionless kinetic equation at a < r < R ., ii. At
R < r < ∞ the reactant profile is described by the
solution to the steady-state diffusion equation corre-
sponding to a given ion flux J ., iii. The conditions of
matching the profiles and their first derivatives allow
us to determine R . Section “Results” lists the final
results without the derivations. All necessary mathe-
matical details are collected in four Appendices. Sec-
tion “Discussion” contains the discussion of the present
approach. Here the results on the trapping efficiency
are compared with earlier ones. It is shown that al-
though the size dependence of the trapping efficiency



differs drastically of those given by the semi-empirical
theories, the numerical differences are small. Conclud-
ing Section “Conclusion” summarizes the results of the
paper.

2 Basic Equations

Below an exact (formal) expression for the condensa-
tional efficiency is derived. This expression eventually
contains some parameters that can be defined only on
solving the full transport problem. However, it is pos-
sible to introduce simple approximations and to restore
these parameters approximately. This program will be
performed in this Section.

2.1 Trapping Efficiency

Let us assume that the reactant molecules (A-molecules)
move toward the particle which captures them (see Eq.
(1)). The further fate of reactant molecules depends
on the results of chemical processes that proceed inside
the particle. Let us denote n± the concentration of A
right above (n+) or right underneath (n−) the particle
surface. Already here we emphasize that the surface



concentrations n± depend on the nature of physico-
chemical processes on the surface and inside the par-
ticle. Let then n∞ be the number concentration of A
molecules far away from the particle. It is commonly ac-
cepted that the concentration difference n∞−n+ drives
a flux of A toward the particle surface. The particle be-
gins to grow and to change its chemical composition.
The rate of change in the number of A-molecules in-
side the particle is equal to the total molecule flux J –
the total number of molecules deposited per unit time
at the particle surface minus the rate of consumption
of A by chemical processes inside the particle. The A-
molecules are assumed to escape from the particles. In
steady-state conditions the flux J can be written as

J = α(a)(n∞ − n+). (2)

Here α(a) is the capture efficiency and a is the particle
radius. Of course, α depends on the mass accommo-
dation coefficient Sp. The latter is defined as the prob-
ability for an A molecule to stick to the particle. For
completely sticking particles Sp = 1.

The interface and in-particle processes fix the value
of n+. In the simplest case of the first-order chemical
reactions n+ is a linear function of J , n+ = Jψ(a) and



thus

J =
α(a)n∞

1 + α(a)ψ(a)
. (3)

Here ψ(a) is a function depending on the nature of the
chemical process and independent of J . An example
of such function will be given below. If the chemical
process inside the particle is nonlinear, then the func-
tion ψ(a) depends on J and J is then a solution to the
transcendent equation Eq. (3).

The central problem is thus to find α(a). Equations
(2) and (3) allow also for the consideration of normal
condensation/evaporation. In this case A-molecules are
the same as the molecules of the host particle and α(a)
is referred to as the condensational efficiency.

2.2 Flux-Matching Exactly

Below we extend the flux-matching LK theory to the
case of condensation of neutral molecules onto the par-
ticle surface with n+ 6= 0 and Sp ≤ 1.

To this end we generalize Eq. (2) as follows:

J = α(a,R)(nR − n+), (4)

where nR is the vapor concentration at a distance R
from the particle center. Indeed, the total flux J is in-
dependent of R , and we have the right to consider the



condensation from any finite distance. It is important
to emphasize that nR is (still) an arbitrary value intro-
duced as a boundary condition at the distance R (also
arbitrary) to a kinetic equation which is necessary to
solve for defining the generalized condensational effi-
ciency α(a,R). The value of α(a,R) does not depend
on nR − n+ because of linearity of the problem.

Assuming that we know the exact vapor concentra-
tion profile nexact(r) corresponding to the given flux J
from infinity we can express J in terms of nexact as
follows:

J = α(a,R)(nexact(R)− n+). (5)

If we choose R sufficiently large then the diffusion ap-
proximation reproduces the exact vapor concentration
profile,

nexact(R) = nc(R) = − J

4πDR
+ n∞, (6)

with nc(r) being the steady-state vapor concentration
profile corresponding to a given total molecular flux J .

