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Abstract. Initial equations are obtained, similarity criteria are estimated and a project
of simulation experiment is proposed for the gravitational differentiation of liquid cores of
planets and natural satellites. It is assumed that, first, the liquid core in an adiabatic state
without thermal convection and, second, the inner solid core grows during the crystallization
of a heavy component from the liquid core in such a way that the buoyancy force acting
on a lighter component is directed strictly along the radius. It is also assumed that the
radial distribution of density in the liquid core does not change during the time interval
considered. These three natural assumptions enable an analytical description of basic
hydrostatic effects controlling slow growth of the solid core, gravitational stratification of
the liquid core, and sources of related compositional convection. The similarity criteria
of such convection are mostly the same as for thermal convection. Additional criteria are
the concentration contrast (∼1/10 in the Earth), the compressibility of the liquid core
(∼10%), and the thickness of a concentration boundary layer (∼10−7) that, controlling the
freezing-out of the liquid at the inner sphere, can give rise to asymmetry of the solid core.
The excitation threshold of the compositional convection is much higher than a similar
threshold for thermal convection, and the compositional convection itself can arise only at
an intermediate stage of the gravitational differentiation of the core. Observed magnetic
fields are largely due to compositional convection in the Earth’s core and, probably, in
deep interiors of Mercury. At the contemporary evolutionary stage of Venus’ interiors,
the intensity of compositional convection is most likely insufficient for the magnetic field
excitation and it is undoubtedly too weak in the Mars’ interiors.

1. Introduction

Convection in deep interiors of planets [Stevenson et al.,
1983] and their natural satellites [Kuskov and Kronrod, 1998]
can be due to both thermal and gravitational effects [Loper,
1978]. Only at a certain evolutionary stage of a planet (satel-
lite), can compositional convection, largely controlled by
gravitational differentiation of its composition, arise some-
where in its deep liquid interiors. Very vigorous compo-
sitional convection should take place, for example, due to

Copyright 2003 by the Russian Journal of Earth Sciences.

Paper number TJE03139.
ISSN: 1681–1208 (online)

The online version of this paper was published 8 January 2004.
URL: http://rjes.wdcb.ru/v05/tje03139/tje03139.htm

the differentiation of the Earth’s core into liquid and solid
phases. As was described for the first time by Braginsky
[Braginsky and Roberts, 1995], such convection is associated
with the floating-up of an excessive lighter component from
the boundary with a slowly growing inner solid core, a heav-
ier component being precipitated onto this boundary from
the contracting outer liquid core.

The growth rate of the Earth’s solid core can be estimated
by dividing the present-day radius of the core by its age
(1–3 Ga), which yields a value of ∼10−11 m s−1. The re-
lations governing this rate and the conditions favoring the
occurrence of compositional convection have not been ex-
plored as yet. Moreover, of the best of our knowledge, even
basic criteria of similarity have not been developed for com-
positional convection in a rapidly and almost rigidly rotat-
ing planetary spherical layer [Starchenko, 2000]. Only a few
widely known studies (e.g. see [Glatzmaier and Roberts,
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1997; Starchenko and Jones, 2002]) were devoted to the di-
rect numerical modeling of magnetic effects due to thermal
and compositional convection. The assumptions underlying
these studies are so unrealistic and their model time inter-
vals are so limited that their results are by no means usable
for developing the theory of compositional convection in a
rotating spherical liquid layer.

The goal of this paper is the development of the gen-
eral theory, as well as its experimental simulation basis, for
gravitational differentiation and the related compositional
convection in a rapidly and nearly rigidly rotating spherical
liquid layer in deep interiors of planets and natural satellites.

The simplest mathematical model describing the main
features inherent in the gravitational differentiation of deep
interiors of planets and natural satellites is proposed in the
second section of this paper. The spherical liquid layer un-
der consideration is assumed to be an adiabatic state with
no thermal convection. Moreover, for simplicity, the buoy-
ancy acceleration that can arise in such a layer is assumed
to be directed strictly along the radius.

In the third section, it is shown that, given a station-
ary density determined from seismic observations or evolu-
tionary models, the initial equations for the gravitational
potential, pressure, and concentration of the lighter compo-
nent have a basic analytical solution. This basic solution
completely defines the global growth rate of the solid in-
ner sphere and the intensity of the possible compositional
convection. Main hydrostatic effects and similarity criteria
associated with this slow growth of the solid sphere modeling
the inner core of a planet or a natural satellite are described
theoretically.

