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Abstract. The article deals with the problem
of recognition of anomalies in time series with
Raleigh- and tsunami-wave disturbances in
signals from hydrostatic pressure sensors (HPS)
of ocean bottom seismic stations in the
framework of tsunami warning problem. The
proposed method of spectral-time analysis
(STAN) of signals from the sensors was based
on computing the evaluations of functions of
frequency-time distribution, decision-making
procedures and non-linear filtering for the above
problem. The developed STAN method was
applied to recognize time intervals with Rayleigh
and tsunami-wave disturbances in HPS signals.
The proposed STAN method is quite universal
and can be used to solve problems of
recognition of anomalies in time series of
geophysical data of different nature.
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1. Introduction

Recognition of time series in geophysical data, result-
ing from various geophysical processes, is one of the
most important areas in modern physics of the Earth.
Typically, activation of geophysical processes manifests
itself in the formation of anomalies in time series of
geophysical data. Thus, short-time sections in seismo-
grams, corresponding to the processes of earthquakes,
are frequently seen as abnormal, and time series of
the Earth’s magnetic field magnetograms, correlating
to the processes of magnetic storms, also can be inter-
preted as anomalies.

The general principles of the task of recognition of
anomalies in time series of geophysical data refer to
[Gvishiani and Dubois, 2002]. In the works [Agayan
et al., 2005; Bogoutdinov et al., 2010; Gvishiani et
al., 2008] the methods of recognition of anomalies in
time series of geophysical data (magnetic in general)
were developed. The methods were based on a non-
standard approach, which combines a significant expan-
sion of the initial requirements for the objects of recog-
nition and several provisions of the problem in terms of
fuzzy mathematics.



The article confirms the results, obtained in the above
works and describes the recognition task from the stand-
point of spectral-time analysis (STAN) [Boashash, 2003;
Cohen, 1989; Hlawatch and Auger, 2008], which is an
effective tool for the study of non-stationary vibration
signals. It should be noted that different STAN meth-
ods have been successfully used in geophysics, for ex-
ample, [Dzienovski et al., 1969; Kedrov and Kedrov,
2006; Kedrov et al., 1998; Lander et al., 1973]. The
present article is an attempt to combine STAN with
decision-making procedures and the subsequent non-
linear filtering. The article’s results are aimed at solv-
ing the problem of automatic detection of geophysical
signals and are close to the content of the work [Bara-
nov, 2007], which describes an alternative technology
based on wavelet transforms.

The algorithms of recognition, described in the arti-
cle, make it possible to compare the results of recogni-
tion of anomalies based on fuzzy mathematics, wavelet
transforms and the proposed STAN method.

Recognition of time series with Raleigh- and tsunami-
wave disturbances (further, LR and TW-disturbances)
in signals from hydrostatic pressure sensors (HPS) of
ocean bottom seismic stations (BSS), containing sig-
nals from earthquakes and tsunamis, is an actual task



of geophysics. Raleigh waves are formed in the foci of
earthquakes, they are distributed on the bottom sur-
face; HPS signals with such components are early pre-
cursors of tsunami. Tsunami-wave disturbances, de-
tected in HPS signals from BSS, which are located far
away from the shore, may be taken as direct precursors
of a tsunami.

BSS with HPS have many advantages over tradi-
tional bottom stations, which are equipped with seis-
mographs [Bashilov et al., 2008]. Certain information
on the characteristics of signals and the construction of
the BSS with HPS are given in [Dykhan et al., 1981;
Kulikov and Gonzales, 1995; Levin and Nosov, 2005].
Detailed information about the construction of Ameri-
can BSS with HPS of DART-2 type (Deep-ocean Ass-
esment and Reporting of Tsunami) is placed on the site
[www.ndbc.noaa.gov]. BSS, integrated into the global
system [www.ndbc.noaa.gov], can provide an effective
tsunami warning and make a significant contribution to
the study of seismicity of the Earth. These statements
are based on the fact that ≈ 80% of all earthquakes oc-
cur beneath the bottom of the oceans and seas, and a
network of exclusive land-based seismic stations cannot
record earthquakes without gaps.

The present article describes a system of sequen-

www.ndbc.noaa.gov
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tial algorithms, providing recognition of time series
with Rayleigh- and tsunami-wave disturbances in the
records of BSS signal. The first STARTS-1 algo-
rithm (Spectral-Time Analysis of Rayleigh-waves and
Tsunami-waves Signals) calculates the evaluation of
time-frequency distributions (TFD) functions and im-
plements the decision making procedure (d.m.p.) for
recognition by comparing the evaluations and reference
TFD functions. The second STARTS-2 algorithm pro-
duces a non-linear filtering of the d.m.p. results to
improve the accuracy of estimating the boundaries of
the anomalous areas and to reduce the probabilities of
false alarms and omissions.