On combining Eqs (4), (5) and (6) gives,

J = α(a,R)

(
n∞ − n+ −

J

4πDR

)
.

We solve this equation with respect to J and obtain



the expression for α(a),

α(a) =
α(a,R)

1 +
α(a,R)

4πDR

. (7)

Equation (7) is exact if R � l , where l is the mean
free path of condensing molecules in the carrier gas. In
order to find α(a,R) and R we must call on approxi-
mations.

2.3 Approximations

Three rather natural approximations were introduced
in LK:

• The free-molecule expression approximates α(a,R).

α(a,R) ≈ αfm(a,R),

where αfm(a,R) is the trapping efficiency in the
free molecule zone.

• The radius R of the limiting sphere is found from
the condition: “the diffusion flux from the diffusion
zone is equal to the diffusion flux from the free
molecule zone”. The diffusion flux is defined from



Fick’s law. Hence,

dnfm(r)

dr

∣∣∣∣
r=R

=
dnc(r)

dr

∣∣∣∣
r=R

, (8)

where nfm(r) is the vapor concentration profile found
in the free-molecule zone for a < r < R and nc(r)
is the concentration profile in the diffusion zone.
The distance R separates the zones of the free-
molecule and the continuous regimes.

• The total flux of A in the free-molecule zone is
equal to the total flux in the diffusion zone.

3 Results

Here we list the results of the present consideration.
The details of derivations are given in Appendices A–
F.

• The total flux J is given by Eq. (3),

J =
α(a)n∞

1 + α(a)ψ(a)
.

This result is exact and does not thus depend on
the approximations done in calculating the trapping
efficiency α(a). The function ψ(a) is independent



of J in the case of the first-order physicochemical
processes at the surface and inside the particle.

• The total flux of A toward the particle is given by
Eq. (2) with

α(a) =
Spπa

2vT

1 +
Sp
2

[√
1 +

(avT
2D

)2
− 1

] (9)

• The derivation of this equation is given in Ap-
pendix C (Eq. (C2)) The radius of the limiting
sphere is (see Eq. (C1)),

R =

√
a2 +

(
2D

vT

)2

. (10)

It is independent of Sp.

• The trapping efficiency in the free molecule zone
(see Eq. (B5)),

αfm(a,R) =
αfm

b+(R)
,

where
αfm = Spπa

2vT , (11)



is the free-molecule condensational efficiency,

vT =
√

8kT/πma

is the thermal velocity of condensing molecules, ma

is the molecular mass, and

b−(r) =
Sp
2

(
1−

√
1− a2

r2

)
(12)

b+(r) = 1− b−(r) = 1−
Sp
2

(
1−

√
1− a2

r2

)

• The reactant concentration profile n(r) is,

n(r) =
nR − n+

b+(R)
b+(r) + n+ (13)

inside the limiting sphere (at r < R) (see Eq.
(B8)) and

n(r) = n∞ −
R

r
(n∞ − nR) (14)

outside the limiting sphere (at r ≥ R). Here

nR = n(R) = n∞ −
α(a)(n∞ − n+)

4πDR
. (15)



The function n(r) is continuous at r = R together
with its first derivative. On excluding nR from Eqs
(14) and (15) yields the profile in the form:

nr − n+

n∞ − n+
=

(
1− α(a)

4πDR

)
b+(r)

b+(R)

at r < R and

nr − n+

n∞ − n+
= 1− α(a)

4πDr

at r ≥ R . Figure 1 displays the profile at three
different dimensionless particle sizes.

4 Discussion

4.1 Trapping Efficiency

Although Eq. (2) is widely used in the aerosol liter-
ature, we never saw its derivation for the transition
regime. This equation is known to hold in the con-
tinuous limit, where it is readily derived on solving
the diffusion equation or in the free-molecule regime,
where it is a consequence of the balance of in- and
out-fluxes J = Jin − Jout . Here Jin = πa2vTn∞ and
Jout = πa2vTn+.



