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Abstract. Analysis of thermodynamic properties of geomaterials at high pressures
and temperatures existing in the Earth’s interior is presented. The presentation
includes a summary on the determination of equations of state based on measured
properties of minerals, as well as thermodynamic identities and approximate
relations between thermodynamic parameters of the second, third, and in some
instances, fourth orders. New expressions were derived for the volume dependences
of the coefficient of thermal expansion, the Griineisen parameter, and the Anderson—
Griineisen parameter. Attention is given to the preparation of the database on

mineral properties.

Several geophysical estimates, including the lower-mantle

properties, were obtained. It was shown that the thermal expansivity decreases
4-5 times along the “hot” mantle adiabat as the pressure increases from 0 to 1.4
Mbar. Under the same conditions, the heat capacity C'p drops about 10-15%. The
thermal pressure at 7' > O is linear in temperature, with an accuracy of 1-3%.
The parameter 9 Ky/0PJT at P = 0 for mantle minerals was estimated to be

(1-3)-107* KL,

The acceptable ranges of other lower-mantle parameters are

55 =K —6r>02,¢<08 ~v>1.1,0r <3-3.3, and 05 < 1.9 — 2.2. Deviations
from the Mie—Griineisen equation of state are discussed in relation to the volume-

and temperature-dependent Griineisen parameter.

1. Introduction

Thermodynamically, the Earth is a heat engine de-
scribed by a variety of parameters that can be deter-
mined from equations of state (EOS) and models of con-
densed media. A great progress has been achieved in the
development of such models [e.g., Jeanloz, 1983; Hem-
ley et al., 1985, 1987; Wall et al., 1986; Catti, 1986;
Cohen, 1987a, 1987b; Dovest et al., 1987; Wolf and
Bukowinsk:, 1987, 1988; Wall and Price, 1988; Mat-
sut et al., 1987; Matsui, 1988, 1989; Price et al., 1989;
Catlow and Price, 1990; Isaak et al., 1990; Reynard and
Price, 1990; Agnon and Bukowinsk:, 1990a; Matsui and
Price, 1991; D’Arco et al., 1991; Walzer, 1992; Silvi et
al., 1993; Catti et al., 1993; Boison and Gibbs, 1993].

Nevertheless, practical studies in geophysics are based,
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to a large extent, on the use of semi-empirical EOS’s
[Birch, 1952, 1986; O. Anderson, 1966b, 1995; Pankov
and Ullmann, 1979a, 1979b; D. Anderson, 1967, 1987,
1989; Stacey, 1981; Lelwa-Kopystynsk:, 1991; Bina and
Helffrich, 1992; Wall et al., 1993]. The properties of
geomaterials directly determined from laboratory mea-
surements at high pressures and temperatures are neces-
sary for solving many geophysical problems and provide
important constraints on the EOS structure.

Since the fundamental paper of Birch [1952], a great
deal of information has been accumulated on the prop-
erties of geomaterials and their geophysical implication
[e.g., Stacey, 1977a, 1977b, 1992, 1994; Jeanloz and
Thompson, 1983; Brown and Shankland, 1981; Zharkov
and Kalinin, 1971; Zharkov, 1986; Jeanloz and Knittle,
1989; O. Anderson et al., 1992a, 1992b; 1993; Kuskov
and Panferov, 1991; D. Anderson, 1989; O. Anderson,
1988, 1995].

This paper is devoted to the review of relationships
between the basic thermodynamic characteristics and
of their variation with pressure and temperature. First,
we deal with eight parameters of the second order. We
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emphasize their self-consistent determination and the
relations to EOS’s and give a summary of approaches
used to find the empirically based EOS’s. An example of
the thermodynamically consistent database for mantle
minerals is presented. Then, each of the second-order
parameters is treated separately: the identities involv-
ing their P — T derivatives (third-order parameters) are
established and practically useful approximations are
analyzed, including some explicit P — T dependences
of the second-order parameters. Some estimates for the
fourth-order parameters are also given. The relations
between various quantities are represented in the form
convenient for practical use of experimental data and for
theoretical analysis. Finally, a number of estimates are
given for the low-mantle properties. Our analysis serves
as an addition to the reviews of O. Anderson [1995] and
Stacey [1994].

2. Basic Thermodynamic Relations

In classical thermodynamics, simple systems experi-
encing reversable changes of state are described by a
variety of parameters including the hydrostatic pressure
P, temperature T', volume V' (or density p), and entropy
S. The starting point of thermodynamic analysis is the
standard expresions for the total thermodynamic differ-

entials [e.g., Callen, 1960; Morse, 1969; Kelly, 1973]

dE = TdS — PdV, (1)

(2)
(3)
(4)
where FE is the internal energy, F' is the free energy
(Helmholtz potential), G is the free enthalpy (Gibbs
potential), and H is the enthalpy.

Eight second-order parameters are largely used in
geophysics: the volume coefficient of thermal expansion

dF = —SdT — PdV, F=FE-TS,
dG = —SdT +VdP, G=F + PV,
dH = TdS +VdP, H=E+ PV,

a, the isobaric Cp and isochoric Cy heat capacities,
the isothermal Kp and adiabatic Kg bulk moduli, the
thermal pressure coefficient 7, and the adiabatic pres-
sure derivative of temperature (adiabatic temperature
gradient in pressure) 7g. The respective definitions of
these parameters are

(5)

Cp =

Cy =
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By equating the cross derivatives of the four ther-
modynamic potentials, we obtain the Maxwell relations
[see, e.g., Stacey, 1977a]
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Moreover, it is easily shown that the second derivative
of each of these potentials can be expressed in terms of
the above parameters or coefficients; i.e., we may write
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The number of independent second-order parameters
is obviously three, and consequently, the eight second-
order parameters introduced above must satisfy five re-
lations. Four of them are (11)—(14), and the fifth can
be derived by changing from one pair of characteristic
variables to another; specifically,

T

Ko = Kp+ 2L (aK7)”, (16)
Cy

Cp=Cy +VTa’Kr. (17)

Thus, if the parameters o, Cp, and Kg (or Kr), as
it usually is, are determined experimentally, then the
remaining five parameters can be found from the iden-
tities

Oz[(SV CP [(5
= — = =1 T
Y Cp Oy Ep + avd,
(18)
- ~T
T=aKp, 79 =—.
Kg

We recall two examples of using the thermodynamic
relations in geophysics. The first concerns the
Williamson—-Adams—Birch equation for the density gra-
dient within the Earth [Birch, 1952; D. Anderson, 1989].
We quote this equation in the form

dp 1

1
== —apr = = (1 —ypCpt),

dP @ P (19)

where p and P are the density and pressure in the
Earth’s interior, respectively, ® = Kg/p is the seismic
parameter, and 7 = dT/dP — 75 is the superadiabatic
temperature gradient. Equation (19) is easily obtained

from 5 5
p p
dp= (=) dT — ] dP
o= (57), 47+ (57),
with reference to (5), (16) and (14) or (18).
Another example 1s the adiabatic temperature gradi-

ent in depth [ within the Earth (see (14)) [e.g., Quareni
and Mulargia, 1989]

dT ~Tg
) = repg = 22
dl < SPg ® )

where g is the gravitational acceleration, and further-
more, the mechanical equalibrium equation dP/dl = pg
1s used.

According to the PREM model [D. Anderson, 1989],
® = 50, 80, and 117 km?/s? at [ = 400, 1071, and
2740 km, respectively. Assuming that v = 1-1.5 and
T = 1700, 2200, and 3000 K sequently at the indicated
depths [D. Anderson, 1989; Pankov, 1989], (20) yields
(dT/dl)g = 0.3 — 0.5 K/km, the value usually cited in

geophysical literature.

(20)
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3. Equations of State and Caloric
Functions

The fundamental equation (1) relates five variables
two of which are independent. A simple system can
therefore be completely described, given knowledge of
its thermal P(V,T) and caloric E(V,T) EOS’s. The
thermal EOS relates the experimental P — T and theo-
retical V' —7T variables and is necessary for transforming
these variables in analysis of any thermodynamic prop-
erty [Zharkov and Kalinin, 1971]. The parameters de-
termined by this EOS kind are termed thermal, whereas
the quantities derived either from only the caloric EOS
or from both thermal and caloric EOS’s are thermed
caloric. The latter, in particular, include Kg, v, Cp,
and 7g.

The two EOS kinds are related by the equation

oF
(W)T =—P+aKpT

whose integral form is

(21)

E=E(T,V(PT))

P

[

0

—aTV(T, P’)] dP' + E(T),

where the transformation

0B\ . (0
<5V)T"”/ AT(@P>T

is used, the integration constant is
E(T) = E(T,V(T,0)),

and the integral is taken along an isotherm. In view of
(21), the caloric EOS, E(V, T, is completely determined
by the given thermal EOS and function E(T) or H(T)
at P = 0. It is clear that any of the caloric functions
H(T), S(T), G(T), and Cp(T) at P = 0 can used for the

same purpose, since the following identities take place

T
H(T) = /deT + const, (22)
0
T
Cp
S(T) = TdT + const, (23)
0

G(T) = H(T) — TS(T).

The latter formula can be written in another useful form

Qﬂzggw_/armr
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where T™ is a fixed temperature.

For a mineral whose composition can be expressed
by a sum of oxides (component), the Gibbs energy is
formulated in difference terms

G(T) = AH;(T*) — TAS; (T*)

T T
ACP
[ [T ar ), @)
T+ Vi

where AH; = H — Hox, ASy = 5 — 5ok, and ACp =
Cp — Cpex are the differences of enthalpy, entropy and
heat capacity between the mineral and oxide sum, re-
spectively (with allowance for the stoichiometric coeffi-
cients). Expressions of type (25) are often used in cal-
culating phase equilibria [e.g., Navrotsky and Akaogi,
1984; Kuskov and Galimzyanov, 1986; Kuskov et al.,
1989; Fabrichnaya and Kuskov, 1991; Feir and Sazena,
1986; Fei et al., 1990; Sobolev and Babeiko, 1989]. Some
authors use an approximation ACp = 0 (or const# 0;
the functions ACp(T) are sometimes found from em-
pirical formulas of type (67)). In any case, the term
AHy(T*) in (25) implicitly contains an arbitrary nor-
malizing constant [Kalinin et al., 1991].
Integrating (3) gives

G(P,T) = /V(P’,T) dP' + G(T),

0

(26)

where G(T) = G(T,0) is defined by (24) or (25) and
can be written in the reduced form
G(T) =AH; (T) —TAS; (T) + GOX(T). (27)

Methods for determining EOS’s in geophysics can be
classified as follows.

(1) The macroscopic approach suggested by Mur-
naghan [1951] and Birch [1952] gives the volume de-
pendence of pressure at 7' (or S) = const in the form
[Ullmann and Pankov, 1976]

P = Kof(x; Ky, Ko KY, KEKY' ..., (28)
Hereafter, the values with the subscript 0, unless other-

wise specified, are taken at P = 0 and an arbitrary tem-
perature, the moduli Ky = Kpg, K, = (K1 /IP)ro,...
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are material parameters, and ¢ = V/Vy = pg/p is the
compression ratio parameter. Most data for the mate-
rial parameter values were obtained at room tempera-
ture [e.g., Sumino and O. Anderson, 1984]. Among the
last experimental achievements are ultrasonic measure-
ments at high pressures [e.g., Fujisawa, 1987; Webb,
1989; Yoneda, 1990; Liebermann et al., 1993], X-ray
data of high pressures and high temperatures [e.g., Yagi
et al., 1987; Mao et al., 1991; Fer et al., 1992a, 1992b;
Boehler et al., 1989], spectoscopic observations of min-
erals [e.g., Chopelas, 1990a, 1990b, 1991a, 1991b, 1993;
Hofmeister, 1987, 1991a], and high-temperature P = 0
measurements of elastic constants by the rectangular
parallelepiped technique [O. Anderson et al., 1992a;
0. Anderson, 1995].

An explicit form of function f in (28) (the volume
dependence of pressure) was considered by Murnaghan
[1951], Birch[1952, 1968, 1978, 1986] and others [ Thom-
sen, 1970, 1971; Ahrens and Thomsen, 1972; Dauies,
1973; Ullmann and Pankov, 1976, 1980; Pankov and
Ullmann, 1979a; Stacey, 1981; Aidun et al., 1984; Jean-
loz, 1989; Bina and Helffrich, 1992; Isaak et al., 1992;
Wall et al., 1993]. The most widely used equation of
this type is the Birch-Murnaghan EOS.

Elastic moduli and sound velocities in minerals de-
pends first of all on the composition, crystalline struc-
ture, pressure, and temperature. Data on these depen-
dences are generalyzed and interpreted in terms of em-
pirical laws such as the Birch’s law, the seismic EOS,
the law of corresponding states, and a universal EOS
[Birch, 1961; O. Anderson and Nafe, 1965; D. Ander-
son, 1967, 1987; Chung, 1973; Davies, 1976; O. An-
derson, 1973; D. Anderson and O. Anderson, 1970;
Mao, 1974; Kalinin, 1972; Schankland and Chung, 1974;
Campbell and Heinz, 1992]. These laws enable us to es-
timate the parameters Ky and, to a lesser accuracy, K}
for unmeasured minerals [D. Anderson, 1988; Duffy and
D. Anderson, 1989].

(2) Statistical physics describing the vibrations of
atoms in crystals provides the background for micro-
scopic EOS theory including the Mie-Gruneisen EOS
[Griineisen, 1926; Born and Huang, 1954; Leibfried
and Ludwig, 1961; Knopoff, 1963; Knopoff and Shapiro,
1969; Zharkov and Kalinin, 1971; Wallace, 1972; Mula-
rgia, 1977; Mulargia and Boschi, 1980; Hardy, 1980;
0. Andrrson, 1980; Gillet et al., 1989, 1990, 1991;
Richetl et al., 1992; Reynard et al., 1992]. This ap-
proach also uses the lattice or vibrational Griineisen
parameters, as well as either semiempirical potentials of
atomic interactions or the reference (isothermal or adia-
batic) P —V relations derived from continuum mechan-
ics [e.g., Al’tshuler, 1965; Zharkov and Kalinin, 1971;
Ahrens and Thomsen, 1972; McQueen, 1991]. The ma-
terial parameters in these cases are determined using
static and dynamic compression data, elastic constant
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measurements, caloric functions, and vibrational spec-
trums.