In the fourth section, the convective instability and simi-
larity criteria are considered for compositional convection in
a rotating layer. Comparison between chemical and thermal
convection patterns made it possible to utilize some results
derived for thermal convection. On the other hand, unique
effects inherent in compositional convection are established.
The main effect is the formation of a concentration bound-
ary layer controlling the freezing-out behavior of the liquid
at the surface of the inner sphere. Specific features of this
behavior can result in the asymmetry of the Earth’s rigid
core. The presence of the concentration layer and the effect
of rapid rotation can raise significantly the excitation thresh-
old of compositional convection as compared with thermal
convection. As a result, the magnetohydrodynamic system
driven by the compositional convection is likely to be in the
laminar state in the Earth, near the generation threshold in
Mercury and beyond the generation threshold in Venus and
Mars.

In the final, fifth section, main conclusions are formu-
lated and a project of an experimental installation for the
laboratory simulation of gravitational differentiation of deep
planetary interiors is discussed.

2. Formulation of the Problem

A simplified mathematical model, discussed below, is pri-
marily developed to reconstruct main effects of the gravi-

tational differentiation in deep liquid interiors of terrestrial
planets (Mercury, Venus, the Earth, and Mars), because the
dependence of their evolution on gravitational differentia-
tion raises no doubts [Stevenson et al., 1983]. Moreover,
the model proposed here is applicable to large natural satel-
lites similar in internal structure to terrestrial planets (for
example, the Moon, the Jupiter’s satellites Ganymede, Eu-
ropa, and Callisto [Kuskov and Kronrod, 1998], and other
similar satellites of giant planets). Finally, this model can
have some implications for Neptune, Uranus, Saturn, and
Jupiter, if gravitational differentiation played a substantial
role in the formation of inner rigid cores in these planets.

To pinpoint main effects of gravitational differentiation,
we address an idealized body in which the following condi-
tions are valid.

(i) The spherical liquid layer under consideration is in the
adiabatic state without thermal convection. This condition
can be valid even in the Earth’s core, where it is still not ev-
ident that the adiabatic gradient exceeds the value required
for excitation of thermal convection.

(ii) Gravitational differentiation proceeds in the spherical
liquid layer (the liquid core) consisting of heavy and light
components. The heavy component forms a slowly growing
(billions of years in the Earth) inner solid core.

(iii) The buoyancy acceleration is assumed to be strictly
radial in a reference frame rotating together with the outer
boundary of the liquid core, because the centrifugal acceler-
ation is appreciably smaller than the gravitational accelera-
tion in deep interiors of planets and satellites.

If the mass fraction of the light component (or admix-
ture) ξ is referred to as the concentration, basic equations
describing the simplified model of gravitational differenti-
ation proposed here are (e.g. see [Braginsky and Roberts,
1995; Loper, 1978; Starchenko, 2001])

∂ρ/∂t +∇ · (ρV) = 0 ; (1a)

ν∇2V = ∂V/∂t + (V · ∇)V

+ 2Ω×V + (∇p)/ρ +∇U ;
(1b)

∇2U = 4πGp ; (1c)

∇ · (ρκ∇ξ) = ρ(∂ξ/∂t + V · ∇ξ) ; (1d)

ρ = ρ(t, p, ξ) . (1e)

Here the reference frame rotates at a fixed angular velocity Ω
close to that of the rotating outer boundary of the liquid core
at r = ro, ρ is density, t is time, V is the velocity vector, ν is
the constant kinematic viscosity coefficient, p is pressure, U
is the gravitational potential, G = 6.67×10−11 m3/(kg cm2)
is the gravitation constant, and κ is the kinematic diffusion
coefficient of the light admixture. System (1) consists of the
continuity (1a), hydrodynamic (Navier-Stokes) (1b), gravi-



starchenko: gravitational differentiation 433

tation (1c), and diffusion (1d) equations and the equation of
state (1e); the latter involves condition (i), which formally
implies that the specific entropy S is uniform (∇S = 0) and
depends only on time: S = S(t).

The boundary conditions for the velocity in (1a) and (1b)
are controlled by the structure of the outer and inner (r = ri)
boundaries of the liquid core. At rigid boundaries in liquid
cores of terrestrial planets, these conditions can be written
as

V = 0 at r = ro
(2a)

and V = ωiri sin θ1ϕ at r = ri(t) . (2b)

Relation (2b) and the dynamic equation for the relative
angular velocity of the inner rigid boundary, derived from
(1a) and (1b), make the system of equations complete. The
gravitation equation (1c) is complemented by the continuity
conditions imposed on the gravitational potential U and its
gradients ∇U.

