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Method of spectral-time analysis for recognition of
anomalies in time series with Raleigh- and
tsunami-wave disturbances in signals from hydrostatic
pressure sensors of ocean bottom seismic stations
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The article deals with the problem of recognition of anomalies in time series with
Raleigh- and tsunami-wave disturbances in signals from hydrostatic pressure sensors
(HPS) of ocean bottom seismic stations in the framework of tsunami warning problem. The
proposed method of spectral-time analysis (STAN) of signals from the sensors was based
on computing the evaluations of functions of frequency-time distribution, decision-making
procedures and non-linear filtering for the above problem. The developed STAN method was
applied to recognize time intervals with Rayleigh and tsunami-wave disturbances in HPS
signals. The proposed STAN method is quite universal and can be used to solve problems of
recognition of anomalies in time series of geophysical data of different nature. KEYWORDS:
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1. Introduction

Recognition of time series in geophysical data, resulting
from various geophysical processes, is one of the most im-
portant areas in modern physics of the Earth. Typically,
activation of geophysical processes manifests itself in the
formation of anomalies in time series of geophysical data.
Thus, short-time sections in seismograms, corresponding to
the processes of earthquakes, are frequently seen as abnor-
mal, and time series of the Earth’s magnetic field magne-
tograms, correlating to the processes of magnetic storms,
also can be interpreted as anomalies.

The general principles of the task of recognition of anoma-
lies in time series of geophysical data refer to [Gvishiani and
Dubois, 2002]. In the works [Agayan et al., 2005; Bogout-
dinov et al., 2010; Gvishiani et al., 2008] the methods of
recognition of anomalies in time series of geophysical data
(magnetic in general) were developed. The methods were
based on a nonstandard approach, which combines a signifi-
cant expansion of the initial requirements for the objects of
recognition and several provisions of the problem in terms
of fuzzy mathematics.
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The article confirms the results, obtained in the above
works and describes the recognition task from the stand-
point of spectral-time analysis (STAN) [Boashash, 2003; Co-
hen, 1989; Hlawatch and Auger, 2008], which is an effective
tool for the study of non-stationary vibration signals. It
should be noted that different STAN methods have been suc-
cessfully used in geophysics, for example, [Dzienovski et al.,
1969; Kedrov and Kedrov, 2006; Kedrov et al., 1998; Lander
et al., 1973]. The present article is an attempt to combine
STAN with decision-making procedures and the subsequent
non-linear filtering. The article’s results are aimed at solving
the problem of automatic detection of geophysical signals
and are close to the content of the work [Baranov, 2007],
which describes an alternative technology based on wavelet
transforms.

The algorithms of recognition, described in the article,
make it possible to compare the results of recognition of
anomalies based on fuzzy mathematics, wavelet transforms
and the proposed STAN method.

Recognition of time series with Raleigh- and tsunami-wave
disturbances (further, LR and TW-disturbances) in signals
from hydrostatic pressure sensors (HPS) of ocean bottom
seismic stations (BSS), containing signals from earthquakes
and tsunamis, is an actual task of geophysics. Raleigh waves
are formed in the foci of earthquakes, they are distributed on
the bottom surface; HPS signals with such components are
early precursors of tsunami. Tsunami-wave disturbances,
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Figure 1. Filtered HPS signal for 6, 503, 000 ≤ 𝑖 ≤ 7, 752, 000.

detected in HPS signals from BSS, which are located far
away from the shore, may be taken as direct precursors of a
tsunami.

BSS with HPS have many advantages over traditional
bottom stations, which are equipped with seismographs
[Bashilov et al., 2008]. Certain information on the char-
acteristics of signals and the construction of the BSS with
HPS are given in [Dykhan et al., 1981; Kulikov and Gonzales,
1995; Levin and Nosov, 2005]. Detailed information about
the construction of American BSS with HPS of DART-2 type
(Deep-ocean Assesment and Reporting of Tsunami) is placed
on the site [www.ndbc.noaa.gov]. BSS, integrated into the
global system [www.ndbc.noaa.gov], can provide an effective
tsunami warning and make a significant contribution to the
study of seismicity of the Earth. These statements are based
on the fact that ≈ 80% of all earthquakes occur beneath the
bottom of the oceans and seas, and a network of exclusive
land-based seismic stations cannot record earthquakes with-
out gaps.

The present article describes a system of sequen-
tial algorithms, providing recognition of time series with
Rayleigh- and tsunami-wave disturbances in the records of
BSS signal. The first STARTS-1 algorithm (Spectral-Time
Analysis of Rayleigh-waves and Tsunami-waves Signals) cal-
culates the evaluation of time-frequency distributions (TFD)
functions and implements the decision making procedure
(d.m.p.) for recognition by comparing the evaluations and
reference TFD functions. The second STARTS-2 algorithm
produces a non-linear filtering of the d.m.p. results to
improve the accuracy of estimating the boundaries of the
anomalous areas and to reduce the probabilities of false
alarms and omissions.

Some results of this work are described in [Getmanov et
al., 2011]. The material of this work in a certain way corre-
lates with [Chebrov and Gusev, 2010; Poplavsky et al., 1988].

2. Signals of Hydrostatic Pressure Sensors,
Raleigh- and Tsunami-Wave Disturbances

The records of signals of the National Geophysical Data
Center (NGDC-USA) were used, available in the Inter-
net [www.ngdc.noaa.gov]. For the calculations the record
of HPS signal from the DART-2 buoy 46,419, located in
the northern part of the U.S. West Coast (coordinates
48.4785∘N, 129.3593∘W) at a depth of ≈ 4138 m, was
used. The period of record was ≈ 3.5 years (2006.10.25–
2010.03.11), quantization step 𝑇 = 15 s, recording capacity
≈ 7, 000, 000 numbers. The measurement accuracy of HPS
from DART-2 has adopted a value of about 1 mm of water
column [www.paroscientific.com].

Figure 1 shows the implementation of the oscillation
signal 𝑦(𝑇 𝑖), obtained after filtration of the additive low-
frequency tidal components in the HPS signal for the points
6, 503, 000 ≤ 𝑖 ≤ 7, 752, 000; units of measurement – me-
ters of water column. Observations dates: 2009.08.25,
21 h. 20 min. – 2010.03.30, 17 h. 25 min. The number of
points for the signal in Figure 1 was 1,249,000, the period
of observations ≈ 216.8 days. It was clear that the val-
ues of noise components of pressure in the HPS signal were
equal, on average, to 3 ÷ 5 mm. Several time series of the
observed signal 𝑦(𝑇 𝑖) corresponded to different variants of
disturbances.