(3) Integrating (12) yields the pressure as a sum of two
terms: a reference isotherm and the thermal pressure
increment A P;;. This thermodynamic approach based
on experimental data has been developed by O. Ander-
son [1979a, 1979b, 1979¢, 1980, 1982, 1984, 1988, 1995]
and was used to describe the X-ray and resonance data
for a set of minerals [O. Anderson et al., 1982, 1992a;
0. Anderson and Yamamoto, 1987; O. Anderson and
Zou, 1989; Mao et al., 1991; Fei et al., 1992a, 1992b].

(4) More intricate theoretical EOS models are derived
from ab initio calculation using the Hartree—Fock and
Thomas—Fermi—Dirak methods, as well as pseudopo-
tential theory, many-term contributions in semiempir-
ical potentials, and molecular dynamics [Hemley et al.,
1985, 1987; Isaak et al., 1990; Wolf and Bukowinck:,
1987, 1988; Wall and Price, 1988; Wall et al., 1986;
D’Arco et al., 1991; Price et al., 1989; Matsui et al.,
1987; Matsui, 1988, 1989; Reynard and Price, 1990;
Agnon and Bukowinski, 1990a; Walzer, 1992; Cohen,
1987a; Dovest et al., 1987; Catlow and Price, 1990;
Boisen and Gibbs, 1993; Silvi et al., 1993; Catti et al.,
1993; Barton and Stacey, 1985].

As mentioned above, the complete description of a
simple system requires knowledge of either any of its
thermodynamic potentials or its thermal EOS and one
of the caloric functions (at P = 0). Table 1 lists var-
ious approaches to the determination of EOS’s, show-
ing which functions must be found from theory or ex-
periment so as to provide such a complete description.
These approaches can also be formulated in the form of
partial differential equations with appropriately chosen
boundary conditions.

4. Thermodynamic Parameters of the
Third and Higher Orders

The order of a thermodynamic parameter (character-
istic of a matter) is defined by the maximum order of
the thermodynamic potential derivative involved to de-
fine the thermodynamic parameter. To find all of the
third-order parameters (P, V, T, or S derivatives of
the second-order parameters), whose total number for
the potentials in (1)—(4) is 16, it is sufficient to know
four independent and appropriately chosen third-order
parameters, in addition to knowledge of the lower-order
parameters. Specifically, experiments often provide in-
formation on the derivatives (0Kg/JdP)p (or

OKT\ _ oy (9K oCe\  (da
op )~ \ar ), \oT ), aT ) p

The relationships of these derivatives to other parame-
ters are further discussed in later sections.
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To extrapolate data on thermodynamic properties to
high pressures and temperatures, the power volume de-
pendence is often applied stating that the logarithmic
volume derivative of the parameter considered is a con-
stant [Zharkov, 1986; D. Anderson, 1988, 1989]. The
temperature derivative of any parameter A at P = const
1s represented in the dimensionless form

l Oln A B Oln A
o oT P_ oV /,

1 /0lnA Jln A

=3 ( a1 )V+ (amv)T’
where the first term characterizes the so-called intrin-
sic anharmonicity and the second 1s a parameter of the
extrinsic anharmonicity related to thermal expansion
[Jones, 1976; Smith and Cain, 1980]. Parameter A can
be any physical property, such as the transport coeffi-
cients or mode Griineisen parameters [Reynard et al.,

1992; Gillet et al., 1989)].

(29)

5. Thermodynamic Database

The database on properties of minerals, required for
geophysical analysis and EOS construction, must in-
clude first of all their density and the second and third
order thermodynamic parameters. An example of such
database for three mantle minerals is given in Tables 2
and 3, and the database for 25 mantle minerals, includ-
ing their high-pressure phases (and some fictive phases),
is presented in Internet [Pankov et al., 1997]. The pa-
rameter values in these tables refer to the conditions
P =0,7T =300 Kor P=0 and the temperature in-
dicated. Apart from the second-order thermodynamic
parameters, Table 2 includes the molar mass M, mean
atomic weight u, density p, the melting temperature
T, the Debye temperatures © (0, is the acoustic tem-
perature, O, is from fitting the Mie-Gruneisen EOS to
data on « [Suzuki, 1975a, 1975b], and Oy is our es-
timate from data on specific heat), the classical value
Cv = 3R/, (R is the gas constant), the enthalpy AH;
and entropy AS} of mineral formation from oxides, and
the estimated thermal pressure P, &~ 0.baKp. It is
important to have mutually consistent values of the
second (and higher) order parameters: here, the cal-
culations are based on the input values of Kg (or Kp),
a, and Cp. At high temperatures, 7" > 300 K, the
a and Cp values were found by the empirical formu-
las from Fei and Sazena [1987] and Fei et al. [1990,
1991], and for Kg, we give either experimental val-
ues or our estimates through the Anderson—Griineisen
parameter dg (at 300 K), which is assumed to be a
constant (see Table 3 and sections 9 and 10). The
values listed in Table 3 are based on the input val-

ues of the derivatives (0Kg/dP)p, (0Kg/0T)p (or ds),
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Table 1. Examples of complete thermodynamic description of a system

Version Given functions
1 P(V,T) and the temperature dependence of any of the caloric functions
G,H, S, CP,I(S,TS,’)/,CV at P =10
2 F(V,T) from statistical physics, resulting in a quasiharmonic or anharmonic EOS
with 4(V, T) or the Mie-Griineisen EOS with v(1)
3 P(V,Ty) and E(V,T) for Ty > 0
4 P(V,Ty),Cy(V,T) and E(V) for T=0,T5 >0
5* P(V,Ty), 7(V,T) and the temperature dependence of any
of the caloric functions mentioned in version 1 at P =0
6 P(V/Vy, Ko, K, ..), Vo(T), Ko(T), K{(T), ...
and the temperature dependence of any of the caloric functions mentioned in version 1

7 P(V,Ty), 75 (P, T), and any of the functions

Cp(T), a(T), H(T),S(T), and G(T) at P=0
8 P — V Hugoniot, ¥(V'), and the Mie-Griineisen EOS form
9 Kg(P,T),a(T), and Cp(T) at P=0

* The thermal EOS can also be found given the pairs of functions

P(V,Tp) and (P, T), P(V,Ty) and Kp(V,T), or V(0,T) and K¢ (P, T).

(0Cp/0T)p, and & = a=2(Ja/OT)p, as well as on the
second-order parameter values given in Table 2. The
high-temperature values of the third-order parameters
were evaluated using the condition (0 Kg/dP)r = const.
Finally, in Table 2 are given the references to sources of
thermodynamic data for each of the minerals.

6. The Volume Coefficient of Thermal
Expansion

6.1. P-T derivatives

It follows from the identity §*V/9TOP = 0?V/OPOT
that [Birch, 1952]

da\ _ 1 (0Ky
OP ), Kz \ 9T )p

This fundamental relation is written in the dimension-

less form
1 0Ky
akKp \ 0T /,

(0« _ {(0InKrp
S \9lmV /), \ dhp )’

(30)

(STE

(31)

where the isothermal Anderson—Gruneisen parameter
dp is introduced [O. Anderson, 1966a, 1967; Barron,
1979].

The variation of o with temperature at P = const is
characterized by the parameter a Furth, 1944; O. An-
derson, 1966b; Birch, 1986; O. Anderson et al., 1993]

1 (in
a? \0T ) p

Olna
)V+5T_<31HV)P'
(o
a? \0T /)

can be related to the derivatives of Cy and Kp, by
making use of the identity 925/0VoT = 925/0TOV,

which leads to
1 (o
a? \0T /)
_ 1 oCy B 1 0Ky
T Q?VT \ 8P r aKp \ 0T /,

1 ooy
=TT (a—p)T+<5T‘f* )

jol
Il

(32)

I
QM|
PR
SETRSY
%|Q

The term

(33)
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Table 2. Thermodynamic parameters of minerals at normal pressure and twovalues of temperature

Parameter MgO, periclase Al5O3, corundum Mg2Si04, forsterite
300 K 1800 K 300 K 1800 K 300 K 1700 K
M, g/mole 40.32 101.96 140.69
i, g/mole 20.16 20.39 20.10
p, g/cm? 3.585 [1] 3.354 [1] 3.982 1]  3.831 [1] 3.222 [1] 3.055 [1]
Ty, K 3125 [2] 2345 [2] 2163 [2]
Qa, K 945 [1] 811 [1] 1034 [1] 922 [1] 763 [1] 668 [1]
Qtn, K~ 761 706 966 871 887 763
Qa, K 942 [45] 1031 [45] 732 [45]
S, J/K mole 26.94 [2] 113.14 [2] 50.92 [2]  256.68 [2] | 94.110 [53] 372.48
H, kJ/mole** 5.166 [2] 80.28 [2] 10.016 [2] 192.45 [2] | —43.392*** 194.89
AS¢, J/K mole 0 0 0 0 —1.23 —
AHg, kJ/mole 0 0 0 0 —60.64 —
Kg, GPa 163.9 [1] 132.7 [1] 253.7 [15] 221.8 [15] 128.7 [1] 103.8 [1]
o, 107% K1 3.12 [1] 5.13 [1] 1.62 [1] 3.25 [1] 2.72 [1] 4.62 [1]
Cp, J/g K 0.928 [1] 1.358 [1] 0771 [1]  1.318 [1] 0.840 [1] 1.370 [1]
Kt, GPa 161.6 116.6 252.2 204.7 127.4 95.3
ol 1.54 1.50 1.34 1.43 1.29 1.14
Cv,J/g K 0.915 1.193 0.766 1.216 0.831 1.258
Ogess J/g K 1.237 1.223 1.241
ayT 0.014 0.138 0.006 0.084 0.011 0.089
7= aKy, MPa/K 5.04 6.00 4.08 6.65 3.46 4.40
75, K/GPa 2.82 20.0 1.58 11.6 3.00 18.7
Pip, I'la 0.717 [1] 9.95 [1] 0.6 4.13 [1] 0.429 [46] 6.30 [1]
3-12, 32, 35, 46, 49, 12-15, 74, 2,11, 12, 22, 32, 45, 66, 69, 74, 83,
Reference 53, 68-71, 73-78, 83, 97, 79-83, 118, 211 89, 95, 97, 113, 126, 128, 129, 178,
124, 131, 193, 202, 211 190, 191, 194, 201, 204, 206-211

WO OO =0 Tk N~

0. Anderson et al. [1992a]
Robie et al. [1978]

Isaak et al. [1989a]

Isaak et al. [1990]

Jackson and Niesler [1982]
0. Anderson and Zou [1989]
0. Anderson et al. [1993]
Chopelas [1990b]

Hemley et al. [1985]

. Sumino et al. [1983]

. 0. Anderson and Suzuki [1983]
. Sumino and O. Anderson [1984]
. White and Roberts [1983]

. Purukawa et al. [1968]

. Goto et al. [1989]

. Jeanloz and Thomsen [1983]

. Richet et al. [1989]

. M. Liu and L. Liu [1987]

. Duffy and D. Anderson [1989]
. Fei et al. [1991]

. Fei et al. [1990]

. Duffy and Ahrens [1993]
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Table 3. Third-order thermodynamic parameters of minerals at normal pressure and two values of temperature*

Parameter MgQ, periclase Al5O3, corundum Mg2Si04, forsterite
300 K 1800 K 300 K 1800 K 300 K 1700 K
(0Ks/OP)r 4.13 [5]**~ 4.13 4.28 [12] 4.28 5.1 [36]** 5.1
(0Kt /0P)r = K’ 4.16 4.42 4.30 4.37 5.12 5.23
(0Kg/0P)s 4.09 3.70 4.26 4.05 5.05 4.75
dg 2.83 [1] 3.12 [1] 3.83 [1] 2.68 [1] 4.45 3.96 [1]
dp 4.96 4.83 5.99 4.42 5.89 5.27
5L —0.80 —0.42 —1.69 —0.05 —0.77 —0.04
5 1.24 0.51 0.42 1.27 0.59 0.72
a 46 [1] 3.5 [1] 140 [1] 4.9 [1] 42 [1] 5.9 [1]
(@InCp/0InT)p 0.43 [1] 0.15 [1] 0.67 [1] 0.16 [1] 0.53 [1] 0.23 [1]
(@InCp/OInT)yv 0.42 0.10 0.67 0.13 0.53 0.20
(@InCp/OoInV)p 0.65 0.55 0.84 0.46 0.47 0.44
(@InCv/8InT)p 0.41 —0.01 0.66 0.06 0.52 0.13
(@InCv/0InT)y 0.41 0.01 0.66 0.06 0.51 0.14
(OInCyv/0InV)p 0.56 —0.24 0.79 0.04 0.39 —0.08
C—g <8Q/CP) 0.06 1.88 2.14 2.16 —23.0 1.47
et aT ) p
(@lny/0InV)r =¢ 1.24 1.66 1.90 1.01 1.38 1.12
a~HOIny/0T)v —2.96 —1.90 —-2.5 —0.52 —30.0 —2.60
(Olnrg/0InV)r =n 5.31 5.29 6.15 4.96 6.43 4.74
a~Y0Inrs/0T)p 108 137 209 20.3 99.6 15.2

* Under the assumption of (0K s/dP)p = constant. Placed in brackets are the references (see Table 2).