In the case of terrestrial planets, equations (1d) and (1e)
are complemented by the outer condition of impermeability,
inner condition of diffusion and phase transition condition
at the inner liquid/solid interface:

0 =
∂ξ

∂r
at r = ro , (3a)

∂Ri

∂t
= −Ξκ

∂ξ

∂r
(3b)

and r−1
i

∂Ri

∂t
= −FS

cp

∂S

∂t
− F

∂ξ

∂t
at r = Ri(t, θ, ϕ) . (3c)

Here, r = Ri ≈ ri describes a spherically slightly asymmet-
ric surface of the solid core; Ξ is the boundary ratio of the
density of the liquid layer to the density jump at the surface
of the solid sphere, providing a change in the concentration
of the light admixture in the liquid; cp is the specific heat
at constant pressure; and FS and F are positive factors con-
trolling the thermodynamics of freezing and crystallization
of the outer liquid core at the solid core surface. Taking into
account the estimates presented in [Braginsky and Roberts,
1995; Lister and Buffett, 1995; Loper, 1978; Starchenko and
Jones, 2002] for the Earth’s core, we have

Ξ = 25± 10 , (4a)

St ≡ −FSc−1
p ∂S/∂t = (2± 1.5) · 10−17/s (4b)

and F = 50± 20 . (4c)

The important parameter St, introduced in (4b), phys-
ically means a characteristic frequency of the thermograv-
itational differentiation of the core of a planet (or a satel-
lite) into liquid and solid components. The numerical value

of (4b) specifies, in a natural way, the age (∼1/St) of the
Earth’s rigid core that amounts to about one billion of years.

Thus, at times significantly shorter than 1/|St|, all of the
model relations presented in this section can be reliably used
in the study of gravitational differentiation. Moreover, with
an accuracy sufficient for the model considered, we can as-
sume below that all external parameters in (4) and (3b, 3c)
are constant in time and space.

3. Basic Hydrostatic State

In order to successfully solve system (1)–(3), we should
specify an initial condition as simple as possible. In what
follows, this state is referred to a basic state, and all related
values have the index “0”.

An optimal approach is to choose such a basic state that
has a given stationary radial distribution of density ρ0(r)
satisfying the model of internal structure of a planet (satel-
lite) in a certain epoch. In order to model the basic state of
the Earth’s liquid core in the modern epoch, it is natural to
take the density distribution from the PREM seismic model
[Dziewonski and Anderson, 1981]. Ancient epochs can be
modeled, for example, with the use of the model proposed
in [Loper, 1978], which describes the entire differentiation
process of the Earth’s core into its solid and liquid parts.

The basic stationary, spherically symmetric density ρ0(r)
should satisfy equation of state (1e) with an adequate ac-
curacy over the time interval of the epoch considered. Ev-
idently, the radial density distribution in the Earth’s core
would change by a value on the order of 10% over about one
billion years. Therefore, the characteristic time required for
a significant change in the density is about ten billion years.
Accordingly, if an accuracy of the order of 1% is taken for
the description of the basic state, the duration of the model
epoch for the Earth will not exceed a value on the order of
100 Myr.

The continuity equation (1a) will be satisfied for the basic
state if no convection is present, V0 = 0. The remaining
three equations in (1) are simplified and have the form

∂

∂r

(
r2 ∂U0

∂r

)
= 4πGr2ρ0 , (5a)

∂p0

∂r
= −ρ0

∂U0

∂r
, (5b)

κ

r2

∂

∂r

(
r2ρ0

∂ξ0

∂r

)
= ρ0

∂ξ0

∂t
. (5c)

Starting from the center, equation (5a) can be easily in-
tegrated with respect to ∇U0 = (∂U0/∂r)1r, because the
basic density is specified everywhere throughout the epoch
under consideration:

∂U0/∂r =
(
4πG/r2

)∫ r

0

r2ρ0(r)dr . (6)
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Figure 1. The curve continuously increasing from x ≡
ri/ro is the normalized growth rate of the light admixture
concentration (7c) in the Earth’s liquid core bounded by the
radii ri and ro. The bell-shaped curve is the gravitational
differentiation energy of the core normalized to its maximum
value.

The substitution of this solution into (5b) immediately pro-
vides the stationary pressure gradient.