Some results of this work are described in [Getmanov
et al., 2011]. The material of this work in a certain way
correlates with [Chebrov and Gusev, 2010; Poplavsky
et al., 1988].

2. Signals of Hydrostatic Pressure

Sensors, Raleigh- and Tsunami-Wave

Disturbances

The records of signals of the National Geophysical Data
Center (NGDC-USA) were used, available in the In-



ternet [www.ngdc.noaa.gov]. For the calculations the
record of HPS signal from the DART-2 buoy 46,419,
located in the northern part of the U.S. West Coast
(coordinates 48.4785◦N, 129.3593◦W) at a depth of
≈ 4138 m, was used. The period of record was ≈
3.5 years (2006.10.25–2010.03.11), quantization step
T = 15 s, recording capacity ≈ 7, 000, 000 numbers.
The measurement accuracy of HPS from DART-2 has
adopted a value of about 1 mm of water column
[www.paroscientific.com].

Figure 1 shows the implementation of the oscilla-
tion signal y(Ti), obtained after filtration of the ad-
ditive low-frequency tidal components in the HPS sig-
nal for the points 6, 503, 000 ≤ i ≤ 7, 752, 000; units
of measurement – meters of water column. Observa-
tions dates: 2009.08.25, 21 h. 20 min. – 2010.03.30,
17 h. 25 min. The number of points for the signal
in Figure 1 was 1,249,000, the period of observations
≈ 216.8 days. It was clear that the values of noise
components of pressure in the HPS signal were equal,
on average, to 3÷5 mm. Several time series of the ob-
served signal y(Ti) corresponded to different variants
of disturbances.

Let us consider the variants of disturbances, observed
in HPS signals. Let us use the information on the

www.ngdc.noaa.gov
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physics of signals [Meining et al., 2005; Tompson,
2009] and online materials [www.ngdc.noaa.gov]. The
implemented version of disturbance in the first approx-
imation can relate to a certain time in the signal area.

2.1. Disturbance for variant 1 related to the Raleigh
(LR) wave processes. LR-disturbances in the signal
occur due to submarine earthquakes (sometimes ter-
restrial earthquakes) and Rayleigh surface transverse
waves that propagate on the bottom surface at a speed
of 2000–3000 m s−1. LR-disturbances in the observed
signal are caused by pressure fluctuations of the aquatic
environment due to seismic effects in the vicinity of
BSS.

Figure 2 shows the signal y(Ti)for the points
6, 703, 100 ≤ i ≤ 6, 709, 900, which allows to see the
LR-disturbance at a larger scale, registered by BSS as
oscillation impulses in the area of the points
6, 704, 100 ≤ i ≤ 6, 704, 250.

Figure 3 shows the same signal y(Ti) for
6, 704, 165 ≤ i ≤ 6, 704, 340 at a larger scale. An
oscillatory impulse of the LR-disturbance can be seen,
related to the average point i ≈ 6, 704, 200. The LR-
disturbance consists of a number of high-frequency os-
cillations with increasing and then decreasing ampli-

www.ngdc.noaa.gov
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tudes; LR-disturbance, in this case, takes time, approx-
imately equal to 375 s.

2.2. The disturbance for variant 2 is related to
tsunami waves–TW-random oscillations, with dura-
tions, which are equal, on average, from 100÷ 300 to
3000÷5000 points ((1500÷4500)− (4500÷7500) s).
In Figure 2 the TW-disturbance corresponds to the sec-
tion with the points ≈ 6, 706, 750 ≤ i ≤ 6, 708, 000.
A TW-disturbance is caused by wave oscillations at the
vicinity of BSS. The reason of oscillations relates to
seismic vertical oscillatory motions of the ground near
the earthquake source, which are then transferred into
the aqueous medium and distributed in the water at a
rate of 200 m s−1. As a general rule, sites with LR- and
TW-disturbances in the observed signals are separated
in time due to their different propagation velocities.
Figure 4 on a larger scale shows a TW-disturbance,
which begins at the points i ≈ 6, 706, 750. We see
that a TW-disturbance corresponds to low-frequency
oscillations. When considering at a fine time scale, a
TW-disturbance is characterized by a sharp leading
edge and a flat trailing edge.

2.3. In case of the variant 3, the disturbance is of
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a double nature. CGM-oscillations–Continuous Ground
Motion – are caused by micro-seismic broadband noise
from the bottom surface. TWGM (TW + Ground
Motion) oscillations are caused by a combination of
a tsunami wave and random noise of seismic effects
on the bottom surface. The amplitudes of oscilla-
tions for TWGM-disturbances can vary widely; TWGM-
disturbances are implemented at sufficiently large time
intervals. In Figure 2 the intervals 6, 703, 100 ≤ i ≤
6, 704, 100; 6, 704, 250 ≤ i ≤ 6, 706, 750 correspond to
CGM-disturbances, TWGM-disturbances correspond to
points i > 6, 708, 000. In a number of cases, TWGM-
disturbances are a continuation of TW-disturbances.
CGM and TWGM-disturbances, in general, are broad-
band random oscillations.