** 4.9-5.3[12]
**% 3.85-4.49 [12]

82—5 — 82—5 ields
apaT ~ oror >

1 [dCk
VT \ 9P ),

14+ayT (0InCp
ayT olnV )’

Similarly, the identity

jol
I
|

=1+ (34)

where the convenient dimensionless product is used

Ks 1_Cr_
Cyv

Birch [1952] pointed out that parameter 7 for var-
ious materials usually lies between 4 and 8 (at normal
conditions), which was borne out by subsequent studies
[see, e.g., Sumino and O. Anderson, 1984; O. Anderson
et al., 1992a) some exclusions are also encountered: e.g.,
o7 ~ 1 for KMnF3 and 7 ~ 77 for Re;Os5.

The parameter & values at normal conditions are com-
monly greater than the §p values [Birch, 1952; O. An-
derson et al., 1992a]. The data and estimates listed in

the tables of Pankov et al. [1997] for 25 minerals fall
into the range 10545270, However, at high tempera-
tures (T" > O), the dp and & values become closer to
each other, and their concidence would mean that o
were dependent only on volume (i.e., the intrinsic an-
harmonicity were suppressed).

The following three assumptions and their conse-
quences are of interest:

(1) The specific heat Cy is independent of pressure,
ie,, Cy = Cy(T), as in the Van der Vaals or Hilde-
brand EOS’s [0. Anderson, 1979a], or alternatively, Cy
= const, as in the classical limit at 7" > ©. Then, from

(32) and (33),

1 /0« _ -
= (ar), =0

At P =0, 6p > K' is the common case.

(2) Kr depends only on volume; the K7 (V') approxi-
mation is often warranted at T' > © [0. Anderson, 1982;
D. Anderson, 1988, 1989]. Then, (0K7/0T)v =0, and
from (29) and (31), we have K' = ér; i.e., dp either
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depends only on volume or is a constant (leading to the
Murnaghan EOS (44)).

(3) If both conditions (1) and (2) take place, then
o = o(V) and K/ = ér = & (that is either volume-
dependent or a constant).

6.2. Explicit volume (pressure) dependences of
a at T = const

In most of the interiror of the Earth, 7" > © and
a minimally depends on temperature. Consider a few
approximate relations for evaluating the isothermal or
adiabatic variation of «.

6.2.1. By using the general EOS form of (28) and
the formula (12), we find the expansion for «
«@ P Ky
L
I %y T akr
d[// d [7 [7//
> 6-{ o ?f, ( o X0) 4 (36)
0K} dT"  O(K K[) dT

If only two first terms are retained in (36), then the for-
mula of Birch [1952, 1968] derives. It should be noted
that « in this formula changes its sign at Kp/P = dpq
(the condition that may be achieved in the lower mantle
at Kp/P = 4.7). Moreover, in this case, dp given by
most of the type (28) EOS’s increases with pressure in-
stead of its usual decrease (see section 9). It was shown,
however, that such a change in the « sign is forbidden
thermodynamically [Pankov, 1992].

As an example of using (36), we calculated «(P/Kjy)
with the help of the EOS form proposed by Ullmann
and Pankov [1976, 1980], for which

, 1
f(l‘,[&é):—yy/, yza($ _1)a

dy

u=<(2-K{), y':%, (37)

| —

so that

Kr = Koz (v + yy") - (38)

First, we set d (/0T = 0 and neglect terms containing
KY, K{',... . The a/aq versus P/Kj curves, obtained
for resonable values Kj = 3 and 4 and dp¢ = 2,4, and
6, are shown in Figure 1. For change from P to volume,
Figure 2 gives the variation of P/Ky with . We see,
in particular, that the dpg values significantly affect the
estimated a under lower-mantle conditions (at the base
of the mantle compressed along its “hot” adiabat, z &
0.7 and P/Ky ~ 0.70 for Ky ~ 1.9 — 2.0 Mbar and
K[ =38—4.1[D. Anderson, 1989]). Furthermore, the
approximation used for a may lead to the nonrealistic
result o < 0 within the lower mantle.

To illustrate the influence of the non-zero dK(/0T
values, now we allow for the third term in (36), with the
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setting dK})/0T = £2-1073 K=1 (the values that we
estimated for NaCl from data discussed by Birch [Birch,
1978]). The value 2 - 1073 K~! is not realistic since
it results in the increase of o with pressure (Figures 1
and 3). On the other hand, the negative value —2 -
1073 K~! is too small, since it considerably lessens the
pressure at which the condition o < 0 mentioned above
is reached.

The approximations K’ = ép (see above) and §p =
constant at 7' > © imply a very weak temperature de-
pendence of K’. The lattice dynamics models show that
K’ for MgSiOs3 perovskite varies less than 10% in the
temperature range of 300-2000 K (dK{/0T < 2-107%
K=1). The theoretical PIB model for MgO [Isaak et
al., 1990; O. Anderson et al., 1993] shows that dK| /0T
somewhat increases with temperature in the same inter-
val of 300-2000 K, with the values ranging, on average,
from 2.8 -107% to 4.2 - 107* K~!. Values of a similar or-
der follow from the approximation dIn K}/dInp = —1
indicated by D. Anderson [1989] for PREM.

The derivative d K[ /dT can also be estimated by the
approximation Kp = Kp(V) (i.e., K’ = d7 and (70) are
allowed for) noted above

9 (9Kr\ _ (9K’
ar \ oP ), \oT ),

0 [O0Kr
- — _ I/ I/// 39
o5 (77t ), = ek’ @
where the primes indicate pressure derivatives. With

ar 3107 K=t and —K7 K" ~ 5—10 [e.g., Pankov and
Ullmann, 1979a; Hofmeister, 1991b], we find dK{ /0T ~
(1-3)-10=* K=, which is close to the estimates found
above.

Finally, we can use identity (91) from section 9, which
of course leads to (39) for K/ = ép (see (71)). Although
the terms in (91) are close to each other, the reasons
given below justify the inequality (8ér/8P)r<0, and
consequently,

(40)

K’ ,
(3—;)1_—, ZaéT(éT - K )

Substituting the parameter values from Tables 2 and 3
(see also tables in Pankov et al. [1997]) into the right
side of the above, we find

dK},

1—5) 107K,
R (1=5) 10

It should be emphasized that the correction to « in
(36) related to this derivative enables us to avoid neg-
ative or increased values of a at high pressures. The
effect of the value dK}/dT = 2-107* K=! on the o
curve for K = dpo = 4 is shown in Figure 1.
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Figure 2. Relative pressure versus relative volume by equation (37) [Ullmann and Pankov, 1976,
1980]
6.2.2. 0. Anderson [1967] derived the power law  only temperature-dependent, dr = dp(T), or is a con-
s stant; moreover, (44) can be replaced with any suitable
o= agxr’TC, (41)  approximation to the isotherm P(V,Ty).
) ) ) The two functions «(V, T') and P(V,T), however, can-
by integrating (30) and (8), provided that not be picked independently. For example, the EOS
ac ac can apparently be defined by specifying «(V,T) and
(a—;) R~ (3—;) A0, P(V,Ty). At this point, it is appropriate to discuss
T s the following generalization of the results mentioned in
which yields various papers [Birch, 1968; Clark, 1969; O. Anderson,
br=K —14¢q (42) 1986; D. Anderson, 1989]. Consider four statements:
. ’ (1) the Murnaghan EOS (44) is valid, where it is as-
where parameter ¢ 1s defined as sumed that K is a function of temperature, Ko(7), and
a1 K is either a constant or depends only on temperature;
g= ( n’y) . (43) (2) (967 /0P)r = 0 (i.e., 7 = const or o = dr(T));
OV /)y (8) (OK'/dT)p = 0; (4) 0p = K’ that, according to
Moreover, he assumed that d7 ~ K’ &~ const. The (71), s equivalent to Ky = K (V) (ie., 7(1) = aky

constancy of K’ (or alternatively, K’ =

the Murnaghan EOS (of a type of (28))

(x_KflJ — 1) ,

It is clear that (41) simply follows from the defini-
tion of dp by (31) on the condition that dp is either

{'(T)) leads to

Ko

P = -/
K

Kp = Koo~ Ko, (44)

or T = const).

Then, by making use of identities (44), (71), (91),
and (92), it can be proved that, if any two (except the
pair (1) and (3)) of the four statements above hold true,
then the other two statements are also valid. Moreover,
then dp = K’ = const and (44) always takes place. If,
in addition to these two statements, it 1s assumed that
Cy = const or Cy = Cy (T), then we have a = a(V),
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Figure 3. o/ag versus V/Vy at 7' = 1800 K. (1) From (36)—(38) with allowance for the three
first terms in (36) and with MgO parameters at 1800 K: ag = 5.13-107% K71, Ko = 117 GPa
and dpg = 4.66 from [O. Anderson et al., 1992a] and K} = 4.41 (estimated under the condition
that dIn K'/dInV =1 [D. Anderson, 1989]); shown at the curves are values of dK}/dT. (2)
From (48) for dpg = 5 and k = 1.31 [O. Anderson et al., 1992b]. (3) o = gz’ | where 7 = 4.66
[0. Anderson, 1967]. (4) From (47) for dpg = 4.66 [Chopelas and Boehler, 1992]. The lower-
mantle compression region is between # = 0.85 and « = 0.70 (P/Ky & 0.7 at the base of the
mantle, for Ky &~ 190 — 200 GPa and K{) = 4). Periclase (with K¢ = 117 GPa and K} = 4.41)
is more compressible than the lower mantle, so that the third-order Birch-Murnagjan EOS for

periclase yields 2 &2 0.65 and P/Ky & 1.16 for P = 136 GPa and 7' = 1800 K.

K' = épr = & = const and 7 = const (see section 6.1
and (69) and (71)).

It 1s clear that such statements place constraints on
the EOS formulation. For example, when an equation
of type (28) is accepted instead of the Murnaghan EOS,
only one of the above statements can strictly be true.
Specifically, the concurrent use of the Birch-Murnaghan
EOS and the assumption ép = 67 (7T) (or d7 = const)
Is incompatible with the condition 67 = K’ or K’ =
K'(P).

Another not obvious inference is that the Murnaghan
equation (44) uniquely follows from the assumptions
Kpr = f(P) + aT (a being a constant) and 7 = 7(7)
or const.

It is interesting to consider the use of the Murnaghan
formula as the potential (lattice) part of the P—V =T

EOS in the classical high-temperature approximation.
In general, for Cy = const, we have a linear dependence
of Kp(V,T)onT (see (69) and (70)), and only for v/ =

const (¢ = 1) and the Murnaghan potential, we obtain
Kp=aP+b+ T,

where a, b, and ¢ are constants (K’ = const). Hence, it
is seen that all isotherms (T" > 0) are also represented
by formula (44), but for a nonlinear v(x) behavior, this
18, strictly speaking, not the case.

The consideration presented above concerns also the
Birch’s law, which for minerals with the mean atomic
mass of u = 20-22 g/mole can be written in the power
form Ky = aV? (where a and b are constants and the
distinction between Kg and Krp is neglected). Since
here K’ = const and Kp = Kp(V) and (44) is used,
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this law gives rise to d7 = K’ = const, formula (41),
and for Cy = const, o = a(V).

Figure 1 shows the behavior « determined by (41),
where the EOS is found by (37) with K = 3 and 4 (the
respective a curves pass through the ends of the bars in
Figure 1).

The original assumption of O. Anderson [1967] op
= const was justified by the ultrasonic and shock-wave
data of that time and was seemingly corroborated by
later ultrasonic and resonance measurements [O. An-
derson et al., 1990; Chopelas and Boehler, 1992]. In
particular, based on data for seven minerals, the value
of 7 = 4-6 was recommended to be representative of
the lower mantle. However, analyzing seismological and
geoid data, D. Anderson [1987, 1989] found ér = 2-3
for in situ lower-mantle conditions. The assumption can
therefore be made that dr must decrease with pressure.
Evidence for this can also be found in shock-wave and
static compression data [Birch, 1986; O. Anderson et
al., 1993].

Ab wnitio calculations for MgO by Reynard and Price
[1990] give a constant value in the range 0.7 < z <
1.0. Another ab initio results [Isaak et al., 1990] reveal,
however, that d7 actually decreases by decreasing x.

To determine the «(x) more accurately than given by
the power law (41), Chopelas and Boehler [1992] used
data on the adiabatic pressure gradient 7g and specific
heat C'p. From the Maxwell relation (14), they derived

0ln Cp
or=mn+ ( FinV )T_l’
where n = (0In7g/dInV)p. Then, they set n = ma,
where m = 6 £ 1 from measurements for weakly com-
pressible materials, and (0Iln Cp/dInV)r = 1 or 0 for
T < © or T > O, respectively (compare with the data
listed in Table 3 and the paper by Pankov et al. [1997]).

Thus, the Chopelas and Boehler’ formula for a can be
written in the form

(45)

[0

ap

— eéTu(l‘—l)

, 0r =mz, for T < O, (46)

1
e —elomotle=1) " 50 — mz — 1, for T > O. (47)
[0 70))] xr

0. Anderson et al. [1992a, 1992b, 1993] favored the
power law dp = dpoz” (for TSO) that yields

6T0 k
-—(1—-=
ap
with only small deviation from values by (47). The value
of k = 1.1-1.4 in (48) was inferred from the theoretical

PIB model of Isaak et al. [1990].
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Applying (47) or (48) to the lower mantle, we find
that o decreases 4-5 times along the “hot” lower-mantle
adiabat, from the state P = 0 and 7" &~ 1700-2000 K to
the base of the mantle. The power law (41) with 7 =
5—6 gives a greater decrease in « (6-8 times), and the
same law with 7 = 2-3 results in a smaller decrease of
« (2-3 times). Although approximations (47) and (48)
are more preferable than (41), they require additional
confirmation and information on parameters m, k, and
(81HCP/8IHV)T
estimation of « in the lower mantle by (36) and (37),
as described in section 6.2.1, with dK{/dT = 2.3-1074
K~1, gives the results close to those derived from (47)
or (48) (Figure 3).