The general solution of the diffusion equation (5c) satisfy-
ing boundary conditions (3) can be conveniently expressed
through the rate of the concentration increase ξ̇, which is
constant in the epoch modeled, and the derivative ξ′, which
depends on the radius r alone. Using the value ξ0

0 , which
is constant in the given epoch and is determined by the
equation of state (1e), this general solution for the initial
concentration is written in the form

ξ0 = ξ̇t +

∫ r

ri

ξ′(r)dr + ξ0
0 , (7a)

ξ′ = − ξ̇

κ

∫ ro

r

ρ0r
2dr

r2ρ0
,

(7b)

ξ̇ =
Str

3
i ρ0(ri)

Fr3
i ρ0(ri) + Ξ

∫ ro

ri

ρ0r
2dr

.
(7c)

Hence, using (3b) and (3c), we obtain an estimate for the
growth rate of the solid sphere (∼10−11 m s−1 in the Earth):

∂ri

∂t
≡ ṙi

= riSt/
[
1 + r3

i ρ0(ri)F/
(
Ξ

∫ ro

ri

ρ0r
2dr

)]
∼ riSt ,

(8)

which is independent of the diffusion coefficient κ.
If the liquid spherical layer cools, its entropy decreases

with time and we have St > 0, as in (4b). In this case,
the growth rate of the inner solid sphere (8) is positive and
the concentration gradient is negative, i.e. ξ′ < 0 in (7b).
The corresponding basic hydrostatic state described by the
stationary quantities ρ0,∇U0,∇p0, ξ

′(r) and ξ̇ = const is
generally unstable. Therefore, given a positive growth rate
of the inner sphere, even very small deviations from such a
basic state with cooling can excite convection (for details,
see below). Vice versa, if the liquid in the layer is heated,
St < 0, the inner radius of the layer decreases and the basic
state (5)–(8) is stable with respect to any arbitrarily small
perturbations.

Basic state (7) and its energy characteristics [Lister and
Buffett, 1995; Starchenko and Jones, 2002] are fully deter-
mined by the time derivative of concentration (7c). Consid-
ering that the density in liquid cores of terrestrial planets
varies insignificantly (∆ρ0/ρ0 ≤ 10%), this derivative can be
approximated, within a reasonable accuracy, by the value

ξ̇ ≈ (St/F )/[1 + (Ξ/F )(x−3 − 1)/3] ,

where x ≡ ri/ro is the ratio of the inner radius to the outer
radius. Figure 1 plots the function 1/[1+(Ξ/F )(x−3−1)/3]
for the Earth, and very similar behavior of this function
should be expected for the other terrestrial planets. Thus,
the specific energy density of gravitational differentiation,
which is directly proportional to (7c), is negligibly small for
x ≤ 0.1 and subsequently starts rising. The total energy
of gravitational differentiation is found through multiply-
ing (7c) by the volume of the liquid layer and vanishes at
x = 1, as is seen from Figure 1.

The stationary difference of concentration across the liq-
uid layer ∆ξ or the relative concentration difference of den-
sity is determined by the integration of (7b):

∆ξ ≡ −
∫ ro

ri

ξ′dr =
κ−1Str

3
i ρ0(ri)

Fr3
i ρ0(ri) + Ξ

∫ ro

ri

ρ0r
2dr

×
∫ ro

ri

(
r−2ρ−1

0

∫ ro

r

ρ0r
2dr

)
dr .

(9)

Given the molecular diffusion coefficient κ ∼ 10−5 m2 s−1

generally accepted for the Earth’s liquid core, the value (9)
is on the order of 10−1 in the modern epoch.

As seen from (9) and (7a), the quantity ∆ξ ∼ ξ0 is
actually a characteristic of the light admixture concentra-
tion. In the modern epoch, the same estimate of the order
of 10−1 was independently obtained for this concentration
in the Earth in [Braginsky and Roberts, 1995; Lister and
Buffett, 1995; Loper, 1978; Starchenko and Jones, 2002].
Therefore, all of the values and estimates used in this pa-
per are self-consistent.

4. Descripition of the Gravitational
Convection

Let the density, gravitational potential, pressure and con-
centration be represented as sums of basic (see above) and
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relatively small convective components: ρ0+ρ, U0+U , p0+p
and ξ0+ξ, respectively. Then, taking into account equations
(5)–(7), describing the initial state, can be rewritten in the
following, “convective” form:

∂ρ/∂t +∇ · (ρV) +∇ · (ρ0V) = 0 ; (10a)

ν∇2V = ∂V/∂t + (V · ∇)V + 2Ω×V

+ (ρ0 + ρ)−1∇(p0 + p)− ρ−1
0 ∇p0 +∇U ;

(10b)

∇2U = 4πGρ ; (10c)

∇ ·
[(

ρ0 + ρ
)
κ∇ξ

]
+∇ ·

(
ρκξ′1r

)
= ρ0∂ξ/∂t + ρξ̇ +

(
ρ0 + ρ

)
V ·

(
ξ′1r +∇ξ

)
;

(10d)

ρ = ρ′pp + ρ′ξξ ,

where ρ′p =
ρ′0

∂p0/∂r
and ρ′ξ =

ρ′0
∂ξ0/∂r

determine ρ′0 ≡
∂ρ0

∂r
.