Let us consider the variants of disturbances, observed in
HPS signals. Let us use the information on the physics of
signals [Meining et al., 2005; Tompson, 2009] and online
materials [www.ngdc.noaa.gov]. The implemented version of
disturbance in the first approximation can relate to a certain
time in the signal area.
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Figure 2. Filtered HPS signal for the points 6, 703, 100 ≤ 𝑖 ≤ 6, 709, 900.

2.1. Disturbance for variant 1 related to the Raleigh (LR)
wave processes. LR-disturbances in the signal occur due to
submarine earthquakes (sometimes terrestrial earthquakes)
and Rayleigh surface transverse waves that propagate on
the bottom surface at a speed of 2000–3000 m s−1. LR-
disturbances in the observed signal are caused by pressure
fluctuations of the aquatic environment due to seismic effects
in the vicinity of BSS.

Figure 2 shows the signal 𝑦(𝑇 𝑖)for the points 6, 703, 100 ≤
𝑖 ≤ 6, 709, 900, which allows to see the LR-disturbance at a
larger scale, registered by BSS as oscillation impulses in the
area of the points 6, 704, 100 ≤ 𝑖 ≤ 6, 704, 250.

Figure 3 shows the same signal 𝑦(𝑇 𝑖) for 6, 704, 165 ≤
𝑖 ≤ 6, 704, 340 at a larger scale. An oscillatory impulse of
the LR-disturbance can be seen, related to the average point
𝑖 ≈ 6, 704, 200. The LR-disturbance consists of a number of
high-frequency oscillations with increasing and then decreas-
ing amplitudes; LR-disturbance, in this case, takes time, ap-
proximately equal to 375 s.

2.2. The disturbance for variant 2 is related to tsunami
waves–TW-random oscillations, with durations, which

Figure 3. Signal with LR-disturbances at points 6, 704, 165 ≤ 𝑖 ≤ 6, 704, 340.

are equal, on average, from 100 ÷ 300 to 3000 ÷ 5000
points ((1500 ÷ 4500) − (4500 ÷ 7500) s). In Figure 2 the
TW-disturbance corresponds to the section with the points
≈ 6, 706, 750 ≤ 𝑖 ≤ 6, 708, 000. A TW-disturbance is caused
by wave oscillations at the vicinity of BSS. The reason of
oscillations relates to seismic vertical oscillatory motions
of the ground near the earthquake source, which are then
transferred into the aqueous medium and distributed in
the water at a rate of 200 m s−1. As a general rule, sites
with LR- and TW-disturbances in the observed signals are
separated in time due to their different propagation veloc-
ities. Figure 4 on a larger scale shows a TW-disturbance,
which begins at the points 𝑖 ≈ 6, 706, 750. We see that a
TW-disturbance corresponds to low-frequency oscillations.
When considering at a fine time scale, a TW-disturbance is
characterized by a sharp leading edge and a flat trailing edge.

2.3. In case of the variant 3, the disturbance is of a
double nature. CGM-oscillations–Continuous Ground Mo-
tion – are caused by micro-seismic broadband noise from
the bottom surface. TWGM (TW + Ground Motion) os-
cillations are caused by a combination of a tsunami wave
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Figure 4. Signal with TW-disturbance, starts at the point 𝑖 ≈ 6, 706, 750.

and random noise of seismic effects on the bottom sur-
face. The amplitudes of oscillations for TWGM-disturbances
can vary widely; TWGM-disturbances are implemented at
sufficiently large time intervals. In Figure 2 the intervals
6, 703, 100 ≤ 𝑖 ≤ 6, 704, 100; 6, 704, 250 ≤ 𝑖 ≤ 6, 706, 750
correspond to CGM-disturbances, TWGM-disturbances cor-
respond to points 𝑖 > 6, 708, 000. In a number of cases,
TWGM-disturbances are a continuation of TW-disturbances.
CGM and TWGM-disturbances, in general, are broadband
random oscillations.

It must be kept in mind that a real picture, consisting of
a set of options for disturbances in the observed signals from
the BSS can be quite complicated, for example, when reg-
istering vibrations from several simultaneous earthquakes,
etc.

LR and TW-oscillations differ in their frequency char-
acteristics from CGM and TWGM-oscillations; they take
significantly less time than CGM and TWGM-oscillations.
Therefore, in relation to the entire signal, time series with
LR, and TW-disturbances, for further convenience of termi-
nology will be interpreted as anomalies.

In this paper we consider the problem of recognition of
time series with anomalies of Rayleigh and tsunami-wave dis-
turbances in HPS signals. These signals are non-stationary
with time-varying spectral characteristics. For their recog-
nition we use the STAN algorithm combined with the d.m.p.
algorithms and nonlinear filtering.

3. STAN and Recognition of Anomalies in
Time Series of HPS Signals

We present the necessary information from the spectral-
time analysis (STAN) and formulate the general problem of
recognition. Let us consider the model descriptions of the
initial signal and anomalies for the continuous case.

We assume that the initial HPS signal 𝑥(𝑡), which gen-

erates time series of geophysical data, is defined on a time
interval of observation 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 . We also assume that
anomalous disturbances in the signal are located in the sec-
tions, which are given by initial and final moments of time
(𝑡1𝑙, 𝑡2𝑙), 𝑙 = 1, 2, . . . , 𝐿 – the number of anomalies, Figure 5.

The moments of time 𝑡, not located in the anomalous
sections, will be considered as belonging to non-anomalous
sections of the records. Thus we can assume that the initial
time interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 consists of sets of anomalous and
non-anomalous sections.