Similar results for a with ér decreasing under com-
pression were obtained by Zharkov [1997] from his anal-
ysis of EOS’s at extremely high pressures. Still earlier,
Zharkov [1959] showed that the lower mantle thermo-
dynamics quantified on the basis of the Debye model

For comparison, we note that the

and seismic data gives the 4-5-fold decrease in « at the
mantle base compared to the value at P = 0.

6.2.3. To this point, considering « at high compres-
sion, we have not applied to the Gruneisen parameter
~. However, the problem of thermal expansivity at high
pressures and temperatures is intimately related to the
problem of a similar variation of the Gruneisen param-
eter. D. Anderson [1987, 1989] characterized the lower-
mantle thermodynamics by using the acoustic or Bril-
loin 4. For the adiabatic lower mantle, he found from
PREM that vp = 1.4 and ag =3.8-107° K=l at P=0
and T = 1700 K; the value of v was determined by the
thermodynamic relation (8) for Cy = const (T > ©).
Given function v(V), the variation of o with volume in
the classical temperature range can be evaluated by the
formula derived from (8)

o yKg

ag YoKrz (49)

Note that the thermodynamic parameter v, generally
speaking, is different from the so-called lattice Griineisen
parameter [e.g., Mulargia, 1977; D. Anderson, 1989;
0. Anderson, 1968, 1979b, 1980]. However, assuming
that the latter depends only on volume, both parame-
ters were found to coincide (the same inference follows
from the quasiharmonic atomistic model of EOS at high
temperatures, when, on the other hand, we come up
with the purely thermodynamic consequence v = v(V)
for Cy = const (see section 11).

The three most familiar formulas for the lattice v can
be written in the general form [Zharkov and Kalinin,
1971]

_ 9K'4+2mP/Kp —6m —3
6(3 —2mP/Kr) ’

where m = 0, 1, or 2 gives the formulas of Slater,

(50)
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Dugdale-Macdonald, and Zubarev—Vashcheno (or Irvine
and Stacey [1975]), respectively. The latter of these
formulas appears to be the most favored, at least at
T > O, for high symmetry crystals. Following Leibfried
and Ludwig, 1961], v can approximately be expressed in
terms of the root-mean-square frequency of atomic oscil-
lations. For cubic crystals with the central interaction,
when only the nearest neighbors are allowed for, this
approximation also leads to the Zubarev—Vashchenko
formula [Pankov, 1983; Hofmeister, 1991a].
Calculation by (50) requires knowledge of the P(V)
dependence at 7" = 0 K, but the replacement of the
T = 0 K isotherm by any isotherm at 7" > 0 K is not
significant for this case. Using the EOS from (37) at
K|, = 4 and determining v by (50) at m = 2 and then «
by (49), we obtain «g/a = 1.7 for = 0.7 (that is ap-
proximately at the mantle base). Such a small decrease
in a compared to the 4-5-fold decrease found above is
due to the fact that the EOS by (37), like many other
P(V) relationships [Pankov and Ullmann, 1979b], re-

sults in a low value of the slope

[ Jdlnxy
q= (311136) ~0—0.5,

calculated from (50). This either tells us that a more
flexible EOS involving the independent parameter Ko K/
= K5 (such as in model 2 by Ullmann and Pankov [1980]
or the Birch-Murnaghan fourth-order EOS) must be in-
troduced, or some amendments to (50) are required.
The Zubarev—Vashchenko formula was somewhat im-
proved by Stacey [1981, 1992], but nevertheless, the
slope ¢ for most two-parametric (Ky and K§) EOS’s
appears to remain low).

Another useful approximation for v is the empirical
power law [e.g., O. Anderson, 1968, 1974; McQueen et
al., 1970]

T = P}/qua (51)

where ¢ is often assumed to be one, according to shock-
wave data [MeQueen, 1991] or studies of the mantle
[0. Anderson, 1979b; D. Anderson, 1989]. From (49)
with ¢ = 1, we find Birch’s formula aKr = agKy =
const, which gives ap/a = 3.5-4.0 at the mantle base
(for x = 0.7, K}, = 4, Kz/Ko = 3.51, and T = 2000~
3000 K). The value of ¢ = 1.5-2.0 may be more favored
for the mantle perovskite [Pankov et al., 1998], yield-
ing, however, ap/a = 4.2-5.0 that is close to the result
obtained from (47) and (48).

Note that, according to (49), the assumption of the
power laws for o (41) and v (51) again gives the Mur-
naghan EOS (44). Since the latter fits data well over
a range of P/Kp%<0.3 (£50.82), we expect (41) to be a
sufficient approximation for « in the same compression
range.

Duffy and Ahrens [1993] estimated a from shock wave
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data for MgO, CaO, CaMgSi2Og and ¢—Fe at pressures
to P > 140 GPa. By using (49) and (51) with ¢ = const
and K7 /Ky from the PIB model for MgO [Isaak et al.,
1990], they found ¢ = 0.5 £ 0.5 that is smaller than
¢ = 0.83-1.26 in the compression range = 0.67-1.0
along the PIB isotherm. Periclase is more compressible
than the lower mantle matter and has x = 0.67 at P =
134 GPa near the mantle base (according to the PIB
2000 K isotherm of MgO, P/Ky = 1.047, Ky /K, =
4.699, and K’ = 4.74). With these values, the shock
wave results of Duffy and Ahrens for MgO give ap/ov =
3.1-4.7 at the mantle base (# = 0.67), i.e., the value 1-
1.6 times less than ag/a by (47) and (48) at the typical
value of dpg = 5 £+ 1 (if the value épg = 4 is used in
(47) and (48), the resulting ag/a value will be closer to
the shock-wave estimate above). These results can be
viewed as an argument for the decrease of both §p and
¢ under compression.

In analysis of the volume dependence of v, O. Ander-
son et al. [1993] proposed the power law

q = qoz”, (52)
which, similarly to (48), yields
qo0
-—=(1 -2
LA ) (53)
Yo

Setting o = 1.5-2.0 and v = 1 (as for MgO, according
to O. Anderson et al. [1992b]), we find from (49) that
ap/a=4-4.5at ¢ = 0.7. Note that gy for MgO descends
from 1.72 to 1.26 as temperature increases from 300 K
to 2000 K [O. Anderson et al., 1993].

In total, many estimates of ap/« using various meth-
ods described above consistently show that the thermal
expansion coefficient in the lower mantle decreases 4-5
times along the hot low-mantle adiabat as the pressure
increases from zero to the base of the mantle. Neverthe-
less, the complete consensus on all the parameter values
related to these estimates (e.g., for ¢ and d7) has yet not
been achieved.

6.3. Temperature dependence of o at
P =0

6.3.1. Most data on thermal expansion refers to the
dependence a(T) = «ag at P = 0. The value of ag
1s necessary, in particular, to extrapolate the thermal
expansivity data to higher pressures in the mantle. The
typical behavior of a(T) is illustrated in Figures 4 and 5.
Usually, the data at P = 0 are fitted using the empirical

formula [e.g., Fei et al., 1990, 1991]
a=ag+arT + a T2, (54)

which we used to calculate a presented in Table 2 (and
in Pankov et al. [1997]). Note that the applicability
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of (54) can also be justified by calculations of phase
diagrams [Fei et al., 1990, 1991].

A theoretically based approach to calculating «(7T)
was developed by Suzuki [1975a, 1975b], who used the
Mie-Griineisen EOS yielding

(5 )0

where F; is the Debye thermal energy

y2dy
ey — 1’

z

By = %D(z), z=0/T, D(z) = %/
0

KoV

1
k= 5([(6 -1),Q = , and D(z) is the Debye

function. Here, 1t is assumed that v = constant, and
parameters Ky and K| are defined at 7' = 0. The fitted
parameters are @, k, and @. Formula (55) is derived by
expanding the potential pressure in V' and truncating
at only two first terms. The © values obtained from
this method are given in Table 2 (see also Pankov et al.
[1997]).

0. Anderson et al. [1992a] extrapolated aq(T) from
a fixed value at 7™ > O to higher temperature using the
relation

Ozo(T) o 1
ag(T*) 1 —ao(T*) 67 - (T —T*)’

(56)

where dr = & = constant (see (32)). Formula (56) is
easily derived from the condition that ag at P = 0 varies
with density by the power law. Note that (56) has an
asymptote close to which « dramatically increase with
temperature (reflecting to some extent the fact that the
potential energy has an inflection point).

6.3.2. For a more complete consideration of the
temperature behavior of e, we calculated o(T) for three
minerals from the Mie-Griineisen EOS (with the De-
bye model), in which, unlike the Suzuki method, ()
was found by (51) with ¢ = 0, 1, and 2, and room-
temperature isotherms were represented by equations
(28) and (37). The material parameters of the EOS’s
were found from values of p, Kg, o, Cp, and (0K s /IP)r
at normal conditions (Tables 2 and 3).

The results of the computations are shown by the
solid lines in Figures 4 and 5. We see that the curves
for periclase and particularly forsterite systematically
deviate from the experimental points at high temper-
atures, although there is a considerable uncertainty in
data for « at high temperatures. Nevertheless, such de-
viations can be caused by the fact that the temperature
dependence of v (at V' = const) is not accounted for
in the Mie—Griineisen EOS [Mulargia, 1977; Mulargia
and Boschi, 1980; Mulargia et al., 1984; O. Anderson
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et al., 1992a; Molodets, 1998]. To gain a better insight
into the quality of the Mie—Gruneisen EOS and to con-
struct a self-consistent database on EOS parameters, it
1s very important to measure the thermal expansivity
of minerals at high temperatures, up to their melting
points. This conclusion was emphasized by many au-
thors [e.g., Sazena, 1988, 1989; Goto et al., 1989; Isaak
et al., 1989b; Gillet et al., 1991; Richet et al., 1992].

7. Specific Heat

The lattice specific heat of minerals at 721000 K
is close to the classic limit 3Rn = 3RM/u (the molar
value, where R is the gas constant and n is the num-
ber of atoms in chemical formula). From calorimetry,
we have information on the isobaric heat capacity Cp,
which exceeds Cy by 1-3% at 300 K and 10-15% at
T > O (Table 2 and Pankov et al., 1997]. Since p ~
20-22 g/mole for mantle minerals, the classic value of
Cy for them is 1.13-1.25 J/g K. Depending on min-
eral, the high-temperature anharmonic corrections to
Cv become singnificant either near the melting point or
even at room temperature (sometimes, at 7" equal 1/6 of
the melting point) [Mulargia and Boschi, 1980; Quareni
and Mulargia, 1988; Reynard et al., 1992; Fiquet et al.,
1992].

7.1. P-V-T derivatives of specific heat

From the identities 9?E/0VOT = §?E/OTIV and
025/0POT = 92S/9TOP, using the Maxwell relations,

we find
oCy _ VT [ OaKyp
dP J T Krp a1/ ’

Note that (57) and (58) are the alternate forms of (33)
and (34), repectively. The logarithmic volume deriva-
tives at T' = constant can be expressed as follows:

(57)

3IHCV o ~ .t
(aan)T_a'yT[a—QéT—l—A], (59)

(3111013

alnv) =ayT (14+ayT) " (144).  (60)

T
These identities were used to compute the derivative
values given in Tables 3 and in Pankov et al. [1997].
0. Anderson et al. [1993] noted that, for the Debye
model, (3Cy /0P)r<0 and therefore & R 26r — K'.
The difference Cp — C'y satisfies the identity

1 (a(cp — Cy)

— K — 25 — 1 1
VT ap )T * =1 (61)
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Figure 4. Temperature dependence of the thermal expansion coefficient at P = 0 for MgO and
Al50s3. The solid lines are from the Mie-Gruneisen EOS with ¢ = 1; the bars show deviations
for ¢ = 0 and 2, respectively. A simple linear extrapolation of « is shown by points. The dashed
line is e by (56) for Ty = 1000 K and dpg = 4.84. The dot-and-dash line is o by (54) [Fei et al.,
1990]. The experimental points (circles for MgO and crosses for Al;O3) are from O. Anderson et

al. [1992a].

l.e., it decreases with pressure for usual values of K’ and
d7 (see Table 3 and Pankov et al. [1997]).

Birch [1952] estimated the decrease in C'p with pres-
sure in the lower mantle, setting & ~ 4 and ayT ~ 0.1.
By the power law for C'p, this gives a 13—16% decrease
in Cp along an isotherm, for # descending from 1.0 to
0.7. According to Birch, the maximum decrease in Cp
in the mantle does not appear to exceed 20%.

The adiabatic volume derivative of C'p 1s

dmCp\ _ _ (9lnCp

oV )~ '\ omT
B dInCp dlnCp
_(HMT)(alnv)T_'V(alnT)P' (62)

Substituting (InCp/dInT)p ~ 0.15 (the typical
value for minerals for T'2 1000 K), v ~ 1 — 1.5, ayT ~

0.1, and (0InCp/8InV)p ~ 0.5 (for & ~ 4), we find
(@InCp/0InV)s ~ 0.3 — 0.4. Consequently, the power
law for Cp yields a 8-13% decrease of this value along
the mantle adiabat (to z ~ 0.7).
By using (29), the temperature derivative of C'p can
be represented in the form
),

OlnT
_ {0InCp ayT (JInCp
_<3lnT)V+ ol <3an)T’ (63)

The second term arising from the extrinsic anharmonic-
ity can be estimated by making use of (58), so that
(63) in conjuction with data for (9Cp/8T)p allows the
first term coming from the intrinsic anharmonicity to
be evaluated. At room temperature, (9InCp/0InV)p

(3111013
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Figure 5. Temperature dependence of the thermal expansion coefficient at P = 0 for forsterite.