(10e)

The quantities ρ′p, and ρ′ξ(r) in (10e) are functions de-
fined through the basic density ρ0(r). In addition, we used
relations derived for planets from numerical and laboratory
simulations: ρ0 � |ρ|, |p0| � |p| and ξ0 � |ξ|. Based on
these relations and the estimate |∂/∂t| ∼ |V · ∇|, typical of
convection, the exact equations (10a)–(10c) can be reduced
to a simplified system:

∇ ·
(
ρ0V

)
= 0 ; (11a)

ν∇2V = ∂V/∂t +
(
V · ∇

)
V

+ 2Ω×V +
[
ρ−1
0 ∇p− ρ−2

0 ρ∇p0 +∇U
]

;
(11b)

∇ ·
(
ρ0κ∇ξ

)
+

[
∇ ·

(
ρκξ′1r

)
−ρξ̇

]
= ρ0

(
∂ξ/∂t + V · ∇ξ

)
+ρ0Vrξ

′ .
(11c)

Using (10e) and (5)–(7), the bracketed terms in (11b) and
(11c) can be transformed into a form advantageous for their
further effective application. First, we write separately the
buoyancy acceleration from (11b):[

ρ−1
0 ∇p− ρ−2

0 ρ∇p0 +∇U
]

= ρ−1
0 ∇p− ρ−2

0

(
ρ′pp + ρ′ξξ

)
∇p0 +∇U

= ∇
(
ρ−1
0 p + U

)
−ρ−2

0 ρ′ξξ∇p0

= ∇
(

p

ρ0
+ U

)
+

ρ′ξ
ρ0

∂U0

∂r
ξ1r .

(12a)

The bracketed term in (11c) can then be transformed to the

form [
∇ ·

(
ρκξ′1r

)
−ρξ̇

]
= κξ′

(
1r · ∇ρ

)
+ρ

[
∇ ·

(
κξ′1r

)
−ξ̇

]
=

(
κξ′/ρ0

)[
ρ0∂ρ/∂r − ρ∂ρ0/∂r

]
= κξ′ρ0∂

[(
ρ′pp + ρ′ξξ

)
/ρ0

]
/∂r .

(12b)

It is evident from this relation and from (9) that the value
(12b) is ∆ξ times smaller than the first term on the left-hand
side of (11c), which is usually minimal in a larger part of the
liquid layer. Hence, since ∆ξ � 1 in the case studied, the
contribution of (12b) to (11c) can be neglected in the models
considered here.

Finally, introducing the effective pressure P ≡ ρ−1
0 p + U

from (12a), we obtain the simplest convective system of
equations

∇ ·V = −ρ−1
0 ρ′0Vr ; (13a)

ν∇2V = ∂V/∂t +
(
V · ∇

)
V

+ 2Ω×V − g0ξ1r +∇P ;
(13b)

ρ−1
0 ∇ ·

(
ρ0κ∇ξ

)
= ∂ξ/∂t + V · ∇ξ + Vrξ

′ . (13c)

Here, g0(r) ≡ −(ρ′ξ/ρ0)∂U0/∂r is the gravitational acceler-
ation determined from (6) and (10e), which is responsible
for the concentration buoyancy. This acceleration is directly
proportional to ordinary gravitational acceleration ∂U0/∂r,
with the proportionality factor ρ′ξ/ρ0 amounting to ∼0.6 in
the Earth [Braginsky and Roberts, 1995]. The convection in-
tensity is controlled by the product of g0 and the stationary
concentration gradient −ξ′ given by (7).