For the signal 𝑥(𝑡) we make a provision for its frequency
representation based on the Fourier transform 𝐶(𝑗𝜔). The
basis of the STAN algorithm consists of the so-called func-
tions of time-frequency distributions (TFD) 𝑃 (𝜔, 𝑡), de-
fined in the simplest case, in the rectangle 𝜔 ∈ Ω, 𝑡 ∈ 𝑇 ,
𝑇 = {𝑡 : (𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 )}, Ω = {𝜔 : (𝜔0 ≤ 𝜔 ≤ 𝜔𝑓 )}. The
TFD functions are functions of two variables – time and
frequency. The physical meaning of TFD functions follows
from the relations 𝑃 (𝜔, 𝑡)𝑑𝑡𝑑𝜔 = 𝑑𝐸∫︁ ∞

−∞

∫︁ ∞

−∞
𝑃 (𝜔, 𝑡)𝑑𝑡𝑑𝜔 = 𝐸

which determine a value 𝑑𝐸 of a signal energy attributable
to a time interval (𝑡, 𝑡+𝑑𝑡) and frequency range (𝜔, 𝜔+𝑑𝜔),
and the total energy of signal 𝐸 . It should be noted that the
TFD function and value of the instantaneous signal power
calculated in the time and frequency domains are connected
by the obvious relations

∫︁ ∞

−∞
𝑃 (𝜔, 𝑡)𝑑𝑡 = |𝐶(𝑗𝜔)|2

Figure 5. Location of anomalies.
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−∞
𝑃 (𝜔, 𝑡)𝑑𝜔 = |𝑥(𝑡)|2

Let us introduce, using the time points 𝑡𝑛, 𝑛 = 1, . . . , 𝑛0,
𝑡𝑛0 = 𝑡𝑓 small local time intervals 𝑑𝑡𝑛 = {𝑡 : (𝑡𝑛−1 ≤ 𝑡 ≤
𝑡𝑛)} for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 . Let us determine in local intervals
𝜔 ∈ Ω, 𝑡 ∈ 𝑑𝑡𝑛 the local TFD functions 𝑃𝑛(𝜔, 𝑡), which
are equal to zero outside the local intervals – 𝑃𝑛(𝜔, 𝑡) = 0,
for 𝑡 /∈ 𝑑𝑡𝑛. The relation 𝑃 (𝜔, 𝑡) =

∑︀𝑛0
𝑛=1 𝑃𝑛(𝜔, 𝑡) must be

fulfilled, and its physical meaning is obvious. TFD function
can be discrete in time and frequency 𝑃 (𝜔𝑘, 𝑡𝑛)

𝑃𝑘,𝑛(𝜔, 𝑡) = 𝑃 (𝜔𝑘, 𝑡𝑛), 𝜔𝑘−1 ≤ 𝜔 ≤ 𝜔𝑘, 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛

𝑃𝑘,𝑛(𝜔, 𝑡) = 0, 𝜔 < 𝜔𝑘−1, 𝜔 > 𝜔𝑘, 𝑡 < 𝑡𝑛−1, 𝑡 > 𝑡𝑛

𝑃 (𝜔, 𝑡) =

𝑘0∑︁
𝑘=1

𝑛0∑︁
𝑛=1

𝑃𝑘,𝑛(𝜔, 𝑡)

At the same time we introduce the normalized TFD func-
tions 𝑃 (𝜔𝑘, 𝑡𝑛) and formulate the restricting set for the in-
dices (𝑘, 𝑛) ∈ Ξ and the optimization task

(𝑘∘, 𝑛∘) = arg{max
𝑘,𝑛∈Ξ

𝑃 (𝜔𝑘, 𝑡𝑛)}

𝑃 (𝜔𝑘, 𝑡𝑛) = 𝑃 (𝜔𝑘, 𝑡𝑛)/𝑃 (𝜔𝑘∘ , 𝑡𝑛∘)

Let us consider the signal 𝑥(𝑡), for which the definition of
anomalous and non-anomalous time series will be based on
local TFD functions’ evaluations 𝑃 ∘

𝑛(𝜔, 𝑡). We assume that
anomalous and non-anomalous time series are determined
by evaluations of local TFD functions with different spec-
tral characteristics. In practice, these situations are fairly
common.

Let the local intervals 𝑑𝑡𝑛1, 𝑑𝑡𝑛2, 𝑑𝑡𝑛3 correspond to
the evaluations of local TFD functions 𝑃 ∘

𝑛1 = 𝑃 ∘
𝑛1(𝜔, 𝑡),

𝑃 ∘
𝑛2 = 𝑃 ∘

𝑛2(𝜔, 𝑡), 𝑃 ∘
𝑛3 = 𝑃 ∘

𝑛3(𝜔, 𝑡). We suppose that the
interval 𝑑𝑡𝑛1 is an anomaly and intervals 𝑑𝑡𝑛2, 𝑑𝑡𝑛3 are
non-anomalous. We introduce, in the conventional sense, the
distance functional 𝜌(·, ·) between the evaluations of TFD
functions that belong to different time series of records. We
assume that for local intervals, belonging to non-anomalous
series, TFD functions’ evaluations are almost identical; this
means that 𝜌(𝑃 ∘

𝑛2, 𝑃
∘
𝑛3) ≈ 0. For local intervals, belong-

ing to anomalous and non-anomalous series, the TFD func-
tions differ significantly; this means that 𝜌(𝑃 ∘

𝑛1, 𝑃
∘
𝑛2) ≫ 0,

𝜌(𝑃 ∘
𝑛1, 𝑃

∘
𝑛3) ≫ 0.

Thus, the solution to the problem of recognition of anoma-
lies in HPS signals is based on a calculation of local TFD
and distance functional. We use the differences in the spec-
tral parameters of signals in anomalous and non-anomalous
intervals of time series.

4. Formulation of the Problem of
Recognition of Anomalies in Time Series

We will use the standard methods of decision-making,
which is usually applied to solving problems of statistical ra-
dio engineering [Levin, 1989]. Let us use the method, based
on pattern recognition in frequency domain [Joswig, 1990;
Savchenko, 1997]. Let us assume that a local reference TFD
function 𝑃0(𝜔, 𝑡) is independent of a local interval and is de-
termined by a vector of parameters 𝑃0. We introduce the
functional 𝜌0(𝑃

∘
𝑛(𝜔, 𝑡), 𝑃0(𝜔, 𝑡)) = 𝜌0(𝑃

∘
𝑛(𝜔, 𝑡), 𝑃0), 𝜔 ∈ Ω,

𝑡 ∈ 𝑑𝑡𝑛, equivalent of the distance between the evaluation
of a local TFD function and local reference TFD function,
which is accepted as a critical functional.