For notation, see Figure 4.

is on the order of (9InCp/0InT)p, but nevertheless,
the contribution of the second term to the sum (63) is
small because of the small factor ay7". At high temper-
atures, this contribution generally increases to 15-30%
(perhaps, 60-70% for ilmenite and perovskite, according
to our estimates) [Pankov et al., 1997]. In the classical
limit, Cy = constant, assuming that o ~ «(V) and
v & y(V), we find (0Cp /0T )v =~ ayCly.

Further, from (17) and (18), it is easy to obtain the

identity
3111 Cv o i 30}3
dlnT Jp Oy \ oT P

2
—a’yT—@(l—l—?d—éT),

(64)

which we used to estimate the values of this derivative
presented in Table 3 and Pankov et al. [1997]. Then,
with the help of the identity

OlnCy _ dlnCy +oz'yT dln Cy (65)
omT Jp, \ dlnT /, ol oV J
it is possible to compute ((01n Cy)/(dInT))v, provided
that the second term in (65) is given by (59).

An explicit dependence Cy(V, T) can be derived from
models and measurements of the vibrational spectra of
solids (e.g., Pitzer and Brewer, 1961]):

IO
CV —3nk/mg(1/)d1/,

0

(66)

where k is the Boltzman constant, y = hv/kT, g(v)
is the spectrum density, and v are the lattice frequen-
cies including optic and acoustic modes [Kieffer, 1979a,
1979b, 1979c, 1980; Hofmeuster, 1991a, 1991b; Richet
et al., 1992]. This method provides information on the
inadequacy of the Debye theory and the related approx-
imation y = —=dIn©/dIn V. The characteristic temper-
ature © in the Debye theory is usually estimated from
acoustic data, but © found from data for Cy at 17" >
300 K (labelled O:3), on average, exceeds the acoustic
© (labelled ©,) by about 20% (larger deviations are
common to quartz and coesite, see Table 2 and Pankov
et al. [1997] and Watanabe [1982]). Chopelas [1990b]
found, however, good agreement of the Debye model
with the spectrum data for MgO at pressures to 200
kbar, provided that ©@ ~ V7, i.e., ¢ = 0.

Spectroscopic measurements at high pressures allow
us to estimate the derivative (0Cy /OP)r. For example,
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the data of Chopelas [1990a, 1990b] to 200 kbar show
that Cy linearly decreases with P, so that the gradient
—(0Cv JOP)r is 17.6-1073 (T = 300 K) and 0.91-1073
(T = 1800 K) for MgO and 49.8-10~3 (7' = 300 K) and
3.4-1073 (T = 1800 K) J/(mole K kbar) for forsterite.
With these values, Cy being extrapolated (by the power
volume dependence) to the maximum pressure P = 1357
kbar in the mantle will decrease 40-60, 8-12, and 2-3%
on the 300, 1000, and 1700 K isotherms, respectively.
Comparing these results with the decrease in C'p esti-
mated above, we verify that the difference C'p — Cy in
the lower mantle must be exceedingly small. From the
same Chopelas’ data, using also the K7 and Cy values
from Table 2, we find (8IlnCy/0InV)p = 0.77 (T =
300 K) and 0.022 (T = 1800 K) for MgO and 0.54 (T =
300 K) and 0.022 (T = 1700 K) for forsterite. These re-
sults are comparable to our estimates of this derivative
from thermodynamic data (Table 3).

7.2. An explicit temperature dependence of Cp
at P=0

Calorimetric data for C'p versus temperature at P = 0
are commonly fitted to various empirical expressions
[e.g., Fei and Saxena, 1987; Berman, 1988; Sazena,
1989; Richet and Fiquet, 1991]:

Cp=Co+ CiT+ CoT? + CsT~ 124 Cy T2,
Cp=Co+CiT 1?4 CyT=% + C3T73,
Cp=Co+ CiT71 + CoT™% + CsT73 + C4T, (67)
Cp=Co+CoT 24+ C,T 4+ CsT 5,
Cp=Co+C1T ' +CT24+CT34+C,InT.

Richet and Fiquet [1991] showed that the last of the
above formalas are favored but no one of them provides
an accurate description of C'p over a wide temperature
range.

In addition, Figure 6 compares Cp(T') found by the
simpler formula used by Watanabe [1982] to fit the mea-
surement in the temperature interval of 350-700 K. An
example of MgO shows that the extrapolation by this
formula can lead to series errors.

As well as in the analysis of thermal expansivity in
section 6.3, we calculated Cp(T) (Figure 6) from the
same Mie-Gruneisen EOS as was used to compute a.
One can see that the theoretical curves can be reconciled
with the data shown by varying parameter ¢ in the limits
1-2. In so doing, we find ¢ &~ 0 for MgO, ¢ = 1-2 for
Al5O3, and ¢ & 0.5 for forsterite. However, these values
of ¢ are not always consistent to data on « (see section
6.3), and this fact also suggests a certain inaccuracy of
the Mie—Gruneisen EOS model.
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8. Thermal Pressure

8.1. P-V-T derivatives of the thermal pressure
coefficient

The thermal pressure coefficient defined by (9) or (12)
is the basic characteristic of the thermal pressure and
can also be defined as 7 = (0P, /I0T)v. Note that T
has also the meaning of the latent heat of expansion
per 1 K. O. Anderson and his co-workers [O. Ander-
son, 1982, 1984, 1988; 0. Anderson and Sumino, 1980;
0. Anderson and Goto, 1989; 0. Anderson et al., 1982,
1991, 1992a] paid special attention to this parameter, in
particular, in relation to their development of the rect-
angular parallelepiped resonance technique for measur-
ing elastic properties of minerals at high temperatures.

The basic identities for the derivatives of 7 can easily
be derived from those given in sections 6 and 7. The
following identities are especially suitable [Brennan and
Stacey, 1979; Birch, 1978; O. Anderson and Yamamoto,
1987]:

(80[[(T

I 7 U S
3T )P_AT (3T)V_a Krp(a—46r), (68)

80[[(T _l 80‘/
or )y T\ 9V ),

= oKy (& + K' — 267), (69)
80[[(T . 1 8[(T
5t), = (),

80[[(T . 1 8[(T . 1
( 5P )T_KT<3T )V_oz([x —or). (71)

Formula (68) is obtained by expanding the derivative
at the left side and then by using (30); (69) is a con-
sequence of (57), and (70) is easily derived by equating
the second derivatives of P with respect to V and T
taken in one order or another; finally, (71) follows from
(31) and (70).

Combining (68) and (69), we have

80[[(T . l 80‘/ _2q -
( 5T )P =7 <—3V )T o’ Kp (K'=d7). (72)

According to (71), for the common inequality ép >
K'’, parameter 7 decreases with pressure along an
isotherm. However, at high pressure, the decrease can
change to an increase, as, e.g., in the PIB model for

MgO [O. Anderson et al., 1993]. Tt is clear from (68)
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Figure 6. Temperature dependence of the specific heat at P = 0 for forsterite, corundum,
and periclase. (1) Cp from [O. Anderson et al., 1992a]. (2) Cy from [Chopelas, 1990a, 1990b].
The solid lines are from the Mie—Griineisen EOS (with the same parameter values for respective
minerals as in Figures 4 and 5). The dashed lines are the polynomials from [Watanabe, 1982]
descrbing his data in the range 350700 K. The arrows indicate the classical values of Cy .

that 7 increases with temperature at constant pressure,

at least for T' < O.
As follows from (29), the logarithmic temperature
derivative of 7 at P = constant is represented as

Olnrt 1 /0lnt Olnt

onT /), « a1 )y oV ),
where the first, intrinsic anharmonic term is positive
due to (69) and can be written as the sum of two terms

l Olnrt

o aT )
_ L (9Kr\ 1 (0
T aKp \ 0T v a2 \oT /),

=(K'—dr)+ (& —6r),

(74)

and the second term in (73), in view of (70) and (71), is

Olnry\ ,
(alnv)T =or— K

1 0K
(),
\4

aKp \ 0T

Here, the symbol 6f is introduced for convenience
(see a further analysis in section 9). Although due to
large values of &, the intrinsic anharmonic term in (73)
is dominant in value at 7' < O, the sign of (73) at high
temperatures can be either positive or negative.

The temperature behavior of 7 resembles that of Cy
so that at 7" > ©, 7 tends to be independent of temper-
ature [O. Anderson, 1984]. Accordingly, the thermal
pressure Pi; tends to a linear dependence on T'. QOur
estimates of 7 (Table 2 and Pankov et al. [1997]) show
that the nonlinear terms in P;j, versus 7' makes a con-

(75)
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tribution not greater than 1-3% at the highest temper-
atures indicated in Table 3 and Pankov et al. [1997].
The linear temperature behavior of Py is considered to
be the universal property of solids at high temperatures
[0. Anderson et al., 1992a]. Unlike the temperature de-
pendence, the extent to which 7 depends on volume at
T = constant varies from one type of solid to another.
According to O. Anderson et al. [1992a], the earth min-
erals fall into an intermediate group between materials
with significant (e.g., gold) and relatively weak (e.g.,
sodium chloride, alkali metals, noble elements) volume
dependences of 7. It is important that these inferences
are based on both P—V —T data (analysis of P, (V,T))
and high-temperature data for K and aKp at P =0
(analysis of (70)).

At first glance, the observed regularity in 7(7T) at
T > O is explained by the fact that Cy & constant in
this temperature range, where, in view of (8) and (69),
~ 1is therefore independent of temperature. In other
words, the quasiharmonic Mie-Griineisen EOS is seem-
ingly justified at high temperatures. However, this is
not quite true to be the general case when we start with
the condition 7 = constant or 7 = 7(V') which are com-
patible with the case of Cy (T) (see (69)) and therefore
with a dependence of 4 on both volume and temperature
[0. Anderson and Yamamoto, 1987]. Theoretically, the
departure of Cy from the Dulong and Petit law [e,g.,
Mulargia and Broccio, 1983; O. Anderson and Suzuki,
1983; Gillet et al., 1991; Reynard et al., 1992] is in part
related to the intrinsic anharmonicity described by the
third and higher order terms in the lattice Hamiltonian
expansion. In describing experimental data, the ther-
mal EOS generally requires smaller number of terms in
this expansion than the caloric EOS [Leibfried and Lud-
wig, 1961; Wallace, 1972; Davies, 1973]. Thus, when
anharmonicity in P;; versus 7" and the temperature de-
pendence of v are not observed, this may suggest that
either the quasiharmonic limit for the vabrational + has
not yet been achieved or the higher order terms in the
thermal part of the EOS are mutually cancelled [O. An-
derson et al., 1982].

In conclusion to the above analysis of 7, we formulate
the following important assumptions and their conse-
quences that can easily be verified: (1) Let Cy be in-
dependent of V| i.e., either Cy = Cy (T) or Cy = con-
stant. (2) Assume that Kp = K7 (V) that is equivalent
to ép = K'. From (1), it follows that either 7 = r(V)
or 7 = constant, and in addition, K is either a linear
function of T or Krp(V), which leads to ¢ = ¢(V) (or
q = 1) and either v = Vr(V)/Cy(T) or v = v(V). The
statement (2) is equivalent to either 7 = 7(T) or 7 =
constant. If both (1) and (2) statements are valid (but
Cy # constant), then v = const - V/Cy(T) and ¢ = 1.
The conditions Cy = constant and K7 = Kp (V) yield
v = const - V.
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8.2. Thermal pressure model

The thermal EOS resulting directly from integrating
(12) is of the form

T T
V)—i—/oz[deT v —1—/76‘;—‘/ T, (76)
0 0

where f(V) is the static lattice pressure plus the zero
oscillation pressure. The second term in (76) is the to-
tal thermal pressure P, accounting for all anharmonic

contributions. This EOS can be rewritten in the form
T

= P(V,Ty) + /ozKTdT, (77)
To

where, for example, T = 300 K. In accordance with the
behavior of 7 described above, the thermal pressure can
be approximated as [O. Anderson, 1984, 1988]

T

T
Py = /Oz[(TdT—I— /Oz[(TdT
0 T,

=a(V)+ (V) (T -T1), (78)

where 7" > 17 > ©. As already noted, the variation
with volume in (78) is insignificant for some solids.

In the Mie-Gruneisen EOS, the thermal pressure is
however defined as

T
P, = 7—/ CydT, (79)
0

where the quasiharmonic approximation for Cy is used.
Thus, here, at high temperatures 7' > 175 > O, when
Cv ~ constant,

Py, = a*(V) + b*(V) (T — Tz). (80)

Even when 6(V) = 6*(V) in some temperature range,
the distinction between (78) and (80) is retained since,
in the general case, v = 4(V,T) in (78) and a* # a.
In practice, for certain minerals and for the present ac-
curacy of measurements, P from (78) and the Mie-
Griineisen theory can be indistinguishable [Fei et al.,
1992a, 1992b; Mao et al., 1991], especially for minerals
with low Debye Temperature.

The term APy, in (77) can be approximated in vari-
ous ways. For example, with given volume dependences
of K’ and dr, by integrating (75), we can find 7(V) at
T = constant [0. Anderson et al., 1992a, 1993]. The
temperature dependence of 7 is derived from data on
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Figure 7. Thermal pressure coefficient versus temperature at P = 0. The solid lines are from
the Mie-Griineisen EOS (as in Figures 4-6). The experimental points are from [O. Anderson et

al., 1992a).

a(T) and Kp(T) at P = 0. Another possibility to ex-
plicitly approximate the thermal pressure is given by
the power law for 7(V') on an isotherm.