The system of 8th order (13) is complemented by six
boundary conditions (2) for the vector V and by the fol-
lowing two conditions imposed on the convective part of the
concentration ξ, below referred to simply as concentration:

∂ξ

∂r
= 0 at r = ro , (14a)

∂ξ

∂r
=

Fri

Ξκ

∂ξ

∂t
at r = ri(t)− F

∫ t

0

ri
∂ξ

∂t
dt . (14b)

Here, ri = ri0 + ṙit is the radius of the solid sphere, lin-
early varying with time; ṙi = const is determined in (8); and
ri0 = const is the initial radius at the time moment t = 0,
when the system under consideration is adequately described
by the spherically symmetric basic state (see the preceding
section). The remaining parameters in (14b) are determined
in (3b, 3c) and (4a, 4c).

Boundary condition (14b) differs essentially from all
boundary conditions known studies of thermal convection,
which is usually examined in the Boussinesq approximation
(e.g. see [Braginsky and Roberts, 1995; Starchenko, 2000]).
Due to (14b), compositional convection inevitably involves
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the presence of a specific inner boundary layer that controls
the freezing dynamics of liquid at the boundary of the inner
sphere. Since the convection inevitably becomes asymmet-
ric after a sufficiently long time interval, the shape of the
inner core should eventually deviate, on a significant level,
from a spherically symmetric shape. This provides a fairly
simple explanation to the asymmetry of the Earth’s inner
core established from seismological data.

The thickness of the unique concentration layer
∆r = κΞro/(FriV∗) is estimated by balancing typical values
and using as a characteristic time the ratio of the outer size
ro of the system to the characteristic velocity V∗. The cor-
responding similarity criterion is described by the number

δ ≡ ∆r/ro = κΞ/(FriV∗) � 1 , (15)

which amounts to ∼10−7 for the value V∗ = 10−4 m s−1,
molecular diffusion and the parameters considered above.

As distinct from the widely known Boussinesq convec-
tion, the compositional convection under study involves a
similarity criterion for (13a) characterizing the stratification
of density:

d ≡ max
r
|roρ

′
0/ρ0| . (16)

This effect, albeit small in the Earth’s core (d ∼ 10−1)
[Dziewonski and Anderson, 1981], can be significant for
convection and magnetism [Braginsky and Roberts, 1995;
Starchenko, 2001].

Unlike (15) and (16), many other numbers characteriz-
ing similarity criteria of compositional convection are either
analogous to or coincide with well-known numbers of ther-
mal convection. Thus, rapid and nearly rigid rotation of
liquid interiors of a planet (or a satellite) is characterized,
respectively, by the Ekman number E and the Rossby num-
ber ε :

E ≡ νr−2
o /Ω � 1 , (17a)

ε ≡ V∗r
−1
o /Ω � 1 . (17b)

It is evident from this definition that these numbers are the
same for both thermal and compositional convection. The
lower bound ε ≥ 10−6 for the Rossby number is determined
reasonably well from long-term geomagnetic and present-day
seismic observations [Glatzmaier and Roberts, 1997].

The lower bound E ≥ 10−15 for the Ekman number is
determined from the iron value of the molecular viscosity
ν ≥ 10−6 m2 s−1, obtained under conditions typical of the
Earth’s liquid core [Wijs et al., 1998]. If the actual value of
viscosity is close to this lower bound, the relative thickness
of the Ekman viscous boundary layer E1/2 ∼ 10−7 virtually
coincides with the thickness of the concentration layer δ from
(15). As demonstrated below, such a coincidence is unlikely
to be accidental. Then, setting E1/2 equal to δ, we obtain a

Figure 2. The straight line is the plot of log(Ccr) (Ccr is
the critical value from (20)). The curved line is the plot of
log(C) (C is the concentration number from (19)) as a func-
tion of x (see the capture to Figure 1). The compositional
convection is excited at C > Ccr.

simple estimate for the concentration velocity:

V∗ = (Ξ/F )ro

√
Ω/ν(κ/ri) ∼ E−1/2κ/ri . (18)

To estimate numerically the intensity of compositional
convection sources, we determine rotational (E � 1) con-
centration number C. To do this, we utilize the rotational
Rayleigh number R known in thermal convection (e.g. see
[Starchenko, 2000]). Replacing in the R definition the ther-
mal density drop α∆T by the analogous value ∆ξ from (9),
we obtain

C ≡ g∗∆ξ(ro − ri)/(Ωκ) , (19)

where g∗ is the characteristic gravitational acceleration and
the layer thickness ro − ri is used as the characteristic size.
Concentration number (19) is fairly large (C ≈ 2 · 1015) if
the following values, typical of the contemporary liquid core
of the Earth are accepted: ∆ξ ≈ 10−1, κ ≈ 10−5 m2 s−1,
Ω = 7 · 10−5 s−1, ro − ri = 2 · 106 m and g∗ ≈ 7 m s−2. The
C value is plotted in Figure 2 as a function of the relative
radius of the inner solid core x ≡ ri/ro.

