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Abstract. This paper presents an
investigation of the applicability of the stress
trajectories concept and the stress trajectories –
slip lines alternations method to geomechanical
problems. We extend our approach introduced
for the stress analysis of two-dimensional plastic
bodies to the problem of the stress
reconstruction in plastic regions of the
lithosphere. The method is developed for the
Cauchy boundary value problem and utilizes the
data on principal directions as one of the
boundary conditions. For this purpose the first
order stress indicators of the World stress map
(WSM) project database (release 2008) are
utilized in computations. The set of considered
boundary conditions is supplemented by the
normal derivatives of the stress orientations.
Complete formulation of the problem involves a
yield condition. Although the general approach
is not limited to a specific yield criterion,
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present calculations are performed for the Mohr-
Coulomb criterion. Applications of the method
include the stress reconstructions in three regions
of the Earth’s crust (Swiss Alps, Tibetan plateau
and Eastern Anatolia). The continuous boundary
conditions are derived by an averaging method
applied to the discrete data in immediate vicinity
of the starting boundary. Thereafter, for the cho-
sen strength parameters of the Mohr-Coulomb
theory (friction angle and cohesion), the unique
grids of stress trajectories and slip lines are deter-
mined. These fields are further compared against
the WSM data available inside the regions. The
computations are made for different strength pa-
rameters in order to provide the best fit to the
data. The results of the analysis are presented
as two plane fields: the map of normalized mean
stresses and the grid of corresponding trajectories
of principal directions. The normalization param-
eter is unknown (it represents an initial value of
the mean stress in a single node of the boundary),
which is a consequence of non-uniqueness of the
stress reconstruction problem based on the data
on stress orientations alone. The reconstructed
stress orientations are compared with the obser-
vations from the WSM database.



1. Introduction

Identification of stress fields inside tectonic plates is an
essential part of any global relative-plate-motion model
[Gordon, 2000; Sutherland, 2008] as it serves as an im-
portant indicator of plate-driving forces. Numerous au-
thors [Becker et al., 2005; DeMets et al., 2005; Flesch
et al., 2007; Kreemer et al., 2003; Lund and Tow-
nend, 2007; Mukhamediev et al., 2005; Steinberger
et al., 2001] discuss the importance of studying litho-
spheric stresses and their impact on geodynamics of the
Earth crust. This study is aimed at the identification of
tectonic stresses in some regions of the globe that could
be considered as plastic. First order stress indicators of
the World Stress Map (WSM) project database [Hei-
dbach et al., 2008] are utilized to evaluate the magni-
tudes of intraplate stresses. The numerical method is
based on the stress trajectory concept and presents fur-
ther development of the approaches reported by Galy-
bin and Mukhamediev [2004] for elastic solids and by
Haderka and Galybin [2011] for plastic media.

Methods widely accepted for stress modeling are ba-
sed on finite element analyses in view of gravitational
potential energy (GPE) predictions [Bird, 1989, 1999;
England and Molnar, 1997; Humphreys and Coblentz,



2007]. The main effort, as identified by Sonder and
Jones [1999], is invested into identifying the forces
driving and resisting the inter- and intra-plate defor-
mations. Different estimates of the boundary forces
[Coblentz et al., 1995], forces arising from lateral den-
sity variations [Andeweg et al., 1999; Gölke and Cob-
lentz, 1996] and their combinations [Vergnolle et al.,
2007] are chosen such that the model predictions fit the
observed stress indicators. Justifications of the meth-
ods in view of WSM data were shown in [Chang and
Lee, 2010; Cloetingh and Wortel, 1985; Coblentz and
Sandiford, 1994; Zoback et al., 2002]. Alternatively,
velocities determined by the Global Positioning System
(GPS) at different sites could be utilized [DeMets et
al., 1990; England and Molnar, 2005; Flesch et al.,
2001; McClusky et al., 2003].

However, model predictions resulting from various
estimates of driving forces lead to inconsistent and con-
tradictory results [Sonder and Jones, 1999]. The com-
mon sign described in Gölke and Coblentz [1996], is
twofold, (1) the invariant nature of the stress orien-
tations, and (2) the great dependence of the stress
magnitudes, to the boundary conditions used. More-
over, often the methods are based on elastic assump-
tion regarding the lithosphere, whereas Vergnolle et al.



[2007] argue that the differences between model pre-
dictions and stress indicators may also arise from non-
elastic rheology. Pauselli et al. [2010] report, that the
composition, structure, temperature and deformation
conditions all affect the rheology.