Fei et al. [1992a, 1992b] and Mao et al. [1991] used a
number of models for P;;, in order to describe P—V —T
X-ray data. Specifically, they assumed (0K7/0T)v =
constant. Then, (70) yields

) In
v

where 7(0,7) is determined from data on « provided
that (dKp/dT)p = constant, the condition assumed
over the entire P —V —T range of measurements. From
the assumption that both temperature derivatives of Kp
are constant, it follows that 7K’ = const. However,
in such a case, K’ will increase with pressure along
an isotherm and decrease with temperature along an
isobar—the behavior that disagrees with the usual prop-
erties of this parameters (see section 6). Note that the
estimated d7 values can be very sensitive to the adopted
model of Py, [e.g., Mao et al., 1991], although the Py
values themselves from various models can be close.
Finally, in Figure 7, we illustrate the temperature de-
pendences of 7 at P = 0, calculated from the Mie-
Gruneisen EOS for periclase, corundum, and forsterite,
described in section 6, with various values of ¢ in the in-
terval 0-2. Although this type EOS gives correct orders
of magnitude and the correct regularities in the P — T
variations of 7, it i1s difficult to achieve the complete
consistency for all of the data given, as well as in the

OKr
or

V(P,T)
V(0,7)’

(P, T)=7(0,T) + ( (81)

cases of specific heat (section 7) and thermal expansivity
(section 6). A better accuracy of the EOS is undoubt-
edly required than that of the Mie-Gruneisen EOS in
order to describe experimental data, to reliably predict
unmeasured properties, and in particular, to calculate
the phase diagrams at high pressures (when a 10% er-
ror in P, can substantially affect the estimated phase
boundary slopes and positions).

9. Anderson—Griuneisen Parameters

Here, we consider the two useful Anderson—Griineisen
parameters in more detail [Grineisen, 1926; O. Ander-
son, 1966a, 1967]: the isothermal ép parameter intro-
duced above (see (31)) and the adiabatic s parameter

e () ()

Both parameters are used in geophysical and physi-
cal studies [Chung, 1973; Barron, 1979]. The parameter
dp is largely applied in analyzing the P — T" behavior
of o, K7, and 7, and ds is used to estimate the tem-
perature dependence of Kg and to treat the relations
between elastic properties (elastic wave velocities) and
thermodynamic data [D. Anderson, 1987; O. Anderson
et al., 1987; Isaak et al., 1992; Duffy and Ahrens, 1992a,
1992b; Agnon and Bukowinski, 1990b].

As the temperature decreases in the range 7' 300 K
at P = constant, both parameters dg and dp sharply
increase due to decreasing «, but at high temperatures,

1
Oz[(g

0Ks
or

8111[(5

dg =
° Jlnp

(82)
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T > O, they become more or less constant [0. Anderson

et al., 1992a]. From (16), we derive the identity relating
dr and dg [Birch, 1952]

dp =85 +v —anT

. 1 aCp
clor—1-2 = (5F) |

which was used to calculate the d7 values listed in Ta-

ble 3 and Pankov et al. [1997]. Deriving (83), we find
in passing that
il
oT ) p

_ . 1 oCy
_O["yT |:OZ—(5T+1+E (6—T)P:|

(83)

ayT

—_— 84
14 anT (84)

= avT(1 + ayT) [L +a

2

+ 14 anT

_6T+1:|a

where, for convenience, the notation

L= G (e |
P

T a? or (85)
is introduced.

The values of L and (9v/0T)p at P =0, calculated by
(84) and (85), are also presented in Table 3 and Pankov
et al. [1997].

Data for some minerals [O. Anderson et al., 1992a]
show that (0v/0T)p=o & 0 over a wide temperature
range. Assuming that (0v/0T)p = 0 for Cy = constant
(T > ©), (84) gives

Sp a1, (86)

Moreover, since Cy = constant, this case results in
q = 0, and consequently, according to (35) and (42),

Sp~ K — 1. (87)

However, the estimation of dp by (42) for ¢ ~ 1 is
more accurate than the values from (87). Then, one
might expect that in (84)

Oy
(81HT)P/O[7T — q,

for Cyy — constant.
Using (83), identity (84) can be rearranged to the
form

ayT

5T:5s+7—m
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X —d——l Oy
7 oy \O0InT ) p]"

If the last term in (88) is small, then [O. Anderson et
al., 1992a]

(88)

or & s + Y- (89)

This approximation is recommended for evaluating
of the Anderson—Griuneisen parameters at high temper-
atures, when there are no sufficient data for applying
(83) or (88).

In addition to the analysis of the parameter o7 (P, T')
described in sections 6 and 8, we consider the following
features in the behavior of dp. 1) If v = y(V), then
q = ¢(V), but generally speaking, dp = o7 (V,T) since
Cv = Cy(V,T) and K' = K'(V,T). 2) I Cy = Cy (T),
then (42) holds true, and moreover, v = f(V)/Cv (T,
q = ¢(V), although, generally speaking, K' = K'(V,T)
and dp = 6p(V,T). Combining the former of these
assumptions with the condition Ky = Kp(V) (i.e.,
dr = K'), we find

3 In Cv -1
oV j o
and Cy therefore takes the form

Cv (1) = G-

—q, (90)

In section 6.2.2, the arguments were given for decreas-
ing dp with pressure. The same behavior of this param-
eter follows from the approximation (42) since both K’
and ¢ decrease with pressure. The exact relations for
the P and T derivatives of 7 result from the definition

of 67 by (31)
o (35, + (57),] o

9ép 1
( or )T T T
8(5T 1 87’ 82[(T

(7)== (57),+ (5), ) @
If the first term in (91) prevails, we have an unusual
case ((067)/(0P))r > 0. Neglecting the second temper-
ature derivative in (92) (at least at room temperature),
we find that (907 /0T)p < 0. However, the approxi-
mation dp = K’ (more realistic at 7' > ©) gives, by
constast, (0d7/0T)p > 0 because of (OK'/0T)p > 0.
Experimental data indicate that ((02Kr)/(9T?))p for
T > O is negative and small in value [O. Anderson et
al., 1992a].

Finally, the EOS of type (28), which we used to cal-
culate the thermal expansion coefficient by (36), allows
us to determine the explicit pressure (or volume) depen-
dence of K7 along an isotherm. Retaining in (36) only
the terms involving dK{/dT, we obtain

dr

dro
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Figure 8. Parameter dp versus x at 7' = constant. The solid lines are by (93), corresponding to
the o curves in Figure 3. The crosses are by the power law corresponding to (48) [O. Anderson
et al., 1993] or 67 = 62 — 1 from (47) [Chopelas and Boehler, 1992]. The dashed line is the lower
limit 67 = K’ — 1 calculated by (28) and (37) (under the condition that Cy = constant and

g >0).
v ! !
LK ]:7 K, 7 dK 3]: +x3j:
B Ky  apdpoKr dI' \ 0K] 0K}
- K dK! ’
LA S Ky Of dK|

Ky agKp 0K dT
(93)
where f’ denote the derivative of f with respect to z.
This approximation generalizes the similar Birch for-
mula that follows from (93) for dK}/dT = 0 [Birch,
1968]. However, when using usual EOS types, o7 from
the Birch formula increases with P (except for the Mur-
naghan EOS for which the behavior of dr depends on
the sign of the difference K’ — dpg). Again, we con-
vince ourselves that the term with derivative dK}/dT is
important in analyzing the thermal expansion by (28).
Figure 8 shows several curves of ér(z) calculated us-
ing (93) and EOS (37), which correspond to the curves
of ain Figures 1 and 3 (the straight line 7 = 62 —1 by
(47) is also drawn for comparison). The favored value of
dK}/dT is 2-1073 K= (see section 6.2), and deviations
from it substantially affect the §7 values at compressions
in the lower mantle. At high temperatures, according
to (42), we have also the lower limit for dp, ér > K/ —1
[0. Anderson et al., 1992a).

10. Bulk Moduli

10.1. P-V-T derivatives

Elastic moduli and their P—V —7T derivatives are the
characteristics constituting the basis of the Earth’s in-
terior thermodynamics [Birch, 1952, 1961; Sumino and
0. Anderson, 1984; D. Anderson, 1967, 1987, 1989;
0. Anderson et al., 1992a; Duffy and D. Anderson,
1989; Bina and Helffrich, 1992; Duffy and Ahrens,
1992a, 1992b]. These quantities also serve as param-
eters of EOS’s. The simplest estimates of adiabatic
and isothermal bulk moduli at high pressure are given
by their linear pressure dependences, which, however,
begin to overestimate the bulk modulus at a compres-
sion of about z < 0.85. The P — T variation of the
pressure derivative was considered in many papers de-
voted to EOS’s (see section 3). In order to assess the
applicability of empirical EOS’s, one often uses a rela-
tion between the first K/ = (0K7p/0R)r and second
K" = (8K /0P?)r pressure derivatives at P = 0
[Pankov and Ullmann, 1979a; Jeanloz, 1989; O. An-
derson, 1986; Hofmeister, 1991b]. Values of K’ and
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KK"” at P = 0 generally lie in the intervals 4-6 and
—(5—10), respectively. The uncertainty in (0Kg/0P)r
(measured by ultrasonic or Brillouin scattering meth-
ods) can reach 1-5% (with allowance for data from var-
ious laboratories) or, in some cases, 20% and even 50%.
Anomalous values of K’ and K" are sometimes reported
(see references in tables of Pankov et al. [1997]): for ex-
ample, K’ = b — 7 (garnet), K’ = 9 — 14 (pyroxene),
and K K" = —60 (spinel), which are assumed to take
on more usual values as pressure increases.

Let us turn our attention to the relations between the
adiabatic-isothermal derivatives of Kg and Kp. Chang-
ing the variables P and S to P and T, we find

OKs\ _ (0Ks
<6P>S“<6P>T‘5“”T

where dg is defined by (82). The derivative (0Kg/0P)s
characterizes the curvature of an adiabatic P — V or a
Hugoniot curve. Further, from (16)

(94)

0Ks\
<8P )T_ (14 anT)

. 0y Ja
+ KpT [a <3P)T 4+ (3P>T] .

Eliminating (0v/0P)7 with the help of (8) and (17) (or
(122)) and using (58), we find

(95)

(?ﬁ)T =K'+ oayT (2K = 267 — 1)

+ (@yT)? (K' — 267 + &) . (96)

Substituting (94) for (0Kg/dP)r and (93) for dg, we
arrive at the Birch [1952] formula

ORs ) ko 4 an T @K = 360 — 14 7)
P ).,

2 o ~ _ 1 8CP
+ (ayT) ([x 30r +3a+1 oy \ar o)

The difference between the adiabatic—-isothermal deri-
vatives of Kg and K7 at normal conditions are generally
small (1-2% for mantle minerals). Data and estimations
by (94)—(97) show that we usually have

0K 0K y
(ap)5<<aP>T<A

(except for FeO for which (0Kg/0P)r is poorly known
[Pankov et al., 1997]); however, D. Anderson [1989] in-

dicated the inverse inequality

[/7
(3&5) > K'Kg/Kr.
T

opP
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For our high-temperature estimates given in Table 3 and
Pankov et al. [1997], it was arbitrarily assumed that

(MS) — const (or 92K /OPOTS10~ K1),
P ).,

Hence, using (94)-(97), we found substantial differences
(up to 10-30%) between the pressure derivatives of
Kg and Kp at high temperatures. In fact, the differ-
ences are of the same order of magnitude as the deriva-
tive increments due to increasing temperature. Specif-
ically, the estimated 92Ky /9POT values are 3.5-107*
(stishovite), 2-10~* (ilmenite), 3-10=* (Mg-perovskite),
and 1.7-107* (MgO) and do not exceed 1-10~* for other
minerals (although some estimates appear to be nega-
tive).

Isaak [1993] estimated 9% Kp/OPOT using an iden-
tity of type (91) and Boehler’s data on the adiabatic
temperature gradient (see also section 12.2). He found
O?Kp/OPOT = (3.941.0)-10~% and (3.3£0.9) - 1074
K~! for MgO and olivine, respectively. Furthermore,
he showed this derivative to decrease 30% as the pres-
sure increases isothermally to 100 GPa. A similar order
of magnitude was found from shock wave data to be a
lower limit for this derivative value [Duffy and Ahrens,
1992a] (see also sections 6 and 9).

In addition to the analysis of the mixed derivatives,
we give the following identity

L (9 (9Ks
ads \OT \ P )¢/,

8[(5 8 In (55
=— | = - d5(1 + anT

(57, Gy ) +ostr4enn. o
which we derived from (94), using (127) and (9v/0T)p
from (88). Note that a similar relation of Bukowinski
and Wolf [1990] is different from (98) (because of either
a reprint or mistake). To give an example, we sub-
stitute in (98) the values typical of the lower mantle:
(0Ks/0P)s =4, ayT = 0.1, ((01ndg)/(0np))s = —1,
and Js = 3 for = 1 and §5<2 for # = 0.7. Then,

(6(6[(5 JOP)s
aT

which is in agreement with the preceding estimates.
When considering the temperature behavior of Kg
and Kp, the Anderson—Griineisen parameters §g and
dr are represented in the form of (29) [D. Anderson,
1987; Duffy and D. Anderson, 1989; O. Anderson et

al., 1992a], which can be rewritten as

5oL (0Ks\ | (0Ks\ Kr
ST aKs \ar ), T\ 0P ), Ks

) 2 0.8-107%,
P
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8111[(5 s 8[(5 [(5
= —— ) i I
( dlnp )P V+<3P )TKT (99)
~ =6 + K,
5 <8IHI{T)
T =
dlnp /p
_ 1 OKr o _ T -/
= ok (3T>V+A =4y + K'. (100)

In section 9, we considered the principal regularites
in the variation of dg and d7 with pressure and tem-
perature (some decrease of them with 7' in the vicinity
of T'= 300 K, the trend to constant values at 7" > O,
and the decrease with pressure). Now we dwell on the
contributions of the intrinsic &7 and §% and extrinsic
K’ anharmonic terms in (99) and (100).

