Sea ice loss in the Arctic region is one of the well documented consequences of climate change that also affects local atmospheric dynamics and wind-driven surface gravity waves. In this study, we perform the comparative assessment of linear trends in mean and extreme characteristics of 10-m winds and sea ice concentrations from ERA5, ERA-Interim, MERRA2 and NCEP CFSR reanalyses as well as significant wave heights from wind wave hindcasts performed with the spectral wave model WAVEWATCH III forced by these reanalyses in 1980–2019. The largest decline in sea ice concentration in all four reanalyses is observed in autumn and summer in the Chukchi and Beaufort Seas. In winter, all reanalyses and hindcasts agree on positive trends in both 10-m winds and wave heights in the Bering, Okhotsk and Labrador Seas. In spring, all datasets show negative trends in extreme wave heights in the North Pacific Ocean and positive trends in mean winds and wave heights in the western North Atlantic. In summer, positive trends in extreme 10-m winds and wave heights are observed in the Northeast Atlantic, and positive trends in extreme wave heights are revealed in the Sea of Okhotsk. In autumn, positive trends in both mean and extreme winds are observed in the Chukchi and Beaufort Seas as well as along the western coast of Greenland, which coincides with areas with the largest decline in sea ice concentrations. Positive trends in wind speed and wave heights in the Bering Seas are also revealed in all datasets.