Figure 1. The concentration profiles of A at different
particle sizes avT/D = 1, 5, 20. Here ∆(r) = n(r) − n+
and ∆ = n∞ − n+.

In order to derive Eq. (2) in the transition regime
let us split the distribution function into two terms,
f = f0 + JfJ , where f0 is the part of the distribution
independent of the reactant flux J and the second term
is linear in J because of the linearity of the transport
equation (A1) with respect to f . Now we rewrite Eq.
(A1) in the integral form,

f = ffm + D−1R[f ], (16)



where D−1 is the inversion of the differential operator
standing on the left-hand side of Eq. (A1) and ffm is the
solution to Eq. (B1) with the boundary condition Eq.
(A5). Let then the triangle brackets < · > stand for the
operation that produces the flux from f , < f >= J .
Let us apply this operator to both sides of Eq. (16).
On introducing B =< D−1RfJ > gives,

J = πa2vT (n∞ − n+) + BJ

or

J =
πa2vT (n∞ − n+)

1− B
.

This is exactly Eq. (2).
Very simple dimension considerations allow us to es-

tablish a general form of the condensational efficiency.
There are three parameters that govern the condensa-
tion kinetics. They are: the particle radius a, the ther-
mal velocity of the condensable gas molecules vT =√

8kT/πm, and their diffusivity D. Their dimensions
are: a = [cm], vT = [cm/s], and D = [cm2/s]. Be-
cause α(a) = [cm3/s], we can write

α(a) = Spπa
2vTφ(avT/D). (17)

The multiplier π normalizes φ(0) to unity, φ(0) = 1
(see Eq. (11)). The function φ(x) is not yet known. In



order to find this function one should solve the Boltz-
mann kinetic equation that describes the time evolu-
tion of the coordinate-velocity distribution of the con-
densing molecules, then find the flux of the condensing
molecules toward the particle, and then extract α(a).
This is not easy to do in general form. However, the
limiting situations are well analyzable [Fuchs, 1964;
Hidy and Brock, 1971; Seinfeld and Pandis, 1998;
Williams and Loyalka, 1991]: φ(x) = 1 at small x
and φ(x) = 4/x as x −→∞.

It is remarkable that all existing approaches give sim-
ilar dependence on the sticking probability,

φ(x) =
1

1 + SpF (x)
(18)

Three approximate expressions for F (x) are considered
below.

1. The LK approximation (see Eq. (9),

FLK (x) =
1

2

(√
1 +

x2

4
− 1

)
.

The ideas on the derivation of this equation are
given in Appendices (A–C).

2. The Fuchs-Sutugin approximation [Fuchs and Su-
tugin, 1971]. In deriving this equation these au-



thors divided the space into two parts: free-molecule
zone and the diffusion zone. Then they used the
principle of constancy of the total flux. The ra-
dius of the limiting sphere (the spherical surface
dividing the space into free molecular and diffu-
sion zones) is found from the numerical solution
of the Bhattnagar-Gross-Krook kinetic equation by
[Sahni, 1966]. In addition, they replaced α(a,R)
by αfm. Their final result is widely known,

FFS(x) =
x(x + 1.13)

4(x + 3)
.

3. Dahnecke’s approximation [Dahnecke, 1983],

fD(x) =
x2

4(x + 2)
.

The last two approximations are discussed in [Seinfeld
and Pandis, 1998].

Figure 2 compares these three approximation. It is
seen that the difference is not great.



Figure 2. The universal function F entering the expres-
sion for the trapping efficiency (see Eqs (17) and (18). It
is seen that three different approximations give very close
results.

4.2 Concentration Profile and
Concentration Jump

Let us write down the concentration profile in the free
molecule regime (Eq. (B4)),

nfm(r) = n∞ − (n∞ − n+)b−(r). (19)



This spectrum possesses two remarkable features: i. it
depends on the radial coordinate (the function b+(r)
is given by Eq. (12) and, ii. nfm(a) 6= n+. From Eq.
(19) one finds,

nfm(a) =
Sp
2
n+ +

(
1−

Sp
2

)
n∞.