D. Anderson [1988, 1989] pointed out that the tem-
perature variation of the bulk modulus at P = con-
stant mostly occurs by the variation in «; i.e., here,
the extrinsic anharmonicity generally prevails and en-
hances with temperature (due to increasing K’). The
estimates given in Table 3 and Pankov et al. [1997]
show that, at T' = 300 K, we have 6 < 0 (except very
uncertain data for FeO); most of the estimates falls into
an interval between —1 and —2 (although it was found
5$ = —17, =5, and —3.9 for coesite, stishovite, and
fictive Fe-perovskite phase, respectively). According to
D. Anderson [1989], the values of §% are typically be-
tween —4 and —1 (his table 5, however, contains val-
ues outside this interval: 2.2 for orthopyroxene, —5.3
for SrTiOz, and —19 for CaCOg). The parameter 5‘5
satisfies the inequality |6i7| > 2 for 11 out of 54 miner-
als considered by D. Anderson (specifically, d;} = —4.1
(GeOs), 3.8 (orthopyroxene), —3.1 (SrTiOgz), and —18
(CaCO3). At high temperatures, 6% can be either pos-
itive or negative (between —1 and 1), and |4;}| is gener-
ally positive, lying in the interval 0—1.5 [Pankov et al.,
1997]. Thus, as temperature increases, |§%|, on average,
decreases, but |6; | increases. The contribution of 6; /85
to (99) is usually less than 10-30% at 300 K and does
not exceed 15—60% at high temperatures. Accordingly,
6L contributes no more than 30-40% in (100) at 300 K
and usually less than 10% at high temperatures. From
this analysis, it follows that the extrinsic anharmonic
term, although it generally dominates in the derivatives
of Ks and Kp, decreases its contribution in the case
of Ks and increases its contribution in the case of Krp.
The decrease of 5$ with temperature leads to the ap-
proximation

St w0, dr~K', Krws Kp(V) (101)
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and additionally, in view of (89) and (99),

& NS+ A (102)

Thus, at high temperatures, namely the isothermal,
rather than adiabatic bulk modulus becomes depending
mostly on volume (i.e., temperature-independent func-
tion).

10.2. Interpretation of seismic tomography data

In his analysis of the thermodynamic properties of the
lower mantle, D. Anderson [1987, 1988, 1989] relies on
seismic tomography and geoid data and assumes that
the observed horizontal velocity anomalies are caused
by temperature variations. Stacey [1992] showed, how-
ever, that 1t 1s not possible to explain the anomalies
with a purely temperature effect, since in such a case,
the geoid highs would be too great. Other hypotheses
proposed to interpret the seismic anomalies were related
to inhomogeneities of composiion, or partial melting, or
even the presence of small amounts of fluids [Price et
al., 1989; Duffy and Ahrens, 1992b; and others]. Never-
theless, following D. Anderson, below, we estimate the
thermodynamic parameters for the lower mantle, con-
sidering the temperature effect formally as a limiting
case.

Based on the PREM model, the formula for the acous-
tic Gruneisen parameter, and tomography data, we have
in the lower mantle (0Kg/0P)s =3—3.8, v = 1.240.1,
and s = 1 — 1.8. Consequently, using (89), (94), (96),
(99), and (100), we find dp ~ d5 + vy = 2.2 — 3.0,
K’ = 3 — 3.8 (a small correction can be introduced
with the help of a = apd for ag = 4 - 1075 K¢
and T ~2000-3000 K), d;) ~ K' — s = 1.2 — 2.8, and
§t = &) —~v = —0.1 — 1.7. If a greater uncertainty
is assumed for v, say 0.4, then dp ~ 1.9 — 3.3 and
83 ~ —0.4 — 2.0. Thus, although the extrinsic anhar-
monic effects weaken with pressure, they still prevail
under the lower mantle conditions (K’ > &7 or |d%]).
The intrinsic anharmonic term &;} significantly increases
with pressure, but its isothermal analog d{ can either
increase or decrease and reach zero. D. Anderson, by
reference to experimental data, points out the case of
6L ~ 0, which yields 67 ~ v = 1.2.

However, this value of i disagrees with data for
such a representative lower-mantle material as peri-
clase. Using 6f = 0 and dr = K' ~ 3.2 — 3.5 for
z = 0.7 and the Birch-Murnaghan EOS for MgO, we
find g ~ dp — v = 22 —25 for v = you (¢ = 1, see
(119)). These values of 67 and dg are, on average, still
exceed the results inferred from seismic models. O. An-
derson et al. [1992b] noted that data for MgO can be
reconciled with seismic results by assuming that ¢ < 1.
In particular, our analysis leads to the following consis-
tent sequence of values: 6% 20.2, ¢<0.8, v = yozd21.1
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(forz = 0.7), 67 = K'—6L<3-3.3,and §5<1.9-2.2. In
any case, the consistency to seismic data could be found
in this manner if the values derived from seismic tomog-
raphy were explained by only horizontal variations of
temperature.

10.3. Estimation of K5 at high temperature

10.3.1. The consideration of the temperature be-
havior of Kg at P = 0 will be added by the following
two methods. One of them uses the condition §s = 65 =
constant [O. Anderson, 1988; Duffy and D. Anderson,
1989], and in view of (99), yields the power law

Ks = K3(p/o")'", (103)
which we used to estimate the values listed in Table 2
and Pankov et al. [1997].

Another approach proposed by O. Anderson [1989]
and extended by O. Anderson et al. [1992a] is based
on data for enthalpy. We obtain the relation of Kg to
enthalpy using a somewhat different procedure, namely,
the formula v = aK¢V/Cp from which the derivative
(0Kg/0H)p is found, and thus, approximately,

Kg =K =8y p"(H - H"), (104)
where the asterisk marks the values at a fixed temper-
ature. By using the parameter values from Table 2 and
Pankouv et al. [1997], as well as data for enthalpy, we
estimated Kg by (104) for a number of minerals (Ta-
ble 4). One can see that the O. Anderson’s method is
quite efficient: the uncertainty of the estimated values
at high temperatures is 2-5%. It is also clear that both
methods described above would give more accurate re-
sults when high-temperature values for K3, p*, v*, H*,
and 0% are used in the respective formulas.

10.3.2. In conclusion to this analysis, we show the
dependence of Kg versus 7' at P = 0 (Figure 9) cal-
culated by the Mie-Griineisen EOS with v = yo29 for
three minerals considered in sections 6-8. Comparing
the Kg curves for various values of ¢ = 0 — 2 with ex-
perimental data, we see that it is possible to choose ap-
propriate values of ¢ consistent to the data. However,
considering the results presented for the same EOS’s
in sections 6-8, it is not always possible to find such
values of ¢ for which the EOS becomes consistent to
data simultaneously for o, Cp, 7, and Kg. Thus, as in
sections 6-8, we conclude that the thermal part of the
Mie-Gruneisen EOS does not provide suffuciently high
accuracy of all the thermodynamic parameters calcu-

lated from this EOS.
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11. Thermodynamic Griineisen
Parameter

The thermodynamic Gruneisen parameter is defined
by (8) or (14), which further lead to several useful iden-

tities
oP oP oT
”—V(a—E)V —V(a—T)V (a—E)V
_V(@S/oV)r _ VOPF/OVOT (0T
T V(0S/aT)y ~ T(PF/OT?)y — \dlV )
(105)

The typical values of v by (8) or (14) range from 1 to
2 (see, e.g., Table 2 and Pankov et al. [1997]). Of 54
minerals treated by D. Anderson [1989], only five have
~ greater than 2, and none has 7 over 3. Low values of v
are seldom encountered: e.g., v = 0.4 for a-quartz, 0.3
for coesite, and even v < 0 for U,O, AgJ, and g-quartz.

11.1. P-V-T derivatives of v

The logarithmic derivatives of v with respect to V' (or
P) are characterized by the parameter ¢, for which from

(8) and (100), we find

_ (dlny _ Oln~y
1=\omv),” "T\ompr)/,

Vv OKr 0lnCy
=1 — _ 1
'yC’v ( 3T )V (3111‘/ )T ( 06)
3IHCV
_ o
=l -k (alnv)T
3IHCV
1 _sr_ (Y v
—1-67 (aan)T (107)
=14dp — K' —ayT(a+ K' — 267). (108)

As noted earlier (see (57) or (69) and (8)), in general, the
Cy = constant case leads to v = v(V), and therefore,
q = ¢q(V) or ¢ = constant. If Cy is only temperature-
dependent, there are three possibilities: (1) ¢ = ¢(V),
(2) ¢ = constant # 1 (i.e., 6L = constant # 0), and
3)g=1(@L =0, K =6r(V), and 7 = aKy =
constant). Thus, both Cy = constant and Cy = Cy (7))
conditions result in the case that the two inequalities are
equivalent:

0<¢<1 and 0<é6f =K' —dp<1 (109)

If we simply assume that ~ is only volume-dependent,

then from (14), (33), and (106),
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Table 4. Estimated and measured values of Kg at normal pressure and high temperatures™
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Temperature, Kg (GPa) Kg (GPa) Kg (GPa)
Minerals K for by the method of from measurements
J5(300K) = 85 = const O. Anderson [0. Anderson et al., 1992a]
AKg~H
MgO, periclase 1800 1357 (2.3) 1348 (1.5) 132.7
Al,O3, corundum 1800 2183 (1.4) 217.1  (2.1) 9918
Si02, a-quartz 1000 30.4 (5.5) 28.8 -
Si0s, coesite 1000 82.8 (2.1) 81.1 —
S104, stishovite 1800 222.4 (0.8) 220.6 —
CaO, lime 1200 97.4 (1.3) 97.6  (1.1) 98.7
FeO, wiistite 900 156.8 (0.4) 157.5 —
Mg2SiO4, forsterite 1700 101.5 (2.2) 101.6  (2.6)* 103.8
MgsSiOy, G-spinel 1700 139.5 (2.3) 136.4 —
Mg2Si04, v-spinel 1700 152.6 (3.5) 147.4 —
MgSiOs, enstatite 1700 89.6 (4.4) 85.8 -
MgSiOg3, ilmenite 1700 179 (3.8) 186 —
MgSiOs3, perovskite 1700 172 (4.9) 180.8 —
MgSiOs, garnet 1700 121 (8.0) 112 —
FesSi0y4, fayalite 1500 105.7 (4.3) 101.3 —
FesSi0y4, B-spinel 1700 137 (1.0) 138.4 —
FesSi04, 4-spinel 1700 170 (2.4) 166.0 —
FeSiO3, ferrosilite 1700 78.5 (2.6) 76.6 —
FeSi03, perovskite 1700 207 (7.6) 1924 —
Grossular 1300 148 (3.0) — 152.6
Pyrope 1200 149.8 (2.2) — 153.2
Olivine, Fo 90 1500 103.3 (4.2) — 107.8
Olivine, Fo 92 1400 108.6 (3.8) — 112.9

* Given in parentheses are the deviations (in percentages) from the measured Kg; when the latter is not available, the difference (in

percentages) between two indicated values of Kg is given.
** Extrapolation from T = 400 K, using the O. Anderson et al. [1992a] data. The extrapolation from T = 300 K gives Kg = 97.4

GPa (6.2% deviation).

OKs\
ar ),

@), )

(aAT) (1+ anT) + Kr
Vv

or

(110)

Placing in (110) for (Ks/8T)y by identity (99),

q:1+7—<

opP

0Ks

) + (1+ anT)ds
T

(111)

However, in the general case, ¥ = 4(V,T'), and from

the formula for v in

(18), we find

Ks (0
v \OP ),

opP

= (3[&5) —1—=3ds —v—ayT(L+1), (112)
T

which, upon excluding L by (85), yields the important

identity [Bassett et al., 1968]

a[/r
q=0s(14+ayT)+1— (j)
T

opP

_ 0Ks Oln~y
B ( 9P )ﬁ”[” (alnT)v]’

For v = 4(V), this identity is reduced to (111).
In section 6, we have already referred to some data
on values of ¢q. In general, values of ¢ can be inferred

(113)
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Figure 9. Adiabatic bulk modulus versus temperature at P = 0 for three minerals. The solid
lines are from the Mie-Griineisen EOS (as in Figures 4-7). The cicles are data of O. Anderson

et al. [1992a).

from the following sources: 1) thermodynamic estima-
tion by (108) or (111), 2) fit of the Mie-Griineisen
type EOS to data on «(T), Cp(T), and Kg(T) at
P =0, 3) shock wave data [e.g., McQueen, 1991; Duffy
and Ahrens, 1992a], 4) adiabatic temperature gradient
measurements [Boehler, 1982, 1983], 5) spectroscopy of
solids [e.g., Reynard et al., 1992; Williams et al., 1987],
6) theoretical EOS models [e.g., Isaak et al., 1990],
7) analysis of geophysical data [O. Anderson, 1979b;
D. Anderson, 1989]. The values of ¢ estimated by (108)
and given in Table 3 and Pankov et al. [1997], fall into

the interval 0.5-2, except for the high values for co-
esite (about 17), fayalite (2-3), and Fe-perovskite (4-5).
Small negative values were also found for enstatite and
FeO (probably, due to inaccurate input data). With in-
creasing T at P = constant or with increasing P at T
(or S = constant), ¢ decreases (see also section 6).

For the temperature derivative of v, we again have

the expansion of type (29)
1 [0y 1 /0In~y
— =] =9+ ;
ay \0T / p a\ T

(114)
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where the intrinsic anharmonicity term can be evaluated

using (18) and (85)

14+ ayl [ 0Oy
ayT dlnT /,,
0Ks
=L — 26g - v+ (—) — Oz’yT(SS. (115)
dP J

This term is usually negative and completely prevails
in (114) at T' < ©, but at high temperatures, its value is
comparable to ¢. Thus, the frequently used assumption
that v = v(V) is unsatisfactory in the general case, and
the temperature effect on the Gruneisen parameter can
serve as a measure of the validity of the Mie-Griineisen
EOS [Molodets, 1998].

Another suitable representation of (9v/9T)y follows
from (8) and (69) [Stacey, 1977b]

B or V ~
_TK@_T)VE_E (116)

_ [(0InCy B dlnCy _ {0InCy
T\ 9V T 7 OlnT V_ olnV S'

If v = 4(V), then either Cy = Cy (S) or Cy= con-
stant. The case Cy (S) results in

1 1
7:(3 nCv/@ IIV)T. (117)
(81HCV/8IHT)V
Moreover, (117) leads to Cy(V,T) = Cv(©/T)
and ©/T = f(S), so that v is represented as v =
—dIn®/dInV where © is a characteristic tempera-
ture.