In contrast to FEM based GPE prediction methods,
we suggest using the WSM stress indicators as bound-
ary conditions in the direct formulations of boundary
value problems (BVP) and hence overcoming the ne-
cessity for estimation of boundary conditions crucial
in inverse problems. We propose to employ a plastic
model with friction to describe the state of failure equi-
librium of intraplate continental crust. In this case, the
governing equations consist of the differential equations
of equilibrium (DEE) and a criterion that imposes cer-
tain algebraic relationships on the stress components.
The assumption of plastic rheology has been accepted
in [Hieronymus et al., 2008; Molnar and Tapponier,
1977; Stein et al., 1992; Zoback et al., 2007]. None
of these studies however made direct use of the WSM
data for the formulation of BVP. It is explained by the
fact that the classical formulations assume specifica-
tion of boundary stresses while the majority of data
are given on the stress orientations, therefore restrict-
ing the straightforward application of the conventional



techniques. In the approach proposed by Haderka and
Galybin [2011] the orientations of principal stresses
are considered as one of the possible boundary con-
ditions for solving the BVP of plane plasticity. This
opened a possibility to model non-elastic stress fields
without knowing reliable information on the boundary
stress magnitudes.

Fundamentals of the non-elastic stress modeling are
developed in works of Hill [1950] and Sokolovskii [1965].
In particular, it is shown that for two dimensional prob-
lems (in which the conditions of limiting equilibrium
apply) the governing equations are presented by the
system of partial differential equations (PDE) of hyper-
bolic type. Two distinct families of the characteristics
of this system coincide with the slip lines, which are
also observed by experiments. For hyperbolic systems
of PDE, several BVP can be formulated, the key one
being the Cauchy BVP. In this case the problem con-
sists of solving a system of two PDE (that is obtained
by substitution a yield criterion into the DDE) with
certain conditions prescribed along a starting bound-
ary (which is nowhere coincident with a characteris-
tic of the system). When only statically determined
bodies are considered the solution can be built inde-
pendently of the kinematic equations. For briefness



the conventional methods are further abbreviated by
SL (slip lines). The solution of the Cauchy BVP by
means of the SL approach is restricted to an area re-
ferred to as the characteristic triangle (or the domain
of dependence). This area is bounded by the starting
boundary and two characteristics of different families
emanating from the ends of the boundary. It has to be
emphasized that it is not straightforward to determine
the solution beyond the boundaries of the character-
istic triangle. Other, additional assumptions have to
be taken into account as e.g. by Cox [1961] or more
recently by Martin [2005].

In contrast to the SL approach we propose to build a
solution to the problem by using the trajectories of prin-
cipal stress. The stress trajectories, according to Frocht
[1941], are defined as curves the tangents to which
at every point coincide with the directions of principal
stresses. Because there exist two principal stresses in
plane problems, there will be two distinct and orthog-
onal families of trajectories; one corresponding to the
major and another to the minor principal stress. Simi-
larly to the SL approach, the solution of the BVP along
stress trajectories leads to a network built by the two
orthogonal families. However, this network does not
coincide with the characteristic grid. In other words,



there exist regions of the reconstructed stress trajecto-
ries grids located outside of the domain of dependence.
The implications of this fact are discussed in great de-
tail in Haderka and Galybin [2011]. This approach is
abbreviated as ST (stress trajectories) further on.

We further use both approaches in turn and intro-
duce the ST-SL alternations method (for detail see
[Haderka and Galybin, 2011]). It is shown how slip
lines and stress trajectories built by the respective ap-
proaches are utilized for further extension of the stress
field. Numerical tests revealed that the accuracy of this
method is comparable to that observed in the conven-
tional SL approach, which is explained by the similar
finite difference techniques used.

Applications of the developed approaches are pre-
sented for the problems of stress field identification in
plastic regions of the lithosphere. Following Regenauer-
Lieb [1999] it is assumed that the rheology of the litho-
sphere satisfies the Mohr-Coulomb theory of limiting
equilibrium and hence can be modelled as a plastic
medium with friction and cohesion. These parameters
can be found by fitting the predicted stress orientations
to the WSM data. The results of the analysis and the
comparisons with the available data are shown in sec-
tion 4.



2. Background

2.1. SL Approach in Plastic Media

The DEE for a plane problem can be written in terms
of the mean stress P and the maximum shear stress τ
in the following form:

∂xP + cos(2θ)∂xτ + sin(2θ)∂yτ − 2τ sin(2θ)∂xθ +

2τ cos(2θ)∂yθ = 0,

∂xP + sin(2θ)∂xτ − cos(2θ)∂yτ + 2τ cos(2θ)∂xθ +

2τ sin(2θ)∂yθ = 0. (1)

Here, symbols ∂x , ∂y stand for differential operators.
The stress functions P , τ are functions of the Carte-
sian coordinates x , y . They represent the sum and the
difference of the principal stresses σ1, σ2, respectively:

P =
σ1 + σ2

2
, τ =

σ1 − σ2

2
, (τ ≥ 0, σ2 ≤ σ1) (2)

Angle θ denote the orientation of the major principal
stress σ1 measured counter-clockwise with respect to
the positive direction of the x-axis (it is accepted that
compression is negative).