In this case the d.m.p. is based on the calculation of de-
cisive functional for verification of the following conditions:
if 𝜌0(𝑃

∘
𝑛 , 𝑃0) = 1 – then a local interval 𝑑𝑡𝑛 belongs to an

anomaly, if 𝜌0(𝑃
∘
𝑛 , 𝑃0) = 0 – a local interval 𝑑𝑡𝑛 is located

within a non-anomalous section of a record.
Evaluation of boundary coordinates of anomalies is based

on the analysis of the d.m.p. results for a sequence of local
intervals and is probabilistic in nature. The decision whether
a local interval belongs to an anomalous section or not, in
practice, is always associated with errors: sometimes it is
decided that an interval belongs to an anomalous section,
and in reality it doesn’t, and vice versa.

Formulation of the recognition problem comprises two
components.

∙ Evaluation of coordinates of the boundaries of anoma-
lies

(𝑡∘1𝑙, 𝑡
∘
2𝑙), 𝑙 = 1, 2, . . . , 𝐿∘

∙ Evaluation of a probability of anomalies in the inter-
vals (𝑡∘1𝑙, 𝑡

∘
2𝑙)

𝑝∘𝑙 , 𝑙 = 1, 2, . . . , 𝐿∘

5. Evaluation of TFD Functions

Let us proceed from a continuous to a discrete argument.
Let us represent a time series of discrete signal as

𝑦(𝑇 𝑖) = 𝑦(𝑖), 𝑁0 ≤ 𝑖 ≤ 𝑁𝑓

where 𝑁0, 𝑁𝑓 are the numbers of the initial and final points
of an initial signal 𝑥(𝑡), 𝑇 – a quantization step. We intro-
duce a system of local intervals. Let 𝑑𝑁 be a number of
points in a local interval and the number of the local bound-
ary points of intervals satisfy the equations

𝑁1𝑛 = 𝑁0 + (𝑛− 1)𝑑𝑁

𝑁2𝑛 = 𝑁1𝑛 + 𝑑𝑁 − 1, 𝑛 = 1, . . . , 𝑛0 (1)

5 of 12



ES5003 getmanov: method of spectral-time analysis ES5003

Figure 6. TFD function for LR-disturbance.

where 𝑛0 – number of local intervals, 𝑛0 = ent((𝑁𝑓 −
𝑁0)/𝑑𝑁), function ent(·) – the integer part. Points, sat-
isfying the condition 𝑁1𝑛 ≤ 𝑖 ≤ 𝑁2𝑛 belong to the local
interval 𝑛.

Let us consider the computing of sliding discrete Fourier
transforms (DFT) [Lyons, 2007] for an initial signal. Each
local interval will correspond to a 𝑁 -points DFT-sliding in-
terval. For the DFT-sliding interval with the step of sliding
𝑑𝑁 we assign the boundary points �̄�1𝑛, �̄�2𝑛. The interval
corresponds to the local interval 𝑛

�̄�1𝑛 = 𝑁1𝑛 − (𝑁 − 𝑑𝑁)/2, �̄�2𝑛 = �̄�1𝑛 +𝑁 − 1 (2)

Let us formulate observations in the DFT-sliding intervals

𝑦𝑛(𝑠) = 𝑦(�̄�1𝑛 + 𝑠), 𝑠 = 0, . . . , 𝑁 − 1, 𝑛 = 1, . . . , 𝑛0

We write the expression for the coefficient of the DFT for
the signal points in the 𝑛-th sliding DFT-interval and we
apply the weighted Hanning window 𝑊 (𝑠), 𝑠 = 0, . . . , 𝑁 − 1
[Getmanov, 2010]

𝐶𝑛(𝑘) =
1

𝑁

𝑁−1∑︁
𝑠=0

𝑦𝑛(𝑠)𝑊 (𝑠)𝑒
−𝑗

2𝜋(𝑘 − 1)𝑠

𝑁

𝑘 = 1, . . . , 𝑁/2, 𝑛 = 1, . . . , 𝑛0 (3)

The index 𝑘 defines the discrete DFT-frequencies Δ𝜔 =
2𝜋/𝑁𝑇 , 𝜔𝑘 = Δ𝜔(𝑘 − 1), 𝑘 = 1, . . . , 𝑁/2. We take the
expression

𝑃 ∘(𝜔𝑘, 𝑡𝑛) = 𝐶*
𝑛(𝑘)𝐶𝑛(𝑘), 𝑘 = 1, . . . , 𝑁/2

𝑛 = 1, . . . , 𝑛0, 𝑃 ∘(𝑘, 𝑛) = 𝑃 ∘(𝜔𝑘, 𝑡𝑛) (4)

as the evaluation 𝑃 ∘(𝑘, 𝑛) of a local TFD function in points
𝑘, 𝑛, corresponding to discrete frequencies 𝜔𝑘 and local in-
tervals 𝑡𝑛.

Figure 7. TFD function for TW-disturbance.

6. TFD Functions Evaluation for HPS
Signals with LR and TW-Disturbances

Let us analyze a HPS signal and consider a kind of TFD
functions for sections with LR and TW-disturbances.

Figure 6 shows the evaluation of the normalized TFD
function 𝑃 ∘(𝑘, 𝑛), corresponding to a case of LR. The in-
terval 6, 704, 150 ≤ 𝑖 ≤ 6, 704, 250 was taken where it
was known a priori about a LR-disturbance; we used the
𝑁 = 32-dimensional DFT for calculating the TFD with slid-
ing step 𝑑𝑁 = 2. Figure 5 shows that the values of evaluated
TFD are concentrated in a high-frequency area for indices
𝑘 ≈ 10− 16.

Figure 7 shows the normalized TFD function 𝑃 ∘(𝑘, 𝑛),
corresponding to a TW case. The interval 6, 707, 125 ≤ 𝑖 ≤
6, 707, 205 was examined, the TFD dimension 𝑁 = 32, slid-
ing step 𝑑𝑁 = 2. We see that the TFD values are concen-
trated in a low-frequency area for indices 𝑘 ≈ 1− 5.

It can be concluded from Figure 6 and Figure 7 that
LR-disturbances correspond to low-frequency TFD. The
conclusions are in compliance with the physics of LR and
TW-processes. This conclusion can apply, after analyzing
other intervals, to the entire signal 6, 000, 000 ≤ 𝑖 ≤
7, 600, 000.