To initiate convection, it is necessary that C exceed a cer-
tain critical value Ccr. In the case of thermal convection, if
R exceeds the critical Rayleigh number Rcr ∼ E−1/3 ≤ 105,
sharply asymmetric convection with periods t∗ ∼ E2/3r2

o/ν
arises [Busse, 1970; Jones et al., 2000]. In the Earth’s
core, this corresponds to the typical velocity V∗ = ro/t∗ ∼
10−3 m s−1. If the preferable excitation of convection of the
same type were possible in the concentration system con-
sidered here, this would lead to the formation of an overly
narrow concentration boundary layer (δ ∼ 10−8) in accor-
dance with (15). We show that the existence of even much
wider layer would require an incomparably larger value of
the critical number and an essentially different convection
pattern.
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The system is at the convection excitation threshold if
the time derivatives of the relative concentration and ve-
locity are close to zero in (13b, 13c): |ξ−1∂ξ/∂t| ∼ 0 and
|V −1∂V/∂t| ∼ 0. In this case on the strength of (2b), the
radial velocity in the concentration boundary layer (15) has
a characteristic value of about δV∗. The characteristic val-
ues |Vrξ

′| ∼ δV∗∆ξ/ro and g∗ξ∗ of the “generating” terms in
(13b, 13c) should be close to the respective values κξ∗/(roδ)

2

and ν(δV∗)/(roδ)
2 for the diffusive and viscous terms hinder-

ing the generation. According to definition (19), this yields
at ro ∼ (ro − ri) an estimate for the largest possible value
of the critical concentration number, expressed through the
thickness of the concentration boundary layer:

Ccr ∼ E/δ4 . (20)

Given the relative thickness δ ∼ 10−7 typical of the Earth
and E = δ2, we obtain Ccr ∼ 1014, which is only a lit-
tle smaller than the contemporary concentration number
C according to Figure 2. Therefore, compositional con-
vection can be laminar. This is an entirely new fact, be-
cause previously, by analogy with asymmetric thermal con-
vection [Braginsky and Roberts, 1995; Lister and Buffett,
1995; Starchenko, 2000], such chemical (or gravitational)
convection was always supposed to have an essentially non-
linear, turbulent and complicated pattern. The structure of
compositional convection should also be simpler than that
of thermal convection, because it is controlled by a more
symmetric concentration boundary layer, which should be
related to well-studied viscous boundary layers.

Presently, the intensity of compositional convection is
close to its maximum, as is evident from Figure 2. On the
contrary, in the distant past, when the Earth’s solid core was
small enough, compositional convection was not so intense.
There even existed a critical radius of the solid core starting
from which the convection was excited. The convection will
start attenuating beginning from a certain time moment in
future and will stop at the second critical radius, when the
thickness of the liquid layer becomes too small, as is seen
from Figure 2. It is quite probable that presently the radius
of the radius of the solid core exceeds the second critical
value in Mars and has not attained the first critical value
in Venus. This is a likely reason why these planets do not
have own significant magnetic fields. Even if compositional
convection exists in the interiors of Mercury, its intensity is
nearly critical because the own magnetic field of the planet
is very weak and irregular.

5. Project of an Experiment and
Conclusions

Our project of an experimental installation is largely simi-
lar to that described in [Sumita and Olson, 1999] and already
used for modeling thermal convection. Therefore, below we
do not go into technical detail but focus on significant dis-
tinctions from the model proposed in [Sumita and Olson,
1999] that are beneficial to the effective use of the instal-
lation proposed here primarily for modeling compositional
convection and the related differential rotation. Evidently,

Figure 3. Layout of an experimental installation for the
laboratory simulation of gravitational differentiation and
differential rotation of deep interiors of planets and natu-
ral satellites.

this installation is also applicable to the modeling of thermal
and combined convection in deep interiors of planets.

Figure 3 schematically illustrates the layout of the ex-
perimental installation modeling the heat-and-mass trans-
fer under conditions typical of planetary deep interiors. We
replaced spheres by hemispheres for the following reasons.
First, the combined centrifugal and gravitational field is ca-
pable of reproducing the equatorial symmetry of the plan-
etary gravitational field, whereas spheres virtually cannot
ensure such a symmetry of this buoyancy field under labora-
tory conditions. Second, the central hemisphere can actually
float, like a solid planetary core at the center of the spher-
ical liquid layer. Finally, the use of hemispheres instead
of spheres considerably facilitates effective monitoring and
needed measurements.