In problems of plane plasticity a yield criterion has
to be specified additionally to equation (1). In the
works by Hill [1950] and Sokolovskii [1965], where the
solution of this system for plastic media is developed,
the Mohr-Coulomb yield criterion is utilized. It can be
presented in the form:

τ = C cosµ− P sinµ, τ ≥ 0 (3)

where the maximum shear stress is expressed as a lin-
ear function of the mean stress via the angle of in-
ternal friction, µ, and cohesion, C . It should be noted
that yielding criterion (3) is valid if the maximum shear
stress in (3) does not vanish and the normal stresses
on the slip lines are compressive (negative).

Integration of (1) in view of (3) and the boundary
conditions leads to four characteristic equations; two
of them for identification of the slip lines:

dy = dx tan(θ ± ε) (4)

and two for the relationships valid along the slip lines:

dP∗ ± 2P∗ tanµdθ = 0 (5)

Equations (5) define the relationships between the mean
stress and the principal directions valid along the slip
lines (P∗ represents the mean equivalent stress, P∗ =



P−C cotµ). Equations (4) define two families of isog-
onal lines inclined to the direction of the major principal
stress σ1 at the angles:

± ε =
π

4
+
µ

2
(6)

From the latter relationship it is evident that this incli-
nation depends on the angle of internal friction.

Solution of systems (4) and (5) is performed numer-
ically by employing the finite difference method (see
[Sokolovskii, 1965] for detail). Equations (4) allow for
the identification of nodal points represented as inter-
sections of tangents to the slip lines (emanating from
boundary nodal points, see Figure 1). Reconstructed
slip lines form a zone of limiting equilibrium presented
by a grid where two characteristics of different families
intersect at the angle 2ε. The resulting stress field is
found in an area that has the form of a curvilinear tri-
angle. As mentioned previously, this area is referred to
as the characteristic triangle or the domain of depen-
dence.

For completeness it has to be mentioned that if the
angle θ in (4) is:

θ ± ε =
m

2
π, m = 0, 1, 2, ... (7)

then the SL approach fails as the nodal points can not



Figure 1. Mutual arrangement of the stress trajectories
and the slip lines.

be identified. Since (7) is valid everywhere along the
slip lines, none of these lines can be used as a stand-
alone starting boundary.

2.2. Integration of the DEE Along Stress
Trajectories

The present approach is based on utilizing the stress
trajectories instead of the slip lines in solving the BVP
introduced in the previous section. The relationship
between the orthogonal families of stress trajectories



(specified by the tangents ts , tq) and the slip lines
(specified by the tangents tα, tβ), are given as:

α̂ = θ − ε, β̂ = θ + ε (8)

where α̂, β̂ represent the tangent angles between the
slip lines α and β and the x-axis, respectively (see also
Figure 1). The system in (1) can be rewritten along
the stress trajectories, hence representing the Lamé-
Maxwell form of the DEE (e.g. in [Kuske and Robert-
son, 1974]), which can be written as:

a∂sP + ∂qθ = 0, b∂qP + ∂sθ = 0 (9)

The arc lengths s, q are measured along the stress
trajectories of the first and second family, respectively.
The coefficients and are functions of spatial coordi-
nates; for the Mohr-Coulomb yield criterion they have
the form:

a =
1

2

1− sinµ

C cosµ− P sinµ
, b =

1

2

1 + sinµ

C cosµ− P sinµ
(10)

Equations (9) in view of (10) form a closed system and,
together with the boundary conditions, constitute the
BVP for plastic media.

A method for solution of (9) along the stress trajec-
tories for a general, explicit yield criterion has been de-



veloped by Haderka and Galybin [2011]. Here we fo-
cus on the Mohr-Coulomb criterion (3) and the bound-
ary conditions specified in terms of orientations of the
principal stress and their normal derivatives (θ, ∂nθ).

Similarly to SL, the solution is performed numerically
by the finite difference approach and it is decoupled into
two steps for the determination of the stress trajecto-
ries and the relationships along them. Based on the
definition of the stress trajectories, the nodal points
are sought as the points of intersections of two differ-
ent, orthogonal families which emanate from neighbor-
ing nodes on the boundary. The curvilinear families of
trajectories are approximated by polygons, hence the
used piecewise linear approximation introduces some
errors in the identification of the intersection points of
trajectories. However, these errors are not significant
and they are of the same order as in the SL approach
where the same approximation is accepted (see (4)).
The mean stresses and the orientations are calculated
at the new nodes by continuation of their boundary
values by using expansions into Taylor’s series along
the stress trajectories (derivatives of the order greater
than one are neglected). The introduced directional
derivatives along the trajectories (∂s and ∂q) are then
transformed into the tangential and normal derivatives