7. Decision-Making Procedures and
Indication Functions

7.1. Let us consider a case of high-frequency TFD func-
tions, corresponding to LR-disturbances. Let 𝑃1𝑅, 𝑃2𝑅, 𝑘0𝑅,
𝑁 , 𝑃3𝑅 be the configuration parameters for the proposed
d.m.p. The first four parameters 𝑃1𝑅, 𝑃2𝑅, 𝑘0𝑅, 𝑁 deter-
mine a reference normalized TFD function, the parameter
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𝑃3𝑅 defines the maximal value for the TFD function evalu-
ation. We calculate relations for 𝑛 = 1, . . . , 𝑛0, in order to
formulate a correct d.m.p., 𝑘1𝑅 = 𝑘0𝑅 + 1

𝑃1𝑀𝑅,𝑚(𝑛) = max𝑃 ∘
𝑚

1≤𝑘≤𝑘0𝑅

(𝑘, 𝑛)

𝑃2𝑀𝑅,𝑚(𝑛) = max𝑃 ∘
𝑚

𝑘1𝑅≤𝑘≤𝑁/2

(𝑘, 𝑛)

𝑃3𝑀𝑅,𝑚(𝑛) = max𝑃 ∘
𝑚

1≤𝑘≤𝑁/2

(𝑘, 𝑛) (5)

The proposed d.m.p., providing that the 𝑛 local interval be-
longs to an anomalous section with a LR-disturbance, is re-
lated to computing the logical expression 𝑃𝑅(𝑛) using (5)
for 𝑛 = 1, . . . , 𝑛0

𝑃𝑅(𝑛) = (𝑃1𝑀𝑅,𝑚(𝑛) < 𝑃1𝑅)
⋂︁

(𝑃2𝑀𝑅,𝑚(𝑛) >

𝑃2𝑅)
⋂︁

(𝑃3𝑀𝑅,𝑚(𝑛) > 𝑃3𝑅) (6)

The formulae (6) have a quite clear physical meaning In this
case the d.m.p. is to check the joint implementation of the
inequalities (6) and calculation of the indicator coefficient
𝐼𝑅(𝑛): if the logical expression 𝑃𝑅(𝑛) (6) is correct, then
the value 𝐼𝑅(𝑛) = 1 is accepted; otherwise – 𝐼𝑅(𝑛) = 0.

The sequence 𝐼𝑅(𝑛), 𝑛 = 1, . . . , 𝑛0, consisting of zeros
and ones, is divided into 𝑚0 indication intervals of equal
size, equal to 𝑑𝑁𝑅, 𝑚0𝑑𝑁𝑅 = 𝑛0. Initial and final points of
an indication interval with the number 𝑚 can be calculated
in the obvious way:

𝑁1𝑅(𝑚) = 𝑁0 + 𝑑𝑁𝑅(𝑚− 1)

𝑁2𝑅(𝑚) = 𝑁1𝑅 + 𝑑𝑁𝑅, 𝑚 = 1, 2, . . . ,𝑚0 (7)

Using (7) and the values 𝐼𝑅(𝑛) the LR-indication function
𝛼0𝑅(𝑚) is calculated for each indication interval

𝛼0𝑅(𝑚) =
1

𝑑𝑁𝑅

𝑁2𝑅(𝑚)∑︁
𝑛=𝑁1𝑅(𝑚)

𝐼𝑅(𝑛), 𝑚 = 1, 2, . . . ,𝑚0 (8)

7.2. Similarly, let us consider a case of low-frequency
TFD functions, corresponding to TW-disturbances. Let
𝑃1𝑇 , 𝑃2𝑇 , 𝑘0𝑇 , 𝑁, 𝑃3𝑇 be setup parameters. For 𝑛 = 1, ..., 𝑛0

we calculate the relations for TW, 𝑘1𝑇 = 𝑘0𝑇 + 1

𝑃1𝑀𝑇,𝑚(𝑛) = max𝑃 ∘
𝑚

1≤𝑘≤𝑘0𝑇

(𝑘, 𝑛)

𝑃2𝑀𝑇,𝑚(𝑛) = max𝑃 ∘
𝑚

𝑘1𝑇≤𝑘≤𝑁/2

(𝑘, 𝑛)

𝑃3𝑀𝑇,𝑚(𝑛) = max𝑃 ∘
𝑚

1≤𝑘≤𝑁/2

(𝑘, 𝑛) (9)

The proposed d.m.p. related to the fact that the lo-
cal interval 𝑛 belongs to an anomalous section with a
TW-disturbance is implemented on the basis of calculating
the local expression 𝑃𝑇 (𝑛) for 𝑛 = 1, . . . , 𝑛0

𝑃𝑇 (𝑛) = (𝑃1𝑀𝑇,𝑚(𝑛) > 𝑃1𝑇 )
⋂︁

(𝑃2𝑀𝑡,𝑚(𝑛) <

𝑃2𝑇 )
⋂︁

(𝑃3𝑀𝑇,𝑚(𝑛) > 𝑃3𝑇 ) (10)

The formulae (10), same as (6), are quite obvious and can
be used for computing the indication coefficient 𝐼𝑇 (𝑛): if
the logical expression 𝑃𝑇 (𝑛) (10) is true, then 𝐼𝑇 (𝑛) = 1;
otherwise – 𝐼𝑇 (𝑛) = 0. The resulting sequence 𝐼𝑇 (𝑛), 𝑛 =
1, . . . , 𝑛0 is divided into 𝑑𝑁𝑇 , 𝑚0𝑑𝑁𝑇 = 𝑛0 – dimensional𝑚0

indicator intervals. Initial and final points of the indication
interval 𝑚 can be calculated in a similar way (7):

𝑁1𝑇 (𝑚) = 𝑁0 + 𝑑𝑁𝑇 (𝑚− 1)

𝑁2𝑇 (𝑚) = 𝑁1𝑇 + 𝑑𝑁𝑇 , 𝑚 = 1, 2, . . . ,𝑚0 (11)

Applying (7) and 𝐼𝑇 (𝑛) we calculate the TW-indication
function 𝛼0𝑇 (𝑚) for each indication interval

𝛼0𝑇 (𝑚) =
1

𝑑𝑁𝑇

𝑁2𝑇 (𝑚)∑︁
𝑛=𝑁1𝑇 (𝑚)

𝐼𝑇 (𝑛), 𝑚 = 1, 2, . . . ,𝑚0 (12)

The indication functions 𝛼0𝑅(𝑚), 𝛼0𝑇 (𝑚) can be interpreted
as the probability of the presence of LR and TW-disturbances
at the indication interval 𝑚. Calculation of indication func-
tions is connected with calculation of indicator functions as-
sociated with probability errors – possible false detection
and omissions (probabilistic errors).