It must be kept in mind that a real picture, con-
sisting of a set of options for disturbances in the ob-
served signals from the BSS can be quite complicated,
for example, when registering vibrations from several
simultaneous earthquakes, etc.

LR and TW-oscillations differ in their frequency char-
acteristics from CGM and TWGM-oscillations; they take
significantly less time than CGM and TWGM-oscillations.
Therefore, in relation to the entire signal, time series
with LR, and TW-disturbances, for further convenience



of terminology will be interpreted as anomalies.
In this paper we consider the problem of recognition

of time series with anomalies of Rayleigh and tsunami-
wave disturbances in HPS signals. These signals are
non-stationary with time-varying spectral characteris-
tics. For their recognition we use the STAN algorithm
combined with the d.m.p. algorithms and nonlinear
filtering.

3. STAN and Recognition of Anomalies

in Time Series of HPS Signals

We present the necessary information from the spectral-
time analysis (STAN) and formulate the general prob-
lem of recognition. Let us consider the model descrip-
tions of the initial signal and anomalies for the contin-
uous case.

We assume that the initial HPS signal x(t), which
generates time series of geophysical data, is defined on
a time interval of observation t0 ≤ t ≤ tf . We also
assume that anomalous disturbances in the signal are
located in the sections, which are given by initial and
final moments of time (t1l , t2l), l = 1, 2, ... , L – the
number of anomalies, Figure 5.



Figure 5. Location of anomalies.

The moments of time t, not located in the anoma-
lous sections, will be considered as belonging to non-
anomalous sections of the records. Thus we can assume
that the initial time interval t0 ≤ t ≤ tf consists of sets
of anomalous and non-anomalous sections.

For the signal x(t) we make a provision for its fre-
quency representation based on the Fourier transform
C (jω). The basis of the STAN algorithm consists of
the so-called functions of time-frequency distributions
(TFD) P(ω, t), defined in the simplest case, in the
rectangle ω ∈ Ω, t ∈ T , T = {t : (t0 ≤ t ≤ tf )},
Ω = {ω : (ω0 ≤ ω ≤ ωf )}. The TFD functions are
functions of two variables – time and frequency. The
physical meaning of TFD functions follows from the
relations P(ω, t)dtdω = dE∫ ∞

−∞

∫ ∞
−∞

P(ω, t)dtdω = E

which determine a value dE of a signal energy at-
tributable to a time interval (t, t + dt) and frequency



range (ω,ω + dω), and the total energy of signal E .
It should be noted that the TFD function and value of
the instantaneous signal power calculated in the time
and frequency domains are connected by the obvious
relations

∫ ∞
−∞

P(ω, t)dt = |C (jω)|2

∫ ∞
−∞

P(ω, t)dω = |x(t)|2

Let us introduce, using the time points tn, n =
1, ... , n0, tn0 = tf small local time intervals dtn =
{t : (tn−1 ≤ t ≤ tn)} for t0 ≤ t ≤ tf . Let us deter-
mine in local intervals ω ∈ Ω, t ∈ dtn the local TFD
functions Pn(ω, t), which are equal to zero outside the
local intervals – Pn(ω, t) = 0, for t /∈ dtn. The re-
lation P(ω, t) =

∑n0
n=1 Pn(ω, t) must be fulfilled, and

its physical meaning is obvious. TFD function can be
discrete in time and frequency P(ωk , tn)

Pk ,n(ω, t) = P(ωk , tn), ωk−1 ≤ ω ≤ ωk , tn−1 ≤ t ≤ tn

Pk ,n(ω, t) = 0, ω < ωk−1, ω > ωk , t < tn−1, t > tn



P(ω, t) =

k0∑
k=1

n0∑
n=1

Pk ,n(ω, t)

At the same time we introduce the normalized TFD
functions P̄(ωk , tn) and formulate the restricting set
for the indices (k , n) ∈ Ξ and the optimization task

(k◦, n◦) = arg{max
k ,n∈Ξ

P(ωk , tn)}

P̄(ωk , tn) = P(ωk , tn)/P(ωk◦, tn◦)

Let us consider the signal x(t), for which the defini-
tion of anomalous and non-anomalous time series will
be based on local TFD functions’ evaluations P◦n(ω, t).
We assume that anomalous and non-anomalous time
series are determined by evaluations of local TFD func-
tions with different spectral characteristics. In practice,
these situations are fairly common.