with respect to the contour (∂t and ∂n), respectively).
Once the derivatives of the orientations are known (∂tθ
can be retrieved from the information along the start-
ing boundary and ∂nθ is specified in boundary condi-
tions) the derivatives of the stresses are determined
from (9). Hence, the determined derivational terms
satisfy the DEE and are consequently used to recalcu-
late the sought mean stresses and the orientations at
the new nodal points. However, it has to be noted that
the mean stress P can be determined only in a normal-
ized form, thus its initial value remains unknown. With
a sufficiently dense stress trajectories network the set
of values (Pj ,k and θj ,k) at every point zj ,k presents
an approximate solution to the BVP. An overview of
the equations obtained by the described numerical in-
tegration of the BVP and the inherent limitations are
presented in Appendix A.

2.3. Comparison of SL and ST Approaches
for Linearly Varying Boundary Conditions

In order to illustrate that both approaches produce
close results we conduct numerical tests for the Mohr-
Coulomb criterion. Boundary conditions are given in
terms of orientations and their normal derivatives. It is



assumed that they both have linear distributions along
the starting boundary, i.e. θ = ax+b and ∂nθ = cx+d
on a part of the x-axis. Following the classical ap-
proaches it is also assumed that all the variables having
the dimension of stresses are normalized with respect
to cohesion, C .

Typical solutions to systems (9), (3) and (1), (3)
obtained by using the ST and SL approaches, respec-
tively, are shown in Figure 2. For visual comparison,
the results are plotted for the stress trajectories grid
(full lines with circles) and the slip lines grid (dashed
lines with dots). Orientations of the major principal
stress obtained by the different approaches are shown
by short line segments (Figure 2, top). Additionally, the
reconstructed fields of the mean stresses are presented
in the bottom pictures in Figure 2.

From the top picture in Figure 2 it is evident that
the results of the different approaches are obtained at
different nodes. Therefore a numerical procedure is de-
veloped in order to compare these results. It involves
linear interpolation of the values obtained by the SL ap-
proach at the nodal points found in the ST approach.
Triangular elements are built for this purpose, such that
the nodes of the SL approach present their vertices.
Linear interpolation is performed to find the stress ori-
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Table 1. Results of comparison of the ST and SL approaches:
Starting boundary

n ∆P , ×101 ∆θ, ◦ ×102

5 8.2 3.2
10 6.7 3.4
15 9.0 3.0
20 8.8 2.7
25 8.2 2.6
30 8.1 2.4
35 7.6 2.3
40 7.3 2.2

entations at the nodes of the ST approach, lying inside
the triangular elements. The results of comparisons are
summarized in Table 1. Columns 2 and 3 of the table
show the maximum observed differences obtained by
the two approaches for orientations (∆θ) and stresses
(∆P), respectively, depending on the increasing num-
ber of boundary nodal points. It has been found that
the maximum differences ∆θ and ∆P decrease with the
denser discretisation (number of nodes n increases) of
the boundary.



The results obtained by the two approaches are in
good agreement, however, the deviation of the results
may increase (depending on the boundary conditions)
when the nodes in the ST approach cross the bound-
aries of the domain of dependence (specified by the
slip lines). These observations suggest that, while the
results of the ST approach are unique, the identified
stress field might comprise regions (lying outside of
the domain of dependence of the boundary segment)
where the real stress field is no longer dependent on
the boundary conditions along the starting boundary.
Therefore, the solution in these regions, obtained by
the ST approach, can be considered as an extrapola-
tion of the real solution (see [Haderka and Galybin,
2011] for more details).

3. Reconstruction Based on Alternations

of SL and ST Approaches

The method of alternations is developed for the starting
boundaries along which relationship (7) are valid in the
case of the slip lines or (A.8) for the case of the stress
trajectories. It is shown that the mean stresses and the



stress orientations identified along these lines can be
utilized for further extension of the stress field (beyond
the boundaries of the reconstructed triangles). For this
purpose it is assumed that the whole domain is in state
of limiting equilibrium and that the boundary conditions
allow for such extension. In the following examples
boundary conditions along the starting boundary are
specified according to Figure 2.

3.1. Stress Trajectory as a Starting
Boundary

Let us assume that the stress trajectories grid, shown
in Figure 2, and, in particular, the legs of the character-
istic triangle, are known. While the ST approach can
not utilize this information because of the limitation
in (A.8), there are no restrictions in the SL approach
to use these curves as starting boundaries to perform
computations. In Figure 3, (top) two additional charac-
teristic grids (to those in Figure 2) are shown which em-
anate from the s-trajectory and from the q-trajectory
(dash-dotted lines with squares).

Maps of the mean stress in the extended region and
inside the characteristic triangle built from the starting
boundary are presented in Figure 3 (left) and (right),
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respectively. The contours of triangles obtained by the
different methods are emphasized with full thick lines.
The results obtained for different starting boundaries
are tested for accuracy as described in the following
subsection.