If we define the concentration jump as ∆a = n(a)−n+

then in the free molecule regime we find,

∆fm
a =

(
1−

Sp
2

)
(n∞ − n+).

On combining Eqs (13) and (15) yields the concen-
tration jump in general case.

∆a = na − n+ = (n∞ − n+)

(
1− α(a)

4πDR

)
b+(a)

b+(R)
.

or
∆a

∆
=

2− Sp

2 + Sp

[√
1 +

(avT
2D

)2
− 1

] , (20)

where ∆ = n∞ − n+ Figure 3 shows the dependence
of the reduced concentration jump ∆a/∆ on a. The
concentration profiles are presented in Figure 1.



Figure 3. Reduced concentration jump (Eq. 20) vs
reduced particle size. It drops down to zero as the particle
size grows.

5 Conclusion

The main goal of this paper was the extension of the
LK flux-matching theory to a more wide set of bound-
ary conditions to the Boltzmann equation. In addi-
tion to the LK consideration here we introduced the
non-zero concentrations of the reactant at the parti-
cle interface and the mass accommodation coefficient
– the probability for incident molecules to leave on the



particle surface after the first contact. In contrast to
previous flux-matching theories the LK approximation
starts from the solution of the collisionless Boltzmann
equation and matches exact free-molecule concentra-
tion profile with that found from the solution of the
steady-state diffusion equation. The matching distance
is then found from the condition of equality of the dif-
fusion fluxes in the diffusion and free-molecule zones.
The final result is the expression for the trapping effi-
ciency has been tested against previous semi-empirical
theories, numerical solution of the full Boltzmann equa-
tion, and the experimental data (see Figure 4). The
disagreement with the experimental data does not ex-
ceed 7%. Figure 5 clearly demonstrates the efficiency
of the LK method. Compared are the reactant con-
centration profile found from the numerical solution of
the Boltzmann equation (see [Williams and Loyalka,
1991]) and that obtained within the LK approximation.
The main advantage of the proposed approach is the
possibility to apply it to other kinetic problems like par-
ticle charging (see LK), condensation and charging in
external force fields, energy and momentum transfer to
a single aerosol particle.

Acknowledgment. This research was funded by the Ministry of

Education and Science of RF under Grant No. 14.515.11.0012.



Figure 4. Trapping efficiency vs particle size. Shown
are the experimental results of Ray et al., [1988], the semi-
empirical curves from [Dahnecke, 1983; Fuchs and Sutu-
gin, 1971] and the present paper. The solid line is the
result of a numerical solution of the kinetic equation (see
[Williams and Loyalka, 1991]).



Figure 5. Concentration profile vs distance from the
particle center. Solid curve results from the numerical so-
lution of the Boltzmann equation (see [Williams and Loy-
alka, 1991]). The second curve is the analytical result of
this paper (see Eqs 13 and 14).



Appendix A: Kinetic Equation

In this Section we discuss the general statement of the
problem of the condensible molecule transport toward
a particle and the approximate approaches. Although
this problem had been considered many times and by
many authors, we return to it because fairly recently LK
proposed a very progressive replacement of variables in
the kinetic equation. Still we allow ourself to repeat
here some key steps.

New Variables

The description of the molecular transport toward a
spherical particle in the transition regime requires the
solution of the steady-state Boltzmann kinetic equa-
tion,

vi
∂f

∂xi
− 1

m

∂U

∂xi
· ∂f
∂vi

= R[f ]. (A1)

Here f (r, v) is the distribution of the condensible mole-
cules over coordinates and velocities, m is the molecular
mass, U is the potential of a field created by the par-
ticle (it can be van der Waalse forces or electrostatic
interaction of incident molecules (or ions) with the par-
ticle, and R[f ] is the collision term (a linear functional



of f ). The convention on the summation over repeat-
ing indexes is adopted. We also assume that the con-
centration of the condensible species is low, and the
condensation process does not perturb the equilibrium
state of the carrier gas.