Let the local intervals dtn1, dtn2, dtn3 correspond to
the evaluations of local TFD functions P◦n1 = P◦n1(ω, t),
P◦n2 = P◦n2(ω, t), P◦n3 = P◦n3(ω, t). We suppose that
the interval dtn1 is an anomaly and intervals dtn2, dtn3

are non-anomalous. We introduce, in the conventional
sense, the distance functional ρ(·, ·) between the eval-
uations of TFD functions that belong to different time



series of records. We assume that for local intervals,
belonging to non-anomalous series, TFD functions’ eval-
uations are almost identical; this means that
ρ(P◦n2,P◦n3) ≈ 0. For local intervals, belonging to
anomalous and non-anomalous series, the TFD func-
tions differ significantly; this means that ρ(P◦n1,P◦n2)�
0, ρ(P◦n1,P◦n3)� 0.

Thus, the solution to the problem of recognition of
anomalies in HPS signals is based on a calculation of
local TFD and distance functional. We use the differ-
ences in the spectral parameters of signals in anomalous
and non-anomalous intervals of time series.

4. Formulation of the Problem of Recog-

nition of Anomalies in Time Series

We will use the standard methods of decision-making,
which is usually applied to solving problems of statis-
tical radio engineering [Levin, 1989]. Let us use the
method, based on pattern recognition in frequency do-
main [Joswig, 1990; Savchenko, 1997]. Let us as-
sume that a local reference TFD function P0(ω, t) is
independent of a local interval and is determined by a
vector of parameters P0. We introduce the functional



ρ0(P◦n(ω, t),P0(ω, t)) = ρ0(P◦n(ω, t),P0), ω ∈ Ω, t ∈
dtn, equivalent of the distance between the evaluation
of a local TFD function and local reference TFD func-
tion, which is accepted as a critical functional.

In this case the d.m.p. is based on the calculation
of decisive functional for verification of the following
conditions: if ρ0(P◦n ,P0) = 1 – then a local interval
dtn belongs to an anomaly, if ρ0(P◦n , P0) = 0 – a local
interval dtn is located within a non-anomalous section
of a record.

Evaluation of boundary coordinates of anomalies is
based on the analysis of the d.m.p. results for a se-
quence of local intervals and is probabilistic in nature.
The decision whether a local interval belongs to an
anomalous section or not, in practice, is always associ-
ated with errors: sometimes it is decided that an inter-
val belongs to an anomalous section, and in reality it
doesn’t, and vice versa.

Formulation of the recognition problem comprises
two components.

• Evaluation of coordinates of the boundaries of ano-
malies

(t◦1l , t
◦
2l), l = 1, 2, ... , L◦

• Evaluation of a probability of anomalies in the in-



tervals (t◦1l , t
◦
2l)

p◦l , l = 1, 2, ... , L◦

5. Evaluation of TFD Functions

Let us proceed from a continuous to a discrete argu-
ment. Let us represent a time series of discrete signal
as

y(Ti) = y(i), N0 ≤ i ≤ Nf

where N0, Nf are the numbers of the initial and final
points of an initial signal x(t), T – a quantization step.
We introduce a system of local intervals. Let dN be
a number of points in a local interval and the num-
ber of the local boundary points of intervals satisfy the
equations

N1n = N0 + (n − 1)dN

N2n = N1n + dN − 1, n = 1, ... , n0 (1)

where n0 – number of local intervals, n0 = ent((Nf −
N0)/dN), function ent(·) – the integer part. Points,
satisfying the condition N1n ≤ i ≤ N2n belong to the
local interval n.



Let us consider the computing of sliding discrete
Fourier transforms (DFT) [Lyons, 2007] for an initial
signal. Each local interval will correspond to a N-points
DFT-sliding interval. For the DFT-sliding interval with
the step of sliding dN we assign the boundary points
N̄1n, N̄2n. The interval corresponds to the local interval
n

N̄1n = N1n − (N − dN)/2, N̄2n = N̄1n + N − 1 (2)

Let us formulate observations in the DFT-sliding inter-
vals

yn(s) = y(N̄1n + s), s = 0, ... ,N − 1, n = 1, ... , n0

We write the expression for the coefficient of the DFT
for the signal points in the n-th sliding DFT-interval
and we apply the weighted Hanning window W (s), s =
0, ... ,N − 1 [Getmanov, 2010]

Cn(k) =
1

N

N−1∑
s=0

yn(s)W (s)e
−j

2π(k − 1)s

N

k = 1, ... ,N/2, n = 1, ... , n0 (3)



The index k defines the discrete DFT-frequencies ∆ω =
2π/NT , ωk = ∆ω(k − 1), k = 1, ... ,N/2. We take
the expression

P◦(ωk , tn) = C ∗n (k)Cn(k), k = 1, ... ,N/2

n = 1, ... , n0, P◦(k , n) = P◦(ωk , tn) (4)

as the evaluation P◦(k , n) of a local TFD function in
points k , n, corresponding to discrete frequencies ωk
and local intervals tn.