3.2. Slip Line as a Starting Boundary

In the case when the starting boundary is an existing
slip line, both numerical procedures, developed in pre-
vious sections for the ST and SL approaches, fail to
give reliable results. However, the ST approach can be
modified following the idea mentioned in Haderka and
Galybin [2011].

Let us consider a field of slip lines obtained from cal-
culations by the SL approach. One possible configura-
tion is presented in Figure 4, where only a part of a slip
field is shown (represented by slip lines αk−1, αk , αk+1

and βj , βj+1). Taking into account the known relation-
ships between the slip lines and the stress trajectories,
one can find the nodal points zj ,k as intersections of
the former with the latter.

Slip lines between the layers k and k − 1, are given
by the nodes zj ,k−1, zj+1,k−1 and zj ,k , zj+1,k avail-
able from the previous calculations (they belong to the



Figure 4. Field of slip lines and stress trajectories pass-
ing through the same nodal points.

characteristic triangle). The nodes zj ,k+1, zj+1,k+1 and
the slip line αk+1 which passes through them are un-
known. Because of the expression in (8) the position
of the stress trajectories sj ,k , qj ,k is known at these
nodes. Therefore, the nodal points zj ,k+1, zj+1,k+1 can



be found as the intersections of sj ,k , βj+1 and qj+1,k , βj ,
respectively. After identification of zj ,k+1, zj+1,k+1, the
mean stresses and the orientations are sought at these
points by employing a finite difference form of DEE (9).
Details of the numerical analysis together with the cor-
responding relationships are presented in Appendix B.

An application of this method for the Mohr-Coulomb
criterion is presented in Figure 5. The slip lines grid in
Figure 2 (top) is considered and the legs of the char-
acteristic triangle are taken as the starting boundaries.
The solution proceeds layer by layer until the nodal
points of the ST approach (dashed lines with crosses),
and the stresses and orientations at them, are found.

In Figure 5b we also provide an overview of all the
grids obtained by the approaches at hand. It can be
observed that the stress trajectories built for different
starting boundaries are in perfect correlation. The same
applies for the slip lines. A numerical comparison of
the P- and θ-fields at the nodal points of the different
approaches has also been performed and the maximum
absolute errors are given in Table 2.

The results are in good agreement in the areas where
the identified stress trajectories and the slip lines grids
overlap.
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Table 2. Results of comparison of the ST–SL alternations
method

n ∆P , ×101 ∆θ, ◦×102

5 14.4 7.1
10 13.0 10.7
15 9.6 7.9
20 9.2 6.7
25 8.8 5.9
30 8.5 5.5
35 8.4 5.8
40 8.1 5.5

4. Modeling of the Stress Fields in

Regions of the Earth’s Crust

In this section the developed approaches are applied to
the problem of stress reconstruction in some areas of
the Earth’s crust. Three particular regions are consid-
ered and investigated in view of the WSM data. As
there is no information available regarding the stress
magnitudes, the boundary conditions are posed in terms
of θ (WSM database release 2008 is considered, [Heid-



bach et al., 2008]) and ∂nθ. Moreover, only the data of
quality A-C (see details of data classification in [Zoback
and Zoback, 1991]) are taken into account.

Computational areas chosen for the analysis are the
Alps region, a region in Tibet (both parts of the Eurasian
plate) and a region in Eastern Turkey (a part of the
Anatolian and Arabian plate). Lithospheric body forces,
from which the stresses arise, are a consequence of high
topography of these regions, as each of these areas be-
longs to a mountain massif. Therefore, the methods in
plasticity can be considered as more adequate. More-
over, following the research of Ghosh et al. [2009],
these areas represent the zones of strike-slip type of
faulting which are dominated by plastic deformation
[Fossen, 2010]. Characteristic sizes of all these areas
are significantly less than the radius of the Earth, there-
fore they can be considered in plane assumption.

Application of the method of alternation is performed
for straight starting boundaries. This simplification is
not vital but rather used because of the nature of the
data (which are scattered in the whole region). An av-
eraging method is introduced to transform the discrete
data into continuous boundary conditions. For this pur-
pose the moving window method is used. Thus, an
elongated rectangle is introduced at the vicinity of the



starting line and all WSM data falling within this rect-
angle are selected. Consequently, the mean of the ori-
entations inside the area is associated with the bound-
ary condition θ and the standard deviation is associated
with the normal derivative of the principal orientations,
∂nθ.

The numerical calculation begins with the identifi-
cation of the stresses along the starting boundary from
(A.3) and (A.4). Here, the strength parameter C is
chosen to be equal to unity during the whole analysis
whereas µ varies between 5◦and 40◦in order to achieve
the best correlation of the results. The free parameter
in (A.3); namely the mean stress Pj ,k , can be chosen
arbitrarily (in the calculations the value is set to unity).