In what follows only spherical particles are consid-
ered. The potential U is then a function of r = |r| and
the molecular distribution depends only on three vari-
ables, the molecule radial coordinate r , absolute molec-
ular velocity v = |v|, and µ = cos θ, with θ being the
angle between r and v directions.

In spherically symmetric systems another set of vari-
ables is more convenient. Namely, instead of r , v ,µ we
introduce r ,E , L, with

E = mv2/2 + U(r), L = m|[v × r]| = mvr
√

1− µ2

(A2)
being the total energy and the angular momentum of
the incident molecule respectively. In these variables
the Boltzmann equation takes the form:

svr
∂fs
∂r

= R[f ],

where

vr =

√
2

m

(
E − U(r)− L2

2mr2

)
=

1

mr

√
L2(r)− L2



is the radial molecular velocity, s = ±1 is an auxil-
iary variable defining the direction of molecular motion
along the radial coordinate (s = −1 corresponds to the
direction toward the particle), and

L(r) =
√

2mr2(E − U(r)).

The molecular flux toward the particle is expressed in
terms of f as follows:

J = −
∫

d3v

∫
(v · dS)f (r, v).

The integrals on the right-hand side (rhs) of this equa-
tion are taken over all v and the surface of a sphere
of radius r . The sign “−” in the definition of the flux
makes J positive. In spherical coordinates the total flux
is,

J = −8π2r2

∞∫
0

v3dv

1∫
−1

f (r , v ,µ)µdµ.

The rule for replacing the variables (r , v ,µ) −→ (r ,E , L)
readily follows from definition (A2) of the variables E
and L,

2πv2dvdµ −→ π

m2r

∑
s

dEdL2√
L2(r)− L2

.



The restrictions on the intervals of integration over E
and L2 are defined by two conditions, L2 ≤ L2(r) and
L2(r) ≥ 0. The latter one is equivalent to E ≥ U(r).

The expressions for the flux J and the concentration
n(r) in r ,E , L variables look as follows:

J = −4π2

m3

∑
s

s

∫
dE

∫
dL2fs(r ,E , L). (A3)

n(r) =
π

m2r

∑
s

∫
dE

∫
dL2√

L2(r)− L2
fs(r ,E , L).

(A4)

Boundary Condition

We conclude this Section by formulating the boundary
condition to Eq. (A1). For the following it is conve-
nient to introduce notation,

θr = θ(L2
r − L2), θ+ =

θ(L2 − L2
a) θ− = 1− θ+ = θ(L2

a − L2).

Here θ(x) is the Heaviside step function (θ(x) = 1 at
x ≥ 1 and 0 otherwise). The factor θ− cuts off the
molecules flying past by the target particle.



In what follows we will use the Maxwell boundary
condition in the form:

f1(a,E , L) =

[
(1− Sp)f−1 +

1

2
Spn+

]
θ−. (A5)

Here Sp is referred to as the mass accommodation co-
efficient. The left-hand side of this equation gives the
distribution function of the molecules moving outward
from the particle surface. The part 1 − Sp of inward
moving molecules specularly rebounds from the par-
ticle surface (the first term on the right-hand side).
The second term describes the emission of the reac-
tant molecules from the particle.

In the particular case when the reactant molecules
do not experience chemical transformations inside the
particles, n+ = ne (equilibrium number concentration
over the particle surface), which means that all guest
molecules trapped by the particle thermalize and escape
from it having the Maxwell distribution over energies.

Appendix B: Free-Molecule Limit

Here we solve the kinetic equation without the collision
term,

svr
∂fs
∂r

= 0. (B1)



with the boundary condition (A5).
Let us write down the solution to (B1). It is,

fs =
1

2
M(E )θr [ñ∞θ+(δs,1 + δs,−1)+

ñ∞θ−δs,−1 + Spn+θ−δs,1]. (B2)

The first term describes all molecules flying past by the
particles. They fly in both radial directions, s = +1
and s = −1. The second term describes the molecules
flying from infinity and hitting the particle. The third
term describes the motion of the molecules that flew
from infinity and recoiled from the particle surface and
the molecules evaporated from the particle. Here we
introduced ñ∞. The point is that free-molecule concen-
tration ñ∞ does not correspond to that of the reactant
in the diffusion zone and serves as a fitting parameter
allowing us to make the concentration nfm(R) equal to
nc(R) (see the derivation of Eq. (B7)).