TFD functions evaluation (paragraph 5), implementation
of d.m.p. and calculation of indication functions (para-
graph 7) is made on the basis of STARTS-1 algorithm.

8. Non-Linear Amplitude and
Time-Latitude Filtering of Indication
Functions

To reduce the size of the text, the index “p” in the for-
mulae will take two values: 1. “𝑝”= 𝑅; 2. “𝑝”= 𝑇 , and
correspond to the cases of LR and TW-disturbances.

The initial data for the implementation of the nonlinear
filtering algorithm – the d.m.p. results are presented as the
indicator function 𝛼0𝑝(𝑚), 𝑚 ∈ 𝑀 , 𝑀 = {𝑚 : (1 ≤ 𝑚 ≤
𝑚0)} from (8) or (12). The purpose of nonlinear filtering of
indicator functions is to improve the accuracy of the bound-
aries of anomalous intervals and probabilities evaluations.
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The proposed algorithm for nonlinear filtering of indicator
functions is based on threshold filtering algorithms and algo-
rithms for filtering pulse sequences with pulse modulation,
known from radio engineering [Baskakov, 2005; Gonorovsky,
2006]. To a certain extent, this algorithm is heuristic, it re-
quires a selection of configuration parameters and possible
improvements. The implementation of nonlinear filtering is
based on the STARTS-2 algorithm.

8.1. The first stage of the algorithm consists of realization
of the nonlinear amplitude filtering of indicator function and
is related to removing the small values from the sequence
𝛼0𝑝(𝑚), 𝑚 ∈ 𝑀 , 𝑀 = {𝑚 : (1 ≤ 𝑚 ≤ 𝑚0)}. Removal
of small values is done on the basis of comparison with the
threshold 𝛼0𝑝, and the sequence’s formation 𝛼1𝑝(𝑚), 𝑚 ∈ 𝑀

𝛼1𝑝(𝑚) = 0, if 𝛼0𝛿(𝑚) < 𝛼0𝑝

𝛼1𝑝(𝑚) = 𝛼0𝑝(𝑚), if 𝛼0𝛿(𝑚) ≥ 𝛼0𝑝,𝑚 ∈ 𝑀 (13)

The threshold’s value parameter is adjustable and its correct
choice ensures the optimal correlation between the probabil-
ities of detection and error.

8.2. The algorithm’s second stage relates to implemen-
tation of non-linear time-latitude filtering of indicator func-
tion and is related to removing sites with a small amount of
zero and positive values in the sequence from the first stage
𝛼1𝑝(𝑚).

For implementation of the second stage we use a function
Ψ{·, ·}, which calculates bordering points of intervals with
zero and positive values of sequence elements of a certain in-
put sequence 𝑦(𝑚),𝑚 ∈ 𝑀 and the corresponding numbers
of these intervals. In general, we get

Ψ{𝑦(𝑚), 𝑚 ∈ 𝑀} = {(𝑚1,𝑙0𝑚2,𝑙0), 𝑙0 = 1, ..., 𝐿0,

(𝑚1,𝑙1,𝑚2,𝑙1), 𝑙1 = 1, ..., 𝐿1}

where (𝑚1,𝑙0,𝑚2,𝑙0) – bordering points of intervals with
zero elements, 𝐿0 – number of intervals with zero elements,
(𝑚1,𝑙1,𝑚2,𝑙1) – bordering points of intervals with positive
elements, 𝐿1 – number of intervals with positive elements.
The calculations on the function Ψ{·, ·} are done with the
help of the CABORD (Calculation of Borders) algorithm.

Let us apply the function Ψ{·, ·} to 𝛼1𝑝(𝑚), we find the
bordering points of intervals with positive elements and the
corresponding numbers of these intervals

Ψ{𝛼1𝑝(𝑚),𝑚 ∈ 𝑀} = {(𝑚1,𝑙1,𝑚2,𝑙1), 𝑙1 = 1, . . . , 𝐿1} (14)

Further, on the basis of (14) the set 𝐿1 of the intervals’
numbers can be found, which satisfy the inequality (𝑚2,𝑙1 −
𝑚1,𝑙1) < 𝑑𝑚1𝑝, where 𝑑𝑚1𝑝 is the setup parameter. Then
the corresponding set 𝑀1 is formed on the basis of indices
𝑚

𝐿1 = {𝑙1 : (𝑚2,𝑙1 −𝑚1,𝑙1 < 𝑑𝑚1𝑝, 𝑙1 = 1, . . . , 𝐿1)}

𝑀1 = {𝑚 : (𝑚1,𝑙1 ≤ 𝑚 ≤ 𝑚2,𝑙1, 𝑙1 ∈ 𝐿1)} (15)

on its basis the interim sequence 𝛼2𝑝(𝑚) is formed, where
single (or rare) positive values in 𝛼1𝑝(𝑚) are replaced by
zeros

𝛼2𝑝(𝑚) = 0, 𝑚 ∈ 𝑀1;

𝛼2𝑝(𝑚) = 𝛼1𝑝(𝑚), 𝑚 ∈ 𝑀/𝑀1 (16)

After that intervals with a small number of zeros are re-
moved from the sequence 𝛼2𝑝(𝑚). For this purpose the func-
tion Ψ{·, ·} is used again for 𝛼2𝑝(𝑚), 𝑚 ∈ 𝑀 , for which the
borders of intervals with zero elements are defined

Ψ{𝛼2𝑝(𝑚),𝑚 ∈} = ((𝑚1,𝑙0,𝑚2,𝑙0), 𝑙0 = 1, . . . , 𝐿0) (17)

and from (17) the corresponding sets 𝐿0,𝑀0 are found, tak-
ing into account the setup parameter 𝑑𝑚2𝑝.