Solution proceeds in accordance with relationships
(A.2)–(A.5) till the stress trajectory grid is built. Us-
ing the idea of alternations, the identified legs of the
stress trajectories triangle are taken as starting bound-
aries for the SL approach. Next, using the slip lines
reconstructed by the SL approach, the stress field is ex-
tended by the ST approach as described in sub-section
3.2 (similarly to Figure 5). The results of the calcula-
tions for different regions are presented in the following
sub-sections.



4.1. Alps region – 6◦E–10◦E and 46◦N–
49◦N

Based on observations available for the western Euro-
pean stress province, the stress orientations are char-
acterized by almost homogeneous NW-SE inclinations
[Ahorner, 1975; Müller et al., 1997]. This feature
of the West European stress field is however locally
disturbed by the Alpine geologic structure [Grünthal
and Stromeyer, 1992; Müller et al., 1992]. We fo-
cus on the Swiss Alps region with the computation
domain bounded by the lakes Konstanz and Geneva
on the north-east and north-west, respectively and lake
Maggiore on the south (see Figure 6).

The solution obtained for this region by the ST-SL
alternation method is shown in Figure 7. Boundary
conditions identified along the starting boundary (spec-
ified along the full thick line in Figure 6) are θj ,0 =
109◦and ∂nθj ,0 = 0.46. The results of the analysis are
shown for the friction angle of µ = 15◦.

The stress trajectories grid, presented by dots in Fig-
ure 7 (top, left), is built from the starting boundary.
Nodes of the slip lines grid are presented by circles. It
can be noted that the starting boundaries of the SL
approach coincide with the stress trajectories. Finally,
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information along the slip lines is used to extend the
solution area once more. These grids are presented by
the nodes in the form of small triangles. The map of
the mean stresses is shown in Figure 7 (bottom, left).
The pictures on the right (Figure 7) present two inserts
that show the predicted and observed stress orientation
data used for the analysis of the accuracy in the stress
field reconstruction.

4.2. Tibet Region – 75◦E–95◦E and
24◦N–44◦N

The extensive Himalayan-Tibet dataset of the WSM
project (see Figure 8) shows that the region of interest
is dominated by a N–S oriented stress field in the centre
of Tibetan plateau [Chamlagain and Hayashi, 2007]
with a slight eastern trend south of the Tarim basin.
These observations agree well with the GPE-prediction
based models of Ghosh et al. [2009] and the quasi-rigid
block-model based on GPS data reported in Thatcher
[2007]. We focus on the region located between the
Tarim basin on the north and the Himalayas on the
south.

The reconstructed grids of slip lines and stress tra-
jectories and the identified stress distribution for this
region are shown in Figure 9. Here, the same style as



Figure 8. Topographic map of the Tibetan plateau with the
WSM data (CASMO map generated by the WSM website, [Hei-
dbach et al., 2008]). Starting boundary is defined by end points
A: N37◦–E78◦and B: N86◦–E28◦.



Figure 9. The grids of slip lines and stress trajectories and
the map of normalized mean stress for the region in Tibet (left).
Visual and numerical comparison of the reconstructed and ob-
served orientations θ in two areas (right). Detail I. identifies a
relative error of δε1 = 13.5% and in detail II. it is δε2 = 27.3%.



in the preceding sub-section is adopted for marking the
results obtained by different methods. The results are
shown for µ = 25◦, the boundary conditions found from
the data analysis are θj ,0 = 79.89◦and ∂nθj ,0 = 0.08.

4.3. Eastern Anatolia – 33◦E–51◦E and
31◦N–45◦N

The Eastern Anatolia region represents an example of
a continental collision zone [Keskin, 2007]. The anal-
ysed area lies in eastern part of the Anatolian plate and
extends to the Arabian plate. The former, being sur-
rounded by the Eurasian, African and Arabian plate,
has very active tectonics. Stress regime in the study
area has a strike-slip character. Results by Yilmaz et
al. [2006] predict ENE-trending of stress in Eastern
Anatolia, whereas, the Five Domain model by Dwivedi
and Hayashi [2010] gives the principal stresses trend-
ing NE to E.

The starting boundary ranges from the Anatolian-
Arabic-African triple junction up to the eastern termi-
nation of the Northeast Anatolian Fault Zone and it
runs alongside the Eastern Anatolian Fault Zone (Fig-
ure 10). For the third investigated region the analysis of
the data gave the following conditions along the start-



Figure 10. Topographic map of the Eastern Anatolian region
with the WSM data (CASMO map generated by the WSM web-
site, [Heidbach et al., 2008]). Starting boundary is defined by
end points A: N37◦–E36◦and B: N41◦–E45◦.



ing line, θj ,0 = 82.33◦and ∂nθj ,0 = 0.1. The results are
shown in Figure 11 for the friction angle of 27◦. The
marker style is adopted from the sub-section 4.1.