11.2. Some explicit volume dependences of v

The frequently used volume dependences of the latice
Gruneisen parameter were given in section 6. The Rice
[1965] formula is also of interest

1=z — 1)
which is derived from (110) under the condition that

(aa[;s)v =0 and ~vy=~(V).
The inequality (9Kg/0T)y > 0 (see section 10 and
D. Anderson [1989]) holds true of many materials and
therefore gives a lower limit for their dependence 4(V'),
ie, ¢ <14~ and vy > y(x) by (118). This limit was
previously found from the Mie—Griineisen EOS [Kalinin

0! (118)
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and Panov, 1972], but it also follows from the given
thermodynamic consideration.

Equation (118) can be considered a partial case of the
more general representation v = 4(V, S). We introduce
a parameter A defined as

1 o
T (%) = v (14 onT)
\4

Oln~y Oln~T
=1 — =1- 119
+ <8an)S <8an)S’ (119)
where ® = Kg/p. Assuming that A = A(S) or A = con-

stant and using (119) and (105), we find by integration
that

1-A
Yok
v = for A #1,
1— 20 (=2 -1
1—A
7o
=—"  forA=1 120
7 l—~Inz o (120)
Yok
=————for A=0,
7 1—(e—1)

where y9 = 40(S) and Vo = V4(S). These dependences
of y(z) for various A are illustrated in Figure 10. One
can see that they are quite sensitive to variations of A
in the interval from 0 to 1.

12. Adiabatic Temperature Gradient

In geophysics, the conditions close to adiabatic are
realized in the convecting mantle and core, as well as
in seismic wave propagation. Furthermore, the state at
the initial part of Hugoniot are close to adiabatic. Adia-
bats of a given material form a one-parametric family of
curves. In this case, the temperature and pressure are
related by the adiabatic gradient 7g, which, considering
its definition by (10) and relations in section 2, can be
written in the form

_ pid
 Kp(14 avT)

ayT
(1 4+ anT)

Ts

(121)

Typical values of ¢ found by (121) are given in Ta-
ble 2 and Pankov et al. [1997].

Direct measurements of 7g at high pressures and tem-
peratures were made in a series of works [Dzhavadov,
1986; Boehler and Ranakrishnan, 1980; Boehler, 1982,
1983]. Chopelas and Boehler [1992] reported corrections
to the Boehler [1982] initial results on 75
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Figure 10. The Griineisen parameter versus volume calculated by (120) for yo = 1.

12.1. P-V-T derivatives of T4

We consider the basic identities and approximaions
for the derivatives. Denoting by n the logarithmic vol-
ume derivative of ¢ and using ¢ by (106), we have

_ (0Olnrg K Oln 1y
n — = — i\
v/, "\"op ),
[(T 8[(5 o - 81110}3

) (122)
T
(compare with (45)).

Formula (122) can be represented in various forms,
using ¢ by (113), (115), and (58). It is clear that n
decreases by isothermal or adiabatic compression. The
simplest estimate of n is given by assuming that

[/7
Ksn Kp and (255 ~ g
ar ).,

hence,

ne g+ K (123)

The typical values of ¢ = 1-2 and K’ = 4-5 yield
n = 5—7. If we neglect the last term in (122) at 7' > O,
then n = 14 dp [Chopelas and Boehler, 1992].

Changing from variables (V,S) to (V,T), the adia-

batic derivative with respect to volume takes the form

dlnTtg
= —= =144
ns (amv)S +0s

Olntg
=n—~T 124
n—r () (124)
dlnTtg
_n(l—i—a'yT)—'y(@lnT)P.
Approximation (89) and n = 1+ dr give ng = n — 7.

Writing the derivative of ¢ with respect to T in the
form of (29),

dlnTtg 1 /dIlnts n
= — n
oV /), « ar /)y

or after substituting (0In7g/90T)v by (124),

(125)

Jlnr 1
(6111;)13:;[n(l—l—a'yT)—l—éS]. (126)

The values of ((0In75)(8InV))p and n (an extrinsic
anharmonic contribution) calculated by (126) and (122)
are given in Table 2 and Pankov et al. [1997]. They
show that the intrinsic anharmonic term dominates in
(125).

Note that the 7¢ parameter occurs in any expression
when changing variables P, S to P, T": for example,

9or\ _ (9r) (D
aP )g~\op ), \ar ),

which was used in deriving (98).

(127)
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12.2. Explicit volume dependences of 75

For a moderate compression, the volume dependence
of 7¢ can be described by the power law

(128)

_ n
Ts = TsoX

where n = n(T) or constant, 759 = 750(7) and Vp =
Vo(T). This formula was used to fit the measured 75
values to P = 50 kbar and 7" = 1000 K [Boehler and
Ramacrishnan, 1980; Boehler, 1982].

However, Chopelas and Boehler [1992], accounting for
the variation of dp with V' (see (46) and (47)), found
that the linear dependence of In g on V(n = ma) bet-
ter describes teir data on 75 than the power law, and
consequently,

7§ = Tgpe™ VoL

(129)

where constant m is determined by the approximation

1 3IHCV
meY (H‘ST_ ( FITYG )T)

(see (122), where Cp is approximately Cy). Thus, on
the condition that (0InCy/dInV)rp is independent of
V, the derivative (0dp /0x)r can be found given knowl-
edge of the m value. Isaak [1993] applied this method
to evaluate the derivative 9% Kg/dPOT with the help of
(91).

12.3. EOS based on data for 75 (P, T).

(130)

Measured values of r¢(P, T) allow us first to find the
isobaric specific heat [Dzhavadov, 1986)
Cp(P.S) [ (0 Cp(0,5)
In 2PVR) 95 gp =2 2) 3y
" TP, 5) /(aT)P thro g 1Y
0

which is deduced from the identity 9*T/0P0S =
O0?T/O0SOP. The integral in (131) is taken over an adi-
abat, and the specific heat versus temperature, Cp(T),
for P = 0, is assumed to be known. Then, given a ref-
erence isotherm V(P,Ty), from (14), we can find the
thermal EOS in the form

T
V(P,T) = / TSf”dTJr V(P Ty).

To

(132)

Conversely, given the thermal EOS and 75(7T) at
P = 0, (14) gives Cp(T) at P = 0, and thus, the

caloric EOS can be determined.
Conclusion

We have reviewed thermodynamic properties of geo-
materials necessary to study the thermodynamics of the
deep interior of the Earth.
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(1) In sections 2-5, it was shown that the determina-
tion of all the second-order thermodynamic parameters
requires knowledge of values of three such parameters.
In relation to EOS’s, all the thermodynamic parame-
ters were lumped into thermal and caloric types. A
summary to finding of EOS’s from experimental data
was presented. The approaches directly based on mea-
sured thermodynamic characteristics can be formulated
in the form of partial differential equations. Of 16 third-
order thermodynamic parameters, only four (appropri-
ately chosen) are independent. Attention is given to the
compilation of a self-consistent database for minerals,
relying on input data for o, K¢ (or Kr), (0Ks/0P)r,
(80[/8T)P, (8Cp/8T)p, and (8[{5/8T)P

(2) Each of the eight second-order parameters was
analyzed separately, following the plan: the derivation
of the identities between their P and T derivatives, the
estimation of the intrinsic and extrinsic contributions
to the temperature derivatives, useful simplifications of
these relations and their consequences, and the explicit
approximate dependences of the second-order parame-
ters on pressure and temperature.

(3) In the analysis of thermal expansivity (section 6),
the Birch formula for o = a(P) at T (or S) = constant
is generalized. It was shown that a in the lower mantle,
calculated by the generalized formula, is sensitive to as-
sumed values of the mixed P — T derivative of the bulk
modulus Kr, in the range of dK}/dT ~ (0 —4)-107*
K~!. The assignment of a value about 2-107* K~! for
this derivative gives « in the lower mantle to be close
to those by the (exponential) laws of O. Anderson et
al. [1993] and Chopelas and Boehler [1992]. Based on
these estimates and our analysis, we conclude that the
coefficient of thermal expansion decreases along the hot
lower-mantle adiabat (from P = 0 to P = 1.35 Mbar) by
a factor of 4-5. Considering the O. Anderson power law
for a, we stated strict conditions for the consistency of
various assumptions regarding the EOS and parameters
o7, Kr, K’, and Cy and cleared up the consequencies
of these assumptions. In many cases, these conditions
are useful for a self-consistent thermodynamic analysis.
For example, the power form of the Birch law, Kp ~ V?
leads to K’ = constant, Kr = Kp(V), dp = K’ = con-
stant, the Murnaghan EOS (41), and for Cy = constant,
a = «(V). Various extrapolations of a to high tempera-
tures at P = 0 show a great uncertainty in the resulting
thermal expansivity (to 30-50% at 721500 — 2000 K),
which indicates that high-temperature measurements of
a are very neeeded to improve the knowledge of a.

(4) The isobaric specific heat Cp under the lower-
mantle conditions (section 7) decreases approximately
10% along the hot adiabat, from P = 0 to P = 1.35
Mbar. At low temperatures 7" < O, the intrinsic an-
harmonicty competely prevails, but at 7" > ©, when
(8Cp /0T p is small, its contribution is only 15-30%.
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(5) The difference between the thermal pressure model
of O. Anderson and the Mie-Gruneisen EOS is empha-
sized (section 8). This model has two specific features:
in general, its thermal pressure is linear in temperature,
but the volume dependence of thermal pressure depends
on the kind of material. From our estimation, at T' > O,
the nonlinear terms in P;; contribute no more than 1-
3%. In total, we refer to the existence of, at least, four
models of thermal EOS: the Mie-Griineisen (or more
general anharmonic lattice) EOS, a model with vari-
ous forms of the reference isotherm P(V,Tp) and with
a given «(P,T) dependence, the O. Anderson model
mentioned above, and the formulation of type (28) with
assumed temperature variations of the EOS parameters.

(6) In section 9, the Anderson—Griineisen parameters
ds and 7 are analyzed in more detail. An explicit ex-
pression for d7 (V) at T' (or S) = constant was derived
from the generalized formula of Birch. We find that, for
dK}/dT = 2.3 -107* K= (see the derivation of (3)),
o7 at the base of the mantle is almost half the value at
P=0.

(7) The adiabatic-isothermal transformation of bulk
moduli are discussed in section 10. In addition to the
previous considerations, the useful formula (98) was de-
rived for the mixed derivative dK(j/dT. Altogether, this
parameter for various geomaterials is estimated by a
value of the order of (1 —3)-107* K~1.

From the analyzed temperature behavior of bulk mod-
uli, we infer that the 6% = K’ — dp and 45 values at
room temperature fall mostly between —4 and —1 and
between —1 and 1, respectively. However, their high-
temperature values are in the range from —1 to 1 for §¢
and from 0 to 1.5 for &;}. The approximation d{: as 0
(0r ~ K’ and Ky = Kp(V)) is justified for many but
not all minerals.

In relation to the interpretation of seismic tomogra-
phy data for the lower mantle, we found the follow-
ing ranges of acceptible value for this largest layer of
the Earth: 6£20.2, ¢<0.8, 1.1, §r<3 — 3.3, and
ds<1.9 — 2.2 (provided that the thermal interpretation
of these data is true).

The Kg values at high temperature, evaluated by the
power law with dg = constant and by the O. Ander-
son enthalpy method have errors of the order of 2-6
and 1-3%, respectively. Thus, it is confirmed that the
0. Anderson [1995] method is quite efficient.

(8) A number of identities for the Griineisen parame-
ter v and its logarithmic derivative ¢ = (G 1In~/81In V)p
were given in section 11. They show that the conditions
Cy = constant or Cy = Cy(T) lead to v = v(V) or
vy = f(V)/Cv(T), respectively. Both these cases are
compatible to the O. Anderson thermal pressure model,
with 7 = aKp = constant or 7 = 7(V). Any of the
indicated conditions for Cy also gives ¢ = ¢(V) or ¢ =
constant; moreover, from the inequality 0 < ¢ < 1, it
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follows that 0 < K’ — dp < 1 and vice versa. Ther-
modynamically estimated ¢ values fall largely into the
interval 0.5-2. This parameter generally decreases with
pressure and temperature. In the derivative (0y/97T)p,
the intrinsic anharmonicity prevails on the whole, sug-
gesting a significant dependence of v on temperature.
In addition to many known expressions for v(V'), we
derived a new one based on the parameter A = 1 —
(0lnyT/dInV)ss1. The A = 0 case is reduced to the
Rice [1965] formula. Variation in A in the interval of 0-1
(accordingly, 65 = A(1 + ayT)~?! ranges approximately
over the same interval for ayT < 1) appreciably affects
the v values at high compression.

(9) The identities and approximations for the adia-
batic temperature gradient r¢ = (0T/9P)s were sys-
tematized. Our thermodynamic estimates of the Boehler
parameter n = (JIn1s/dIn V) are close to his exper-
imental results for olivine, quartz, and periclase. The
uncertainty of the order of one in the estimated n is
caused by errors in the used input thermodynamic data.
In the derivative (014/07T)p, the intrinsic anharmonic
contribution was found to dominate. When determining
the EOS from data for 75, an important role is played
by the relation of this parameter to specific heat.

Finally, in sections 6-8 and 10, we checked on the va-
lidity of the Mie—Gruneisen EOS used to evaluate o, Cp,
7, and Kg. Qualitatively, this EOS model correctly de-
scribes the P — T behavior of the indicated parameters,
but in general, it does not always provide a sufficiently
high accuracy of the estimated values. For this reason
(see also the inference (8) above), it is concluded that
care must be exercised when applying this type of EOS
in geophysics.
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