An important element of the experimental installation is
a light and transparent cap that has the shape of a thin
disk and bounds the liquid layer surface from above (see
Figure 3). The cap both retains the inner hemisphere at the
center and prevents the free surface from buckling due to the
rapid rotation. The cap material should make its viscous
coupling with the layer liquid as small as possible. At the
cap boundaries with the hemispheres, it is advantageous to
place light bearings rigidly connected with the hemispheres.
Then, the angular rotation velocity of the cap can be used
for estimating the average angular velocity of the spherical
layer.

Note that the laboratory field of the centrifugal and grav-
itational buoyancy is opposite in direction to the planetary
field modeled. Therefore, in order to reproduce real effects,
the laboratory gradients of temperature and concentration
should be opposite to counterparts in planets. Thus, the
radius of the inner hemisphere, colder than the outer one,
should decrease in the laboratory experiment in order to ade-
quately model hydrodynamic effects associated with growing
hotter solid cores of planets.
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Now we estimate the angular velocities of the hemispheres
providing the best fit of the spherically symmetric (radial)
field of gravitational buoyancy and the slightly differential
rotation of a liquid core.

The angular velocity of the outer hemisphere is fixed in
the laboratory experiment (i.e. Ω = const in Figure 3) in
order to model the rotation of the outer planetary mantle,
whose moment of inertia is much larger than that of the
liquid layer. This value of Ω and the gravitational accelera-
tion g = 9.8 m s−2 determine the equipotential lines of the
acceleration field(

Ω sin θ
)2

/2 + gr cos θ = const (21)

modeling the gravitation in the interiors of planets and nat-
ural satellites in the rotating reference frame (r, θ, ϕ) shown
in Figure 3. The closer the equipotential lines (21) to the
contours r = const, the better the reproduction of the ra-
dial gravitational field of a planet. An adequate reproduc-
tion of this field is particularly important, because all of the
main processes controlling the compositional convection oc-
cur tight here. In this respect, the main line of family (21)
that is tangent to the line r = ri at z = r cos θ = ri and
ensures such a reproduction is determined by the criterion
of closeness to r = const reducing to the minimization of
the area bounded by these lines and the axis s = r sin θ. It
is easy to prove that the absolute minimum of this area is
attained at an angular velocity close to the value

Ω = 1.2
√

g/ri . (22)

Hence, we obtain that, for example, at ri = 0.35 m the outer
hemisphere should make one revolution per second for the
best possible reproduction of the radial field of concentration
buoyancy near the solid core of a planet.

The angular velocity of the inner hemisphere (Ω + wi in
Figure 3) should be slightly different from that of the outer
hemisphere in order to model a slightly differential rotation
in planetary cores. Thus, the reproduction of the differen-
tial rotation in the Earth’s core requires that the condition
0 ≤ wi/Ω ≤ 10−5 be valid [Glatzmaier and Roberts, 1997].
The measurement of such small differences between angular
velocities will require high-precision instrumentation such as
layer-scanning laser illumination and interferometers.

To sum up, we present the main results of this work.
(1) Under assumptions natural for terrestrial planets, a

fully analytical description is obtained for basic hydrostatic
effects that control slow growth of an inner solid core in a
planet, gravitational stratification of the liquid core and the
associated sources of compositional convection.

(2) A system of equations governing the virtually unex-
plored compositional convection is derived. Main similarity
criteria the observance of which is a prerequisite for success-
ful laboratory simulation of such planetary convection are
substantiated.

(3) New similarity criteria, discovered in this study, char-
acterize the initial concentration contrast (∆ξ ∼ 0.1 for the
Earth), the compressibility of the liquid core (d ≈ 0.1 for the
Earth) and the relative thickness of a concentration bound-
ary layer (δ ∼ 10−7 for the Earth) that, controlling the liquid

freezing process, can also determine the asymmetry of the
planetary solid core.

(4) The study showed for the first time that the exci-
tation threshold of compositional convection should be con-
siderably higher than that of thermal convection. Therefore,
convection in deep interiors of planets and natural satellites
can be nearly laminar in spite of very large values of the con-
centration number C(∼ 1015 in the Earth), which is similar
to the rotational Rayleigh number R.

(5) The observed planetary magnetic fields yield evidence
that a system driven by compositional convection can be in
a laminar regime in the Earth, near the excitation threshold
in Mercury and beyond the excitation threshold in Venus
and Mars.
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