As evident from the figures in this example, in some
regions the results correlate to a good degree of accu-
racy whereas in others the accuracy of the predicted
orientations is fair. However, it follows directly from
the nature of the observed orientations that a good
correlation cannot be achieved in this area because of
the randomness present in the data. One way to im-
prove the certainty of the results is to use the data
of the highest quality (WSM rank A) in this region.
However, it has to be noted, that the inaccuracies can
also stem from the choice of the constitutive law (rhe-
ology), adoption of the 2D model or other, including
geological, effects.

5. Concluding Remarks

Applicability of the ST-SL alternation method, devel-
oped for the limiting equilibrium analysis of two-dimen-
sional plastic bodies, has been studied to address the
geomechanical problem of stress reconstruction in the
Earth’s crust. Namely, identification of stress fields in
mountain regions of the crust has been of the main



Figure 11. The grids of slip lines and stress trajectories and
the map of normalized mean stress for the region in Eastern Ana-
tolia and Arabic plate (left). Visual and numerical comparison
of the reconstructed and observed orientations θ in two areas
(right). Detail I. identifies a relative error of δε1 = 41.4% and in
detail II. it is δε2 = 1.05%.



concern. Discrete data on stress orientations taken
from the WSM database have been utilized for numeri-
cal analysis, the stress magnitudes remained unknown.
The data have been treated by a specially developed
procedure to obtain continuous functions of the orien-
tations of the principal stress and their normal deriva-
tives along the starting boundary. As a result, the pro-
posed numerical procedure allowed for the unique iden-
tification of the stress trajectories grid (or the slip lines
grid). The mean stresses are found in the normalized
form such that the normalization parameter remains
unknown, which emphasizes the non-uniqueness of the
stress reconstruction problem based on stress orienta-
tions alone.

The numerical scheme has been developed for the
Mohr-Coulomb criterion which is widely accepted for
modeling of stress fields in plastic regions of the litho-
sphere. The criterion contains two parameters control-
ling the stress fields; the angle of internal friction and
cohesion. The latter has been used for normalization
of stresses, while the former can be estimated from the
best fit of the predicted stress orientations and the ex-
ternal data, i.e. for data that have not been involved
in the identification of the boundary conditions by the
moving window method. It should be noted that the



Mohr-Coulomb yield condition does not limit the ST
approach and the ST-SL alternations method. It has
been proved in previous studies that some other criteria
are also admissible.

The method has been applied to reconstruct plas-
tic stress fields in three different regions of the Earth’s
crust. In particular, the best-fit model of the Swiss Alps
region predicts the NNW stress orientation with a NW
trending near Lake Maggiore. For the vast part of the
Tibetan plateau, the maximum compressive stresses are
oriented in North direction with the exception of the
south-eastern part where a NNW trend has been ob-
served. Stress orientations in the eastern Anatolia and
Arabian plate show NNE to NE directions. In general,
in all the regions analysed, the numerical modeling sat-
isfactorily predicts the data on the WSM stress indica-
tors (calculated relative errors are within the expected
errors inherent in the data). However, the predictions
are less accurate for the north-eastern Anatolian region
which can be explained by the high level of WSM data
scattering.

The analysis performed on the basis of plastic rheol-
ogy has shown satisfactory agreement between the pre-
dicted and observed stress orientations in some moun-
tain regions of the lithosphere. This justifies the exist-



ing opinion [Fossen, 2010] that plastic deformations are
dominant in geodynamics of the regions of strike-slip
type of faulting. In comparison with the conventional
methods the applied numerical procedure leads to me-
chanically justified solutions within significantly large
areas (in comparison with the conventional methods,
SL formulations, of two dimensional plasticity). It is
important that the method allows for the reconstruc-
tion of the fields of maximum shear stresses and mean
stresses, which cannot be obtained by any pure inter-
polation or statistical methods.

Acknowledgments. The work is partly supported by the RFBR
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Appendix A: Numerical Solution by the

ST Approach

Nodal points of the solution are sought as the inter-
sections of two different families sj ,k and qj+1,k (see
Figure 12, left for notations) which emanate from two
neighboring nodal points on the boundary. The un-
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known node zj ,k+1 near the vicinity of the boundary is
sought as:

zj ,k+1 = zj ,k + δ
(s)
j ,k e

iθj ,k

zj ,k+1 = zj+1,k + iδ
(q)
j+1,ke

iθj+1,k (A.1)

The fact that both relationships in (A.1) should specify
the same nodal point allows for the determination of

the unknown distances δ
(s)
j ,k , δ

(q)
j+1,k as follows: δ

(s)
j ,k

δ
(q)
j+1,k

 =
1

cos(θj ,k − θj+1,k)
×

 cos θj+1,k sin θj+1,k

sin θj ,k − cos θj ,k

 Re(zj+1,k − zj ,k)