Equation (B2) can be cast into the form:

fs =
1

2
M(E )θr [ñ∞ + θ−Spθ−(ñ∞ − n+)]δs,1], (B3)

where δq,s stands for the Kroneker delta and

M(E ) = 2π(πkT )−3/2
√
Ee−E/kT



is the Maxwellian. In deriving Eq. (B3) the evident
identities

δs,1 + δs,−1 = 1 and θ+ + θ− = 1

were used.
Equations (A5) and (A4) yield,

nfm(r) = ñ∞ −
1

2
Sp(ñ∞ − n+)

(
1−

√
1− a2

r2

)
=

ñ∞ − (ñ∞ − n+)b−(r). (B4)

The following chain of equalities gives α(a,R).

J = αfm(ñ∞ − n+) = αfm(a,R)(nR − n+) =

αfm(a,R)[ñ∞ − (ñ∞ − n+)b−(R)− n+]

= αfm(a,R)(ñ∞ − n+)[1− b−(R)]

or
αfm(a,R) =

αfm
b+(R)

. (B5)

From Eqs (A3) and (B3) we find,

αfm = Spπa
2vT .

Now we must express n(r) via nR instead of ñ∞. We
have,

nfm(r) = ñ∞b+(r) + n+b−(r). (B6)



From Eq. (B6) we have

nfm(R) = ñ∞b+(R) + nab−(R).

We solve this equation with respect to ñ∞ and find

ñ∞ =
nR − nab−(R)

b+(R)
. (B7)

Now

n(r) =
nR − n+b−(R)

b+(R)
b+(r) + n+b−(r).

Next,

nR − n+b−(R)

b+(R)
=

nR − n+ + n+ − nab−(R)

b+(R)
=

nR − n+

b+(R)
+ n+.

And finally,

n(r) =
nR − n+

b+(R)
b+(r) + n+. (B8)

In deriving this equation we used the identity
b+(r) + b−(r) = 1.



Appendix C: Flux Matching for Sp 6= 1

Now we find R from the condition Eq. (8)

dnfm
dr

=
na − SpnR

1− Spb(R)

db

dr

db

dr

∣∣∣∣
R

=
a2

R3
√

1− a2/R2
.

Equation for R ,

αfm
2πDR

=
a2

R
√
R2 − a2

or
vT
2D

=
1√

R2 − a2
.

From here we have

R =
√
a2 + ζ2 (C1)

with

ζ =
2D

vT
.

We had already

α =
α(a,R)

1 +
Spα(a,R)

4πDR

.



On collecting all above we find

α =
αfm

1− Spb(R) +
Spαfm
4πDR

.

After some transformation one finally has,

α(a) =
αfm

1 +
Sp
2

√1 +
a2

ζ2
− 1

 . (C2)

Appendix D: First-Order Chemical

Reaction Inside the Particle

Here we give an example of the function ψ(a) appear-
ing in Eq. (3). To this end we consider a steady-state
diffusion-reaction kinetics inside the particle. The re-
spective equation has the form:

DL∆nL(r)− κnL(r) = 0. (D1)

Here DL is the diffusivity of the reactant inside the
particle, nL(r) is the reac.tant radial profile inside the
particle, and κ is the reaction constant. We use

J = −DL
∂nL
∂r

∣∣∣∣
r=a



as the boundary condition to Eq. (D1). This condition
provides the independence of nL of time. The solution
to this equation can be found elsewhere. The result is,

n(a) = n− =
J

4πDLa(λa cothλa − 1).

Next, n− = Hn+ (the Henri law) with H being the
dimensionless Henri constant. Finally we find

ψ(a) =
1

4πDLaH(λa cothλa − 1)
.