𝐿0 = {𝑙0 : (𝑚2,𝑙0 −𝑚1,𝑙0 < 𝑑𝑚2𝑝, 𝑙0 = 1, ..., 𝐿0)}

𝑀0 = {𝑚 : (𝑚1,𝑙0 ≤ 𝑚 ≤ 𝑚2,𝑙0, 𝑙0 ∈ 𝐿0)} (18)

The result of the non-linear filtering is represented as the
sequence 𝜉∘𝑝(𝑚)

𝜉∘𝑝(𝑚) = 𝛼0𝑝(𝑚), 𝑚 ∈ 𝑀0

𝜉∘𝑝(𝑚) = 𝛼2𝑝(𝑚), 𝑚 ∈ 𝑀/𝑀0 (19)

9. System of Algorithms of Recognition of
Anomalies

The solution of our problem of recognition of abnormal
areas is based on algorithms for evaluation of the boundaries
of abnormal areas and calculation of the probabilities.

The result of the filtering 𝜉∘𝑝(𝑚) is used, which is trans-
formed by the function Ψ{·, ·}, with the purpose to find
the sequence of borders of intervals with positive elements
(𝑚∘

1,𝑙,𝑚
∘
2,𝑙), 𝑙 = 1, . . . , 𝐿∘

Ψ{𝜉∘𝑝(𝑚),𝑚 ∈ 𝑀} = (𝑚∘
1,𝑙,𝑚

∘
2,𝑙), 𝑙 = 1, . . . , 𝐿∘,

𝑖 = 𝑁0 + (𝑚− 1)𝑑𝑁0, (𝑖
∘
1,𝑙, 𝑖

∘
2,𝑙), 𝑙 = 1, . . . , 𝐿∘ (20)

Evaluation of probabilities of anomalies in the intervals
(𝑚∘

1,𝑙,𝑚
∘
2,𝑙), 𝑙 = 1, . . . , 𝐿∘, is done by the following obvious

formulae

𝑝∘𝑙𝑝 = (

𝑚∘
2,𝑙∑︁

𝑚=𝑚∘
1,𝑙

𝛼0𝑝(𝑚))/(𝑚∘
2,𝑙 −𝑚∘

1,𝑙 + 1),

𝑙 = 1, . . . , 𝐿∘, 𝛼𝑙𝑝 = 𝑝∘𝑙𝑝 (21)
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Figure 8. Graph of indicator function 𝛼𝑅(𝑖) of recognition of intervals with LR-disturbances.

Calculation of the indicator function 𝛼𝑝(𝑖) for 𝑁0 ≤ 𝑖 ≤ 𝑁𝑓

is done by using (21)

𝛼𝑙𝑝(𝑖) = 𝑝∘𝑙𝑝 for 𝑖 ∈ (𝑖∘1,𝑙, 𝑖
∘
2,𝑙),

𝛼𝑙𝑝(𝑖) = 0 for 𝑖 /∈ (𝑖∘1,𝑙, 𝑖
∘
2,𝑙), 𝑙 = 1, . . . , 𝐿∘,

𝛼𝑝(𝑖) =

𝐿∘
𝑝∑︁

𝑙=1

𝛼𝑙𝑝(𝑖) (22)

Thus, the STAN method for the present task of recogni-
tion led to a sequential application of the STARTS-1 and
STARTS-2 algorithms. Let us describe the procedure.

In accordance with the STARTS-1 algorithm local TFD
functions are evaluated and implementation of the d.m.p.
coming to actions 1–3, which are related to:

∙ Formation of systems of local and DFT – sliding in-
tervals, formulae (1), (2);

∙ Evaluation of local TFD functions, formulae (3), (4);

∙ D.m.p. implementation and calculation of indicator
functions, formulae (5)–(8), (9)–(12).

For the STARTS-1 algorithm we list: input variables –
𝑁0, 𝑁𝑓 , 𝑑𝑁 , 𝑁 , 𝑦(𝑖), 𝑁0 ≤ 𝑖 ≤ 𝑁𝑓 ; setup parameters –
𝑃1𝑅, 𝑃2𝑅, 𝑘0𝑅, 𝑃3𝑅; output variables – 𝛼0𝑅(𝑚), 𝛼0𝑇 (𝑚),
𝑚 = 1, 2, . . . ,𝑚0.

On the basis of the STARTS-2 algorithm the non-linear
filtering of indicator functions is done, which is reduced to
steps 1–3, which in their turn comprise:

∙ Amplitude filtering, formulae (13);

∙ Time-latitude filtering, formulae (14)–(19);

∙ Calculating the borders of evaluations of anomalies
and probabilities’ evaluations, formulae (20)–(22).

For the STARTS-2 algorithm we list: input variables
– 𝛼0𝑝(𝑚), 𝑚 = 1, 2, . . . ,𝑚0; setup parameters – 𝛼0𝑝,
𝑑𝑚1𝑝, 𝑑𝑚2𝑝; output variables – 𝜉∘𝑝(𝑚), 𝑚 = 1, 2, . . . ,𝑚0,
(𝑚∘

1,𝑙,𝑚
∘
2,𝑙), 𝑙 = 1, . . . , 𝐿∘, 𝑝∘𝑙𝑝, 𝑙 = 1, . . . , 𝐿∘, 𝛼𝑝(𝑖). The

STARTS-2 algorithm uses the results of the application of
the CABORD algorithm.

10. Testing of System of Recognition
Algorithms

We considered the filtered HPS signal 𝑦(𝑖) = 𝑦(𝑇 𝑖) from
NGDC at a fixed time interval; 𝑁0 = 600, 001, 𝑁𝑓 =
7, 600, 000 – numbers of the initial and final point of this
interval. The signal was used for testing the developed sys-
tem of the STARTS-1 and STARTS-2 sequential algorithms
for recognition of anomalies in time series with LR and
TW-disturbances. The results of the algorithms’ application
were compared to the control data, received from NGDC.

10.1. Recognition of time series with LR-disturbances
was implemented. A fixed time interval was divided into
𝑛0 = 3, 500, 000 𝑑𝑁 = 2-dimensional local intervals. Each
of the local interval corresponded to DFT-sliding intervals
with dimension 𝑁 = 32. 𝑑𝑁𝑅 = 20 – number of points of
an indicator interval, 𝑚0 = 175, 000 – number of indicator
intervals. The fixing parameters for d.m.p. took the values:
𝑃1𝑅 = 0.10, 𝑃2𝑅 = 0.3, 𝑃3𝑅 = 0.0005, 𝑘0𝑅 = 10. For the
setup parameters of non-linear filtering we took the values
𝛼𝑅0 = 0.4, 𝑑𝑚1𝑅 = 2, 𝑑𝑚2𝑅 = 2.