Im(zj+1,k − zj ,k)


(A.2)

The accuracy of the utilized piecewise linear approx-
imation is illustrated in Figure 12 (right). The mean
stresses and the principal directions at the new nodal
points zj ,k+1 are calculated by means of the Taylor’s
expansion as: Pj ,k+1

θj ,k+1

 =

 Pj ,k

θj ,k

 + δ
(s)
j ,k

 ∂sPj ,k

∂sθj ,k

 (A.3)



Derivatives of the order higher than one are neglected.
Derivational terms on the right-hand side of (A.3) are
unknown and are yet to be determined. Based on
the boundary conditions, posed in terms of orienta-
tions θ and their normal derivatives ∂nθ, the numerical
procedure utilizes the transformation formulas between
the directional derivatives along the stress trajectories
(s, q) and the tangential and normal directions to a
contour (t, n). DEE (9) in view of this transformation
(DEE in terms of normal and tangential derivatives)
can be written in the form:

 ∂tPj ,k

∂nPj ,k

 =

 aj ,k cos ξj ,k aj ,k sin ξj ,k

−bj ,k sin ξj ,k bj ,k cos ξj ,k

−1

×

 + sin ξj ,k − cos ξj ,k

− cos ξj ,k − sin ξj ,k

 ∂tθj ,k

∂nθj ,k

 (A.4)

or equivalently: ∂nPj ,k

∂nθj ,k

 =

 sin ξj ,k − cos ξj ,k

−bj ,k cos ξj ,k aj ,k sin ξj ,k

−1

×



 −aj ,k cos ξj ,k sin ξj ,k

bj ,k sin ξj ,k − cos ξj ,k

 ∂tPj ,k

∂tPj ,k

 (A.5)

It should be noted that the tangential derivatives in the
equations above can be expressed via the values of θ
and P on the k-th layer by the forward finite differences: ∂tPj ,k

∂tθj ,k

 =
1

|zj+1,k − zj ,k |

 Pj+1,k − Pj ,k

θj+1,k − θj ,k


(A.6)

Notations aj ,k , bj ,k refer to the values at the node
zj ,k of the corresponding coefficients introduced in (10).
It can be readily observed that by substitution of the
second equation in (A.6) into (A.4) the tangential and
normal derivatives of P can be found directly. These
derivational terms (along the tangent and the normal)
specify the directional derivatives in the Taylor’s expan-
sion (A.3). As the result, the unknown stress field P is
found in the normalized form such that the initial value
of Pj ,k remains unknown.

Since (A.4) and the boundary conditions now allow
for recalculation of the stresses from (A.3) along the
starting boundary the solution further continues with
equations (A.5) and (A.6) (where, the unknown normal



derivatives are sought as functions of the known values
along the boundary).

One obvious limitation of the method is the exis-
tence of the inverse matrix that becomes singular if its
determinant vanishes, which yields:

aj ,kbj ,k = 0⇔ cosµ = 0 (A.7)

in (A.4) or:

aj ,k − bj ,k − (aj ,k + bj ,k) cos 2ξj ,k = 0 (A.8)

in (A.5). Note, that the restriction in (A.7) implies
non-physical values for the friction angle that usually
varies in the range (0, π/4).

Appendix B: Numerical Analysis –

Starting From a Slip Line

The finite difference form of equation (9) written with
respect to the point zj ,k and along trajectories sj ,k ,
qj+1,k−1, yields:

aj ,k
Pj+1,k+1 − Pj ,k

∆sj ,k
+
θj ,k − θj+1,k−1

∆qj+1,k−1
= 0,



bj ,k
Pj ,k − Pj+1,k−1

∆qj+1,k−1
+
θj+1,k+1 − θj ,k

∆sj ,k
= 0. (B.1)

Here, ∆sj ,k = |zj+1,k+1−zj ,k | and ∆qj+1,k−1 = |zj ,k−
zj+1,k−1| determine the distances between the given
nodes (see Figure 4). Similarly this scheme can be
applied for the trajectories sj ,k−1, qj+1,k at the point
zj+1,k which gives:

aj+1,k
Pj+1,k − Pj ,k−1

∆sj ,k−1
+
θj ,k+1 − θj+1,k

∆qj+1,k
= 0

bj+1,k
Pj ,k+1 − Pj+1,k

∆qj+1,k
+
θj+1,k − θj ,k−1

∆sj ,k−1
= 0 (B.2)

Because of the piecewise linear approximation adopted
for the ST approach, some errors are introduced. The
averages of the solutions in (B.1) and (B.2) at the node
zj+1,k+1 have been used to improve accuracy.
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