6. TFD Functions Evaluation for HPS

Signals with LR and TW-Disturbances

Let us analyze a HPS signal and consider a kind of TFD
functions for sections with LR and TW-disturbances.

Figure 6 shows the evaluation of the normalized TFD
function P̄◦(k , n), corresponding to a case of LR. The
interval 6, 704, 150 ≤ i ≤ 6, 704, 250 was taken where
it was known a priori about a LR-disturbance; we used
the N = 32-dimensional DFT for calculating the TFD
with sliding step dN = 2. Figure 5 shows that the
values of evaluated TFD are concentrated in a high-
frequency area for indices k ≈ 10− 16.



Figure 6. TFD function for LR-disturbance.

Figure 7 shows the normalized TFD function P̄◦(k , n),
corresponding to a TW case. The interval 6, 707, 125 ≤
i ≤ 6, 707, 205 was examined, the TFD dimension
N = 32, sliding step dN = 2. We see that the TFD
values are concentrated in a low-frequency area for in-
dices k ≈ 1− 5.

It can be concluded from Figure 6 and Figure 7 that
LR-disturbances correspond to low-frequency TFD.



Figure 7. TFD function for TW-disturbance.

The conclusions are in compliance with the physics
of LR and TW-processes. This conclusion can apply,
after analyzing other intervals, to the entire signal
6, 000, 000 ≤ i ≤ 7, 600, 000.



7. Decision-Making Procedures and In-

dication Functions

7.1. Let us consider a case of high-frequency TFD
functions, corresponding to LR-disturbances. Let P̄1R ,
P̄2R , k0R , N , P3R be the configuration parameters for
the proposed d.m.p. The first four parameters P̄1R ,
P̄2R , k0R , N determine a reference normalized TFD
function, the parameter P3R defines the maximal value
for the TFD function evaluation. We calculate relations
for n = 1, ... , n0, in order to formulate a correct d.m.p.,
k1R = k0R + 1

P̄1MR,m(n) = max P̄◦m
1≤k≤k0R

(k , n)

P̄2MR,m(n) = max P̄◦m
k1R≤k≤N/2

(k , n)

P3MR,m(n) = maxP◦m
1≤k≤N/2

(k , n) (5)

The proposed d.m.p., providing that the n local in-
terval belongs to an anomalous section with a LR-
disturbance, is related to computing the logical expres-
sion PR(n) using (5) for n = 1, ... , n0



PR(n) = (P̄1MR,m(n) < P̄1R)
⋂

(P̄2MR,m(n) >

P̄2R)
⋂

(P3MR,m(n) > P3R) (6)

The formulae (6) have a quite clear physical meaning
In this case the d.m.p. is to check the joint implemen-
tation of the inequalities (6) and calculation of the indi-
cator coefficient IR(n): if the logical expression PR(n)
(6) is correct, then the value IR(n) = 1 is accepted;
otherwise – IR(n) = 0.

The sequence IR(n), n = 1, ... , n0, consisting of ze-
ros and ones, is divided into m0 indication intervals of
equal size, equal to dNR , m0dNR = n0. Initial and final
points of an indication interval with the number m can
be calculated in the obvious way:

N1R(m) = N0 + dNR(m − 1)

N2R(m) = N1R + dNR , m = 1, 2, ... ,m0 (7)

Using (7) and the values IR(n) the LR-indication func-
tion α0R(m) is calculated for each indication interval



α0R(m) =
1

dNR

N2R(m)∑
n=N1R(m)

IR(n), m = 1, 2, ... ,m0 (8)

7.2. Similarly, let us consider a case of low-frequency
TFD functions, corresponding to TW-disturbances. Let
P̄1T , P̄2T , k0T ,N ,P3T be setup parameters. For n =
1, ..., n0 we calculate the relations for TW, k1T = k0T +
1

P̄1MT ,m(n) = max P̄◦m
1≤k≤k0T

(k , n)

P̄2MT ,m(n) = max P̄◦m
k1T≤k≤N/2

(k , n)

P3MT ,m(n) = maxP◦m
1≤k≤N/2

(k , n) (9)

The proposed d.m.p. related to the fact that the
local interval n belongs to an anomalous section with
a TW-disturbance is implemented on the basis of cal-
culating the local expression PT (n) for n = 1, ... , n0



PT (n) = (P̄1MT ,m(n) > P̄1T )
⋂

(P̄2Mt,m(n) <

P̄2T )
⋂

(P3MT ,m(n) > P3T ) (10)