Here λ =
√
κ/DL.

Appendix E: Second-Order Chemical

Reaction

Let there be two gaseous reactants A and B . Their
concentrations far away from the particles are nA∞ and
nB∞. The reactants molecules are assumed to react
inside the particles. The reaction product is immedi-
ately dissolved from the particle. We also assume that
the steady-state expressions for the total fluxes can be
used. The balance equations inside the particle look as



follows:

∂[A]

∂t
= DA∆[A]− κ[A][B].

∂[B]

∂t
= DB∆[B]− κ[A][B].

On integrating these equations over the particle volume
and applying the Gauss theorem yield,

∂NA

∂t
= JA − κ

∫
[A][B]d3r

∂NB

∂t
= JB − κ

∫
[A][B]d3r .

The integration on the RHS of above equations goes
over the particle volume. Here NX =

∫
[X ]d3r is the

total number of X molecules (X = A,B) in the par-
ticle. Next, we introduce the spatial profiles of the
reactants, [X ] = NX (t)fX (r , t). It is easy to see that
the combinations

J± =
1

2
(JA ± JB) and N± =

1

2
(NA ± NB)

meet the equations,

∂N−
∂t

= J−



and
∂N+

∂t
= J+ + κ̃J2

−t
2 − κ̃N2

+. (E1)

Here we introduced κ̃ = κ
∫
fAfBd

3r . In what follows
we assume that κ̃ is independent of time. This ap-
proximation is not bad because the functions fX are
normalized to unity,

Equation (E1) in the dimensionless form looks as
follows:

∂y

∂τ
= 1 + σ2τ2 − y2, (E2)

where y(τ) = N+

√
κ̃/J+, τ = t

√
J+κ̃, and σ =

J−/J+. It is remarkable that κ̃ does not enter Eq.
(E2).

The general solution to Eq. (E2) can be expressed in
terms of the confluent hypergeometric functions. But
in two particular cases the solution can be found in a
more analyzable form. At σ = 0 we have,

y(τ) = tanh τ .

At σ = 1/3 the solution is more complex,

y(τ) =
τ

3
+

1

τ

[
1− e−τ

2/3

1 + R(τ)

]
,



where

R(τ) = τ

τ∫
0

1− e−s
2/3

s2
ds.

In principle, it is not a problem to solve Eq. (E2) nu-
merically at arbitrary value of the governing parameter
σ.

Appendix F. Dimensionality Analysis

The diffusion-reaction equation describes the spatial re-
actant profile inside the particle,

D∆c − κcn+1 = 0.

We introduce the scales,

c = c0c̃ , r = aρ0r̃ .

Then

D

a2ρ2
0κc

n
0

∆̃c̃ − c̃n+1 = 0.

The boundary condition to this equation is,

J = −Ddrc or
Jρ0a

c0D
= − dc̃

d r̃

∣∣∣∣
r̃=ρ0

.



We define the scale ρ0 from the condition,

ρ0 =

√
D

a2κcn0
.

We find also

c
1+n/2
0 =

J√
Dκ

1

c̃ ′(1/ρ0)
. (F1)

From last two equations we can find the scales ρ0 and
c0. The function c̃ meets the equation

∆̃c̃ − c̃n+1 = 0. (F2)

The boundary conditions to this equation are

c̃(0) <∞, c̃(1/ρ0) = 1.

It is not very difficult to estimate ρ0 numerically.
For a binary reaction and a particle of 0.1µm one finds
ρ0 ∝ 105. Hence, Eq. (F1) can be rewritten as

c
1+n/2
0 =

J√
Dκ

1

c̃ ′(0)
.

From Eq. (F2) we find

c̃ ′(1/ρ0) ≈ c̃ ′′(0)ρ0

and

c̃ ′′(0) =
c̃n(0)

3
.



Finally we have

c
1+n/2
0 =

J√
Dκ

1

c̃ ′(0)
.

From Eq. (F2) we find

c0 =

(
3J

c̃n(0)κa

) 1
1+n

.
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