Figure 8 shows the results of the algorithm’s application
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Table 1. The Data on Recognition of LR-Disturbances

𝑖1 NDBC 𝑖2 NDBC 𝑖1 GC RAS 𝑖2 GC RAS 𝛼𝑙𝑅

1 660,314 660,339 660,3216 660,382 0.77
2 998,466 998,824 998,511 998,562 0.97
3 2,235,851 2,235,915 2,235,871 2,235,912 0.87
4 2,394,185 2,394,337 2,394,221 2,394,262 0.98
5 3,055,796 3,057,107 3,056,341 3,05,6402 0.99
6 3,057,394 3,059,870 3,056,511 3,056,572 0.98
7 3,080,259 3,080,404 3,080,251 3,080,322 0.98
8 3,709,684 3,709,735 3,709,691 3,709,732 0.45
9 4,416,084 4,416,257 4,416,081 4,416,120 0.97

10 5,100,460 5,100,557 5,100,461 5,100,502 0.44
11 6,704,179 6,704,246 6,751,311 6,751,352 0.66
12 6,985,705 6,985,835 6,985,771 6,985,812 0.53
13 7,571,284 7,571,402 7,571,351 7,571,402 0.89

in the form of a graph of the indicator function 𝛼𝑅(𝑖), rep-
resenting a set of vertical lines of different height.

Table 1 comprises the data on recognition of
LR-disturbances. Columns 2, 3 show the coordinates
of the bordering points of intervals with LR-disturbances
from NGDC (𝑖1NGDC, 𝑖2NGDC), which were calculated
with the help of a semi-automatic NGDC-algorithm, based
on the analysis of signals in time domain. Columns 4, 5
show the coordinates of the bordering points of intervals
with LR-disturbances, calculated by the system of algo-
rithms, proposed by Organization of the Russian Academy
of Sciences Geophysical Center (GC RAS). Column 6 shows
the evaluations of probabilities of LR-disturbances 𝛼𝑙𝑅 in
the intervals with calculated bordering points (𝑖1,𝑙, 𝑖2,𝑙),
𝑙 = 1, . . . , 𝐿0, 𝐿0 = 13.

Figure 9. Graph of the indicator function 𝛼𝑟(𝑖) of recognition of intervals with TW-disturbances.

We note that the intervals #5− 7 with LR-disturbances,
according to Table 1, have been recognized (their time res-
olution was realized); however, in Figure 7 these intervals
are shown together. The proposed algorithm has imple-
mented a sufficiently precise recognition of almost all the
marked LR-disturbances. It should be noted that in interval
#11, in the points 6, 704, 179 ≤ 𝑖 ≤ 6, 704, 246, mentioned
by NGDC, there was really a LR-disturbance, which was
weaker than another LR-disturbance, located in the interval
6, 751, 311 ≤ 𝑖 ≤ 6, 751, 352.

10.2. Recognition of time series with TW-disturbances.
A fixed time interval was divided into 𝑛0 = 1, 750, 000 local
intervals of the dimension 𝑑𝑁 = 4. Each of the local inter-
vals corresponded to DFT-sliding intervals of the dimension
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Table 2. The Data on Recognition of TW-Disturbances

𝑖1 NDBC 𝑖2 NDBC 𝑖1 GC RAS 𝑖2 GC RAS 𝛼𝑙𝑅

1 661,933 665,749 662,000 664,782 0.91
2 1,000,907 1,002,656 1,000,500 1,001,032 0.51
3 6,706,714 6,708,195 6,706,750 6,707,532 0.61
4 7,574,954 7,575,038 7,577,250 7,577,282 0.99

𝑁 = 32. We assumed that 𝑑𝑁𝑇 = 25 was the number of
points of the indicator interval, 𝑚0 = 70, 000 – the number
of indicator intervals. The setup parameters for d.m.p. took
the values: 𝑃1𝑇 = 0.5, 𝑃2𝑇 = 0.125, 𝑃3𝑇 = 0.004, 𝑘0𝑇 = 5.
The values of setup parameters of non-linear filtering were
𝛼𝑇0 = 0.4, 𝑑𝑚1𝑇 = 2, 𝑑𝑚2𝑇 = 2.

Figure 9 shows the graph of the indicator coefficient 𝛼𝑇 (𝑖)
as a set of vertical lines of different height. Their intersection
with the horizontal axis of coordinates determines the time
boundary points of intervals with TW-disturbances.

Table 2 shows the data on recognition of
TW-disturbances. Columns 2, 3 contain the coordinates of
the bordering points of TW-intervals, determined on the
basis of the semi-automatic recognition algorithm, based
on the analysis of signals of time series. The algorithm
was developed by NDBC and the data was transferred
to GC RAS. Columns 4, 5 show the coordinates of the
bordering points of TW-intervals, obtained on the basis
of the algorithms of recognition, developed by GC RAS.
Column 6 contains the evaluations of probabilities of
recognition of TW-disturbances 𝛼𝑇𝑙 in the intervals with
calculated bordering points (𝑖1,𝑙, 𝑖2,𝑙), 𝑙 = 1, . . . , 𝐿0, 𝐿0 = 4.

11. Conclusion

The proposed STAN method for recognition of time series
with LR and TW-disturbances, if we analyze the results of
Figure 8 and Figure 9 and Table 1 and Table 2, works quite
well. Thus, for 13 + 4 = 17 disturbances the proposed al-
gorithms allowed only one false disclosure and one omission,
that allows us to conclude, at a first approximation, that the
level of false disclosures and omissions was equal to ≈ 5.8%.

The effectiveness of the STAN method of recognition of
time series with LR and TW-disturbances in terms of min-
imizing the probability of false detections and omissions,
as well as possible refinements of the boundary points of
anomalies can be improved by optimizing the choice of setup
parameters. Due the adequate mathematical apparatus of
TFD functions, the proposed STAN method and the corre-
sponding algorithms have the potential to provide detection
of weak LR and TW-disturbances.

The proposed STAN method of recognition can be used
to automate the viewing of archives records of observations
from the BSS network and to ensure the efficient solution of
the tsunami warning problem.

The developed method of STAN-recognition is quite ver-
satile and enables the solution of problems of recognition

of anomalies in time series of geophysical data of different
nature.
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