The formulae (10), same as (6), are quite obvious and
can be used for computing the indication coefficient
IT (n): if the logical expression PT (n) (10) is true,
then IT (n) = 1; otherwise – IT (n) = 0. The result-
ing sequence IT (n), n = 1, ... , n0 is divided into dNT ,
m0dNT = n0 – dimensional m0 indicator intervals. Ini-
tial and final points of the indication interval m can be
calculated in a similar way (7):

N1T (m) = N0 + dNT (m − 1)

N2T (m) = N1T + dNT , m = 1, 2, ... ,m0 (11)

Applying (7) and IT (n) we calculate the TW-indication
function α0T (m) for each indication interval

α0T (m) =
1

dNT

N2T (m)∑
n=N1T (m)

IT (n), m = 1, 2, ... ,m0(12)



The indication functions α0R(m), α0T (m) can be in-
terpreted as the probability of the presence of LR and
TW-disturbances at the indication interval m. Calcu-
lation of indication functions is connected with calcu-
lation of indicator functions associated with probability
errors – possible false detection and omissions (proba-
bilistic errors).

TFD functions evaluation (paragraph 5), implemen-
tation of d.m.p. and calculation of indication functions
(paragraph 7) is made on the basis of STARTS-1 algo-
rithm.

8. Non-Linear Amplitude and Time-Lati-

tude Filtering of Indication Functions

To reduce the size of the text, the index “p” in the for-
mulae will take two values: 1. “p”= R ; 2. “p”= T , and
correspond to the cases of LR and TW-disturbances.

The initial data for the implementation of the non-
linear filtering algorithm – the d.m.p. results are pre-
sented as the indicator function α0p(m), m ∈ M , M =
{m : (1 ≤ m ≤ m0)} from (8) or (12). The purpose of
nonlinear filtering of indicator functions is to improve



the accuracy of the boundaries of anomalous intervals
and probabilities evaluations. The proposed algorithm
for nonlinear filtering of indicator functions is based
on threshold filtering algorithms and algorithms for fil-
tering pulse sequences with pulse modulation, known
from radio engineering [Baskakov, 2005; Gonorovsky,
2006]. To a certain extent, this algorithm is heuristic,
it requires a selection of configuration parameters and
possible improvements. The implementation of nonlin-
ear filtering is based on the STARTS-2 algorithm.

8.1. The first stage of the algorithm consists of real-
ization of the nonlinear amplitude filtering of indicator
function and is related to removing the small values
from the sequence α0p(m), m ∈ M , M = {m : (1 ≤
m ≤ m0)}. Removal of small values is done on the
basis of comparison with the threshold α0p, and the
sequence’s formation α1p(m), m ∈ M

α1p(m) = 0, if α0δ(m) < α0p

α1p(m) = α0p(m), if α0δ(m) ≥ α0p,m ∈ M (13)

The threshold’s value parameter is adjustable and its
correct choice ensures the optimal correlation between



the probabilities of detection and error.

8.2. The algorithm’s second stage relates to im-
plementation of non-linear time-latitude filtering of in-
dicator function and is related to removing sites with
a small amount of zero and positive values in the se-
quence from the first stage α1p(m).

For implementation of the second stage we use a
function Ψ{·, ·}, which calculates bordering points of
intervals with zero and positive values of sequence el-
ements of a certain input sequence y(m),m ∈ M and
the corresponding numbers of these intervals. In gen-
eral, we get

Ψ{y(m), m ∈ M} = {(m1,l0m2,l0), l0 = 1, ..., L0,

(m1,l1,m2,l1), l1 = 1, ..., L1}

where (m1,l0,m2,l0) – bordering points of intervals with
zero elements, L0 – number of intervals with zero el-
ements, (m1,l1,m2,l1) – bordering points of intervals
with positive elements, L1 – number of intervals with
positive elements. The calculations on the function
Ψ{·, ·} are done with the help of the CABORD (Cal-
culation of Borders) algorithm.

Let us apply the function Ψ{·, ·} to α1p(m), we find



the bordering points of intervals with positive elements
and the corresponding numbers of these intervals

Ψ{α1p(m),m ∈ M} = {(m1,l1,m2,l1), (14)

l1 = 1, ... , L1}
Further, on the basis of (14) the set L1 of the inter-
vals’ numbers can be found, which satisfy the inequality
(m2,l1 − m1,l1) < dm1p, where dm1p is the setup pa-
rameter. Then the corresponding set M1 is formed on
the basis of indices m

L1 = {l1 : (m2,l1 −m1,l1 < dm1p, l1 = 1, ... , L1)}

M1 = {m : (m1,l1 ≤ m ≤ m2,l1, l1 ∈ L1)} (15)

on its basis the interim sequence α2p(m) is formed,
where single (or rare) positive values in α1p(m) are
replaced by zeros

α2p(m) = 0, m ∈ M1;

α2p(m) = α1p(m), m ∈ M/M1 (16)

After that intervals with a small number of zeros are
removed from the sequence α2p(m). For this purpose



the function Ψ{·, ·} is used again for α2p(m), m ∈ M ,
for which the borders of intervals with zero elements
are defined

Ψ{α2p(m),m ∈} = ((m1,l0,m2,l0), (17)

l0 = 1, ... , L0)

and from (17) the corresponding sets L0,M0 are found,
taking into account the setup parameter dm2p.

L0 = {l0 : (m2,l0 −m1,l0 < dm2p, l0 = 1, ..., L0)}

M0 = {m : (m1,l0 ≤ m ≤ m2,l0, l0 ∈ L0)} (18)

The result of the non-linear filtering is represented as
the sequence ξ◦p(m)

ξ◦p(m) = α0p(m), m ∈ M0

ξ◦p(m) = α2p(m), m ∈ M/M0 (19)

9. System of Algorithms of Recognition

of Anomalies

The solution of our problem of recognition of abnor-
mal areas is based on algorithms for evaluation of the



boundaries of abnormal areas and calculation of the
probabilities.

The result of the filtering ξ◦p(m) is used, which is
transformed by the function Ψ{·, ·}, with the purpose
to find the sequence of borders of intervals with positive
elements (m◦1,l ,m

◦
2,l), l = 1, ... , L◦

Ψ{ξ◦p(m),m ∈ M} = (m◦1,l ,m
◦
2,l), l = 1, ... , L◦,

i = N0 + (m − 1)dN0, (i◦1,l , i
◦
2,l), l = 1, ... , L◦ (20)

Evaluation of probabilities of anomalies in the inter-
vals (m◦1,l ,m

◦
2,l), l = 1, ... , L◦, is done by the following

obvious formulae

p◦lp = (

m◦
2,l∑

m=m◦
1,l

α0p(m))/(m◦2,l −m◦1,l + 1),

l = 1, ... , L◦, αlp = p◦lp (21)

Calculation of the indicator function αp(i) for N0 ≤
i ≤ Nf is done by using (21)

αlp(i) = p◦lp for i ∈ (i◦1,l , i
◦
2,l),

αlp(i) = 0 for i /∈ (i◦1,l , i
◦
2,l), l = 1, ... , L◦,



αp(i) =

L◦
p∑

l=1

αlp(i) (22)

Thus, the STAN method for the present task of recog-
nition led to a sequential application of the STARTS-1
and STARTS-2 algorithms. Let us describe the proce-
dure.

In accordance with the STARTS-1 algorithm local
TFD functions are evaluated and implementation of
the d.m.p. coming to actions 1–3, which are related
to:

• Formation of systems of local and DFT – sliding
intervals, formulae (1), (2);

• Evaluation of local TFD functions, formulae (3),
(4);

• D.m.p. implementation and calculation of indica-
tor functions, formulae (5)–(8), (9)–(12).

For the STARTS-1 algorithm we list: input variables
– N0,Nf , dN , N , y(i),N0 ≤ i ≤ Nf ; setup parame-
ters – P̄1R , P̄2R , k0R , P3R ; output variables – α0R(m),
α0T (m), m = 1, 2, ... ,m0.

On the basis of the STARTS-2 algorithm the non-
linear filtering of indicator functions is done, which is



reduced to steps 1–3, which in their turn comprise:

• Amplitude filtering, formulae (13);

• Time-latitude filtering, formulae (14)–(19);

• Calculating the borders of evaluations of anomalies
and probabilities’ evaluations, formulae (20)–(22).

For the STARTS-2 algorithm we list: input vari-
ables – α0p(m), m = 1, 2, ... ,m0; setup parame-
ters – α0p, dm1p, dm2p; output variables – ξ◦p(m),
m = 1, 2, ... ,m0, (m◦1,l ,m

◦
2,l), l = 1, ... , L◦, p◦lp,

l = 1, ... , L◦, αp(i). The STARTS-2 algorithm uses
the results of the application of the CABORD algo-
rithm.

10. Testing of System of Recognition

Algorithms

We considered the filtered HPS signal y(i) = y(Ti)
from NGDC at a fixed time interval; N0 = 600, 001,
Nf = 7, 600, 000 – numbers of the initial and final
point of this interval. The signal was used for testing
the developed system of the STARTS-1 and STARTS-
2 sequential algorithms for recognition of anomalies in
time series with LR and TW-disturbances. The results
of the algorithms’ application were compared to the



Figure 8. Graph of indicator function αR(i) of recogni-
tion of intervals with LR-disturbances.

control data, received from NGDC.

10.1. Recognition of time series with LR-disturbances
was implemented. A fixed time interval was divided into
n0 = 3, 500, 000 dN = 2-dimensional local intervals.
Each of the local interval corresponded to DFT-sliding
intervals with dimension N = 32. dNR = 20 – number
of points of an indicator interval, m0 = 175, 000 –
number of indicator intervals. The fixing parameters
for d.m.p. took the values: P̄1R = 0.10, P̄2R = 0.3,
P3R = 0.0005, k0R = 10. For the setup parameters
of non-linear filtering we took the values αR0 = 0.4,
dm1R = 2, dm2R = 2.



Figure 8 shows the results of the algorithm’s appli-
cation in the form of a graph of the indicator function
αR(i), representing a set of vertical lines of different
height.

Table 1 comprises the data on recognition of
LR-disturbances. Columns 2, 3 show the coordinates of
the bordering points of intervals with LR-disturbances
from NGDC (i1NGDC, i2NGDC), which were calculated
with the help of a semi-automatic NGDC-algorithm,
based on the analysis of signals in time domain.
Columns 4, 5 show the coordinates of the bordering
points of intervals with LR-disturbances, calculated by
the system of algorithms, proposed by Organization of
the Russian Academy of Sciences Geophysical Center
(GC RAS). Column 6 shows the evaluations of probabil-
ities of LR-disturbances αlR in the intervals with calcu-
lated bordering points (i1,l , i2,l), l = 1, ... , L0, L0 = 13.

We note that the intervals #5 − 7 with LR-distur-
bances, according to Table 1, have been recognized
(their time resolution was realized); however, in Fig-
ure 7 these intervals are shown together. The pro-
posed algorithm has implemented a sufficiently precise
recognition of almost all the marked LR-disturbances.
It should be noted that in interval #11, in the points
6, 704, 179 ≤ i ≤ 6, 704, 246, mentioned by NGDC,
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there was really a LR-disturbance, which was weaker
than another LR-disturbance, located in the interval
6, 751, 311 ≤ i ≤ 6, 751, 352.

10.2. Recognition of time series with TW-disturban-
ces. A fixed time interval was divided into
n0 = 1, 750, 000 local intervals of the dimension dN =
4. Each of the local intervals corresponded to DFT-
sliding intervals of the dimension N = 32. We as-
sumed that dNT = 25 was the number of points of the
indicator interval, m0 = 70, 000 – the number of indi-
cator intervals. The setup parameters for d.m.p. took
the values: P̄1T = 0.5, P̄2T = 0.125, P3T = 0.004,
k0T = 5. The values of setup parameters of non-linear
filtering were αT0 = 0.4, dm1T = 2, dm2T = 2.

Figure 9 shows the graph of the indicator coefficient
αT (i) as a set of vertical lines of different height. Their
intersection with the horizontal axis of coordinates de-
termines the time boundary points of intervals with
TW-disturbances.

Table 2 shows the data on recognition of
TW-disturbances. Columns 2, 3 contain the coordi-
nates of the bordering points of TW-intervals, deter-
mined on the basis of the semi-automatic recognition
algorithm, based on the analysis of signals of time se-



Figure 9. Graph of the indicator function αr (i) of recog-
nition of intervals with TW-disturbances.

ries. The algorithm was developed by NDBC and the
data was transferred to GC RAS. Columns 4, 5 show the
coordinates of the bordering points of TW-intervals,
obtained on the basis of the algorithms of recognition,
developed by GC RAS. Column 6 contains the evalua-
tions of probabilities of recognition of TW-disturbances
αTl in the intervals with calculated bordering points
(i1,l , i2,l), l = 1, ... , L0, L0 = 4.
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11. Conclusion

The proposed STAN method for recognition of time se-
ries with LR and TW-disturbances, if we analyze the re-
sults of Figure 8 and Figure 9 and Table 1 and Table 2,
works quite well. Thus, for 13 + 4 = 17 disturbances
the proposed algorithms allowed only one false disclo-
sure and one omission, that allows us to conclude, at
a first approximation, that the level of false disclosures
and omissions was equal to ≈ 5.8%.

The effectiveness of the STAN method of recogni-
tion of time series with LR and TW-disturbances in
terms of minimizing the probability of false detections
and omissions, as well as possible refinements of the
boundary points of anomalies can be improved by op-
timizing the choice of setup parameters. Due the ad-
equate mathematical apparatus of TFD functions, the
proposed STAN method and the corresponding algo-
rithms have the potential to provide detection of weak
LR and TW-disturbances.

The proposed STAN method of recognition can be
used to automate the viewing of archives records of
observations from the BSS network and to ensure the
efficient solution of the tsunami warning problem.

The developed method of STAN-recognition is quite



versatile and enables the solution of problems of recog-
nition of anomalies in time series of geophysical data
of